
Extended Provenance Management
for Data Science Applications

Tanja Auge
Supervised by Prof. Andreas Heuer

University of Rostock, Germany

tanja.auge@uni-rostock.de

ABSTRACT
Research data management deals with tracking and archiv-
ing of data collected during scientific projects, experiments
or observations. The path from data collection to publica-
tion should thus be kept comprehensible, reconstructable
and plausible. The continuous growth of data, frequent
schema changes as well as the varied evaluation of the data
makes the storage of every possible database state a very
complicated and lengthy task.

With the help of data provenance, however, we can deter-
mine which part of the primary research data must be stored
long-term in order to ensure the reproducibility of the eval-
uations. It should also be possible to recalculate changes to
data and schemata so that old data records do not have to
be archived completely. In addition, the stored data must
not conflict with existing privacy guidelines.

1. INTRODUCTION
The presentation and publication of research results in-

creasingly requires the publication of the corresponding re-
search data, which ensures the findability, accessibility, in-
teroperability, and reusability in the sense of FAIR Data
Principles1. In our research, we concentrate on the struc-
tured data, e.g. resulting from measurement series, experi-
ments, or always-on sensors, stored in a relational database.
The FAIR principle does not necessarily mean, that the en-
tire database of a project has to be stored and published,
but only that part of the database which is necessary for the
traceability and/or reproducibility of the respective publica-
tion. The difficulty now is to generate exactly this minimal
part of the original research database, called sub-database.
The need for the data reduction can be due to high costs
in collecting or evaluating the data (expensive or elabo-
rately produced), to privacy aspects when evaluating per-
sonal data, or to intellectual property preservation. In our
case, the evaluation of the research database is restricted to a

1https://www.go-fair.org/

Proceedings of the VLDB 2020 PhD Workshop, August 31st, 2020. Tokyo,
Japan. Copyright (C) 2020 for this paper by its authors. Copying permitted
for private and academic purposes.

Provenance

Query

Evolution

Pr
ov
en
an
ce

ne
w

K*

J*

Qu
er
yne

w

I*

Figure 1: Query Evaluation, Provenance and
Schema Evolution

relational query language, starting from conjunctive queries,
and adding arithmetic or aggregation functions lateron.

Thus, our goal is not only to store the evaluation query
and the query result itself, but also the relevant source data.
However, if data and/or schema change frequently, the orig-
inal database must be ”frozen” and saved after each evalua-
tion carried out on the dataset. To avoid this, we use prove-
nance management techniques [7, 6] to calculate the sub-
database before (red highlighted) or after evolution (blue
highlighted) required to reproduce the query result (green
highlighted in Figure 1).

After the new general data protection regulation (GDPR)
becoming valid, it was apparent that the storage of research
data, even without containing personal data, may fall under
the aspect of privacy. Reasons for the additional privacy
requirements are high costs, a lot of time as well as the great
effort required to collect the research data. This implies a
natural conflict of interest between publishing original data
(provenance) and protecting these data (privacy) for reasons
of competition.

All in all, this results in three central research questions,
which are summarized in Figure 1:

(I.) How to calculate the minimal part of the original re-
search database that has to be stored permanently to
achieve replicable research? (red highlighted)

(II.) How to unify the theories behind data provenance and
schema evolution? (blue highlighted)

(III.) How to combine Data Provenance and Privacy aspects
in the case of query inversion? (locked tuple)



2. PROBLEM DESCRIPTION
Let us take a more detailed look at the different research

questions. A detailed description of the problems (I.) and
(II.) can be found in [1]. In the course of the PhD project
the third question (III.) arose, which illustrates the practical
relevance of the conflict between provenance and privacy.

Calculation of a minimal Sub-database (Figure 2). Pro-
vided that the query result (green highlighted) and the eval-
uation query is archived, one specific problem is, to deter-
mine the minimal (additional) information that is required
for the reconstruction of the sub-database (red highlighted).
Occasionally, we have to save entire tuples or parts of the
database directly. Using provenance management, we can
specify this necessary information. The so calculated min-
imal sub-database is able to reconstruct the results of the
evaluation query under the following boundary conditions:
(1) The number of tuples of the original is retained, (2) the
sub-database can be homomorphically mapped to the orig-
inal database, and (3) the sub-database is an intensional
description of the original database.

