
AlphaJoin: Join Order Selection à la AlphaGo
Ji Zhang†‡

Supervised by Ke Zhou† and Sebastian Schelter‡
†Hua Zhong University of Science and Technology, ‡University of Amsterdam

jizhang@hust.edu.cn

ABSTRACT
Query optimization remains a difficult problem, and existing
database management systems (DBMSs) often miss good
execution plans. Identifying an efficient join order is key to
achieving good performance in database systems. A primary
challenge in join order selection is enumerating a set of can-
didate orderings and identifying the most effective ordering.
Searching in larger candidate spaces increases the potential
of finding well-working plans, but also increases the cost of
query optimization.

Inspired by the success of AlphaGo for the game of Go. In
this Ph.D. work, we propose an optimization approach re-
ferred to as AlphaJoin, which applies AlphaGo’s techniques,
namely Monte Carlo Tree Search (MCTS), to the join order
selection problem. Preliminary results indicate that our ap-
proach consistently outperforms a state-of-the-art method
and the PostgreSQL’s optimizer on its own respective exe-
cution engine. Our approach is open-sourced and publicly
available on Github1.

1. INTRODUCTION
Database tuning is vital for optimizing the performance

of a database management system (DBMS) [1, 2, 3, 4, 5].
Query optimization is one of the most well-studied issues
in this field. Identifying an efficient join order is key to
achieving good performance in database systems. A primary
challenge in join order selection is to minimize the num-
ber of execution plans to enumerate, as well as the runtime
of the final chosen plan [6]. Traditional database systems
employ a variety of heuristical methods (dynamic program-
ming, greedy approaches, genetic algorithms and simulated
annealing) as a join order selection policy. However, these
traditional query optimizers rely on internal static informa-
tion and hence do not learn from historic experiences. Be-
cause of the lack of feedback, these methods select a query
plan, execute it and then forget this selection; thus they
never learn from previous experiences.

In the face of the recent success of machine learning (ML)
for various computer science problems, it is very natural to
think about the idea of using ML for join order selection in
the optimizer [6, 7, 8]. Marcus et al. [6] proposed a proof-of-
concept join order enumerator named ReJOIN entirely driven

1https://github.com/HustAIsGroup/AlphaJoin

Proceedings of the VLDB 2020 PhD Workshop, August 31st, 2020. Tokyo,
Japan. Copyright (C) 2020 for this paper by its authors. Copying permitted
for private and academic purposes.

by deep reinforcement learning to learn from previously e
executed plans. They provide preliminary results that in-
dicate that their approach outperforms PostgreSQL’s join
enumeration process in terms of effectiveness and efficiency.
Unfortunately, ReJOIN and the traditional heuristics meth-
ods all assume a cost-based approach (search a subspace of
all possible join orderings and select the ”cheapest” order
according to the cost model based on statistical informa-
tion) to join order selection optimization. These approaches
still require a human-designed cost model and might be not
accurate when the data in the database changes dynami-
cally [8]. In other words, although PostgreSQL’s execution
engine chooses the join order with the lowest cost, its actual
execution time may not be the lowest. This illustrates that
the cost model of PostgreSQL might not really reflect the
execution time of the query plan [15].

Marcus et al. [8] presented a learning optimizer called NEO

that generates highly efficient query execution plans using
deep neural networks, based on the actual execution time
instead of a cost-based model, which achieves similar or im-
proved performance compared to state-of-the-art commer-
cial optimizers on their respective query execution engines.
However, these methods (traditional database execution en-
gines, ReJOIN and NEO) are based on some simple search
strategies which search unevenly (randomly) result in some
plans that were never tried (evenly a part of the complete
plan) and have a possibility of falling in a local optimum.

Inspired by the impressive search capability of Monte Carlo
Tree Search (MCTS [9]), which is at the core of the Al-
phaGo [10] system for playing the game of Go, we explore
the benefits of MCTS for the join order selection. We call
our approach AlphaJoin. MCTS is a search method usually
used in games to predict the set of moves that should be
taken to reach a final winning solution with high likelihood.
The main idea is to simulate many possible join orders in one
tree structure which is efficient to learn for searching from
an even manner. and to apply MCTS to select the order to
execute with the highest estimated performance. We hope
that AlphaJoin inspires many other database researchers to
experiment with combining query optimizers in new ways.

In this Ph.D. work, we make the following contributions:

• To the best of our knowledge, AlphaJoin is the first ap-
proach to use MCTS to learn and generate a highly effi-
cient join order in a