Data 
Provenance

Query

Figure 2: Calculation of a minimal sub-database

Unification of Provenance and Evolution (Figure 3).
Previous provenance queries have usually been processed
on a given fixed database and an evaluation query. The
combination of data provenance with schema and data evo-
lution should enable the evaluation of provenance queries
with changing schemata. Under evolution the new query
evaluation (green dotted) can be directly calculated as a
composition of the original query evaluation and the inverse
evolution (black). It is therefore sufficient to memorize one
of the two minimal sub-databases I∗ (red highlighted) or J∗

(blue highlighted), the other sub-database can be calculated
with the help of the inverse.

Query

Evolution

Querynew

Figure 3: Unification of Provenance and Evolution

Privacy in the case of Query Inversion (Figure 4). The
determination of a sub-database (red highlighted) based on
the query result (green highlighted) is not always possible or
permitted. For example, aggregated data cannot be inverted
without storing additional information. Personal data, on
the other hand, may not be published without a certain
anonymization (see locked tuple). It is therefore necessary
to generate a partial or generalized database that satisfies
the provenance criteria on the one hand and does not contra-
dict the privacy aspect on the other. This implies a natural
conflict of interest between publishing original data (prove-
nance) and protecting these data (privacy).

Data 
Provenance

Query

Figure 4: Privacy in the case of query inversion

3. STATE OF THE ART

Dependencies. The best known conditions are key depen-
dencies, functional dependencies (FD) or join dependencies
(JD). These can be extended to much more general depen-
dencies called (source-to-target) tuple generating dependen-
cies ((s-t) tgd) and equality generating dependencies (egd).
While s-t tgds are used as a kind of inter-database depen-
dencies, tgds – an s-t tgd on only one database schema –
as well as egds can be seen as intra-database dependencies
representing integrity constraints within a database [9, 10].

CHASE. The CHASE is a procedure that modifies a given
object © by incorporating a parameter ?. We represent
this by: chase?(©) = ?©. While the object © can represent
both queries and instances, we understand the parameter ?
as set of dependencies like (s-t) tgds and/or egds. There
are already first approaches to generalize the CHASE to
(arbitrary) objects and parameters [3].

In our use case s-t tgds create new tuples and tgds/egds
clean the database by replacing null values until the CHASEd
database satisfies all given dependencies [13, 5]. The CHASE
on instances can be used for data exchange, data integration,
query answering on incomplete databases, or data cleaning,
among others.

CHASE-inverse. A CHASE-inverse is an inverse function
calculated via the CHASE algorithm. Weaker variants like
the relaxed CHASE-inverse [10], tuple-preserving relaxed and
result equivalent CHASE-inverse [2] do not guarantee an ex-
act and unique inverse.

Data Provenance. Given a database instance I and an
evaluation query Q, data provenance describes (1) where a
result tuple r does come from (where-provenance), (2) why
and (3) how r exists in the result Q(I).Why -provenance [6]
specifies a witness base that identifies the tuples involved in
the calculation of r. The question of how a result tuple r



is calculated is answered by how -provenance using prove-
nance polynomials. These polynomials give a concrete cal-
culation of r. They are defined by a commutative semi-ring
(N[X],+, ·, 0, 1) with + for union and projection as well as
· for natural join [14].

Why and where can be derived from the result of the
how -provenance. For this we can define a reduction based
on the information content: where � why � how. There-
fore, we often only concentrate on how -provenance. When
including privacy aspects, however, the why - and where-
provenance should not be neglected.

Provenance under Schema Evolution. The description
of schema development using schema modification opera-
tors (SMO) such as CREATE table, ADD or DROP column en-
ables schema and corresponding data changes [8]. First ap-
proaches to combining schema evolution and provenance are
given in [12] and [11], the latter supporting a total of three
types of provenance queries: (1) data provenance queries,
(2) schema provenance queries and (3) statistics queries.

Privacy. Privacy refers the protection of (personal) data
against unauthorized collection, storage and publication. Im-
portant criteria in this context are for example k-anonymity
and l-diversity [15]. These are necessary, since a tuple can of-
ten be uniquely identified by apparently harmless attributes,
so-called quasi-identifiers. The goal of our research is to
reconstruct the original database as accurately as possible.
This implies a natural conflict of interest between publishing
original data (provenance) and protecting these data (pri-
vacy) [4].

4. PREVIOUS RESULTS
In order to unify the different theories, we represent evalu-

ation queries, provenance queries and evolution functions as
s-t tgds, so that the CHASE algorithm can be applied as a
technique. The CHASE is thus a formalization of the evalu-
ation as well as evolution of the research database. In a sec-
ond step, called BACKCHASE process, we use the CHASE
again to generate a provenance query based on the result of
the evaluation query. Our theories of inverse functions can
be developed from the already existing work of Fagin [10].

Calculation of a minimal Sub-database. Let I be a data-
base instance,M a schema mapping defined by a s-t tgd and
I∗ = chaseM∗(chaseM(I)) the minimal sub-database calcu-
lated by applying CHASE twice, red highlighted in Fig-
ure 2. While an exact CHASE-inverse always reconstructs
the original database itself, weaker variants only require
data exchange equivalence and the existence of a homomor-
phism between I∗ and I. To preserve the number of tuples
we define the tuple preserving relaxed CHASE-inverse (tp-
relaxed). To specify a CHASE-inverse for aggregated func-
tions as well, we define the result equivalent CHASE-inverse
[2]. Both definitions are based on the theory of Fagin [10].

The result equivalent CHASE-inverse is therefore the weak-
est CHASE-inverse. Overall, this results in the reduction

result equivalent � relaxed � tp-relaxed � exact,

which forms the sufficient conditions for the existence of
a CHASE-inverse. The necessary conditions, on the other

hand, refer to the existence of homomorphisms, an equal
number of tuples as well as result equivalence [2].

An exact (=), (tp-)relaxed (�tp) or result equivalent (↔)
CHASE-inverse can be specified for each basic operation
like π, ./, σ or AVG. Adding provenance information such as
provenance polynomials [14] and (minimal) witness bases [6]
allows the specification of stronger CHASE-inverse schema
mappings then without. Thus, in the case of a projec-
tion, formalized as R(a, b, c)→ S(a, c), the inverse function
S(a, c)→ ∃d : R(a, d, c) is tp-relaxed instead of relaxed. For
other operations such as selection on the other hand, the
inverse type cannot be improved despite additional infor-
mation [2].

Unification of Provenance and Evolution. Given a data-
base instance I and its evolution J , we can differentiate be-
tween 15 schema modifications like CREATE table, ADD or
DROP column. Theses modifications can be formalized us-
ing the schema modification operators defined in [11]. We
examined the most common schema modification operators
with reference to their CHASE-inverses and extend them
with why - and how -provenance as well as additional anno-
tations. The most common operators are DECOMPOSE, JOIN
and MERGE Table as well as MERGE Column. Currently we
are evaluating the remaining 11 operators for their CHASE-
inverse functions without and with using data provenance.

Among other things, we found that in some research in-
stitutions the SMOs defined by Zaniolo et al. are not suf-
ficient [11]. In corporation with the Leibniz Institute for
Baltic Sea Research Warnemünde we were able to deter-
mine that their schema modifications contain a lot of merg-
ing and splitting operations. We therefore define two opera-
tors MERGE Column and SPLIT Column as sequence of ADD

and DROP operations. These merge function can be for-
malized as R(a, b, c)→ S(b, f(a, c)) with an inverse function
S(b, f(a, c))→ ∃d, e : R(d, b, e). Depending on the use or
not use of provenance information we can generate a tp-
relaxed or exact CHASE-inverse resulting in a better recon-
structed sub-database.

Privacy in the case of Query Inversion. For us, the term
privacy goes beyond the term of (usually personal) data pro-
tection. Rather, we refer to the protection of research data
in general. Reasons for protecting research data include eco-
nomic (company protection), personal (personal data) or
financial aspects. The creation of such data is often time-
consuming and expensive. The identification of personal or
internal company information should also be strictly pre-
vented.

When reconstructing the minimal sub-database only those
tuples may be reconstructed which do not contradict privacy
aspects. Depending on the selected provenance, different
data protection problems have to be considered [4]: (1) Us-
ing relation names as where-provenance, there is generally
not enough data worth protecting and reproducibility of the
data is not guaranteed. Data protection aspects are there-
fore negligible. (2) In the case of why, we may encounter
privacy problems, if the variance of the distribution of at-
tribute values is equal to zero. However, this only applies
for special cases not known to the user interpreting the re-
sults of the provenance queries. (3) How -provenance often
calculates too much recoverable information, so that privacy
aspects are likely to be a major problem with this approach.



(4) If we interpret where as tuple names and we save not
only the scheme but the tuple itself, this can lead to major
privacy problems. However, this second where approach is
subject of our current work.

For solving problems generated by the different prove-
nance queries, different approaches such as generalization
and suppression, permutation of attribute values, differen-
tial privacy, and intensional (instead of extensional) answers
have been developed. The next step is now to examine
them for their compatibility with where-, why - and how -
provenance.

Generalization of the CHASE. We are currently working
on adapting the CHASE variant presented in [5] to (arbi-
trary) objects © and parameters ?. Initial approaches to
this are described in [3]. So the parameter ? is always rep-
resented as a intra- or inter-database dependency and the
predefined hierarchy of dependencies JD � tgd � s-t tgd
and FD � egd allows to display all dependencies as s-t tgds
respectively egds. Views can also be displayed as such de-
pendencies. This allows the usage of a general parameter
for all today’s relevant CHASE applications like semantic
optimization, answering queries using views, data exchange
and data cleaning, query rewriting and many more.

The CHASE object© is either a queryQ or a database in-
stance I. In both cases variables/null values can be replaced
by other variables/null values or constants. The variable
substitution depends on certain conditions shown in [3]. Our
goal here is to develop a tool that execute multiple CHASE
applications. For the best of our knowledge, all currently
existing tools are always designed for only one use case.

5. FUTURE WORK
Both in the calculation of a minimal sub-database and in

the unification of provenance and evolution, there are still
open questions to be answered. First, a concrete BACK-
CHASE process must be defined using provenance polyno-
mials and witness bases. Secondly, we have to evaluate the
remaining 11 SMOs for their CHASE-inverse functions with-
out and with the use of data provenance. Further, we need
to examine the different privacy approaches for their com-
patibility with where-, why -, and how -provenance.

In addition to these specific questions, we also want to
know whether our results are applicable for other use cases
than research data management. And of course we hope to
further develop the theory of generalized CHASE a little bit.

6. CONCLUSION
We presented the current status and plans to extend our

work in the field of provenance management considering
evolution and privacy aspects. We defined the tp-relaxed
and result equivalent CHASE-inverse, examined the differ-
ent evaluation and evolution operators for their inverse types
without and with using data provenance and started to crit-
ically study the correlation between provenance and privacy.

7. ACKNOWLEDGMENTS
Special thanks go to my PhD supervisor Andreas Heuer

and my mentor Goetz Graefe as well as to my colleagues
from the database chair of the University of Rostock for
their support during my PhD studies so far. Thanks to the

Leibniz Institute for Baltic Sea Research Warnemünde for
providing their research data and thanks also to my stu-
dents for the many interesting discussions about privacy,
provenance, evolution and the CHASE algorithm.

8. REFERENCES
[1] T. Auge and A. Heuer. Combining Provenance

Management and Schema Evolution. In IPAW, volume
11017 of Lecture Notes in Computer Science, pages
222–225. Springer, 2018.

[2] T. Auge and A. Heuer. The Theory behind
Minimizing Research Data — Result equivalent
CHASE-inverse Mappings. In LWDA, volume 2191 of
CEUR Workshop Proceedings, pages 1–12.
CEUR-WS.org, 2018.

[3] T. Auge and A. Heuer. ProSA — Using the CHASE
for Provenance Management. In ADBIS, volume
11695 of Lecture Notes in Computer Science, pages
357–372. Springer, 2019.

[4] T. Auge, N. Scharlau, and A. Heuer. Privacy Aspects
of Provenance Queries. Accepted for ProvenanceWeek,
2020.

[5] M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik,
P. Papotti, D. Santoro, and E. Tsamoura.
Benchmarking the Chase. In PODS, pages 37–52.
ACM, 2017.

[6] P. Buneman, S. Khanna, and W. C. Tan. Why and
Where: A Characterization of Data Provenance. In
ICDT, volume 1973, pages 316–330. Springer, 2001.

[7] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance
in Databases: Why, How, and Where. Foundations
and Trends in Databases, 1(4):379–474, 2009.

[8] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo.
Update rewriting and integrity constraint maintenance
in a schema evolution support system: PRISM++.
Proc. VLDB Endow., 4(2):117–128, 2010.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data Exchange: Semantics and Query Answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[10] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Schema Mapping Evolution Through Composition and
Inversion. In Schema Matching and Mapping, pages
191–222. Springer, 2011.

[11] S. Gao and C. Zaniolo. Provenance Management in
Databases Under Schema Evolution. In TaPP.
USENIX Association, 2012.

[12] B. Glavic, G. Alonso, R. J. Miller, and L. M. Haas.
TRAMP: Understanding the Behavior of Schema
Mappings through Provenance. Proc. VLDB Endow.,
3(1):1314–1325, 2010.

[13] S. Greco, C. Molinaro, and F. Spezzano. Incomplete
Data and Data Dependencies in Relational Databases.
Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2012.

[14] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS, pages 31–40. ACM,
2007.

[15] P. Samarati. Protecting Respondents’ Identities in
Microdata Release. IEEE Trans. Knowl. Data Eng.,
13(6):1010–1027, 2001.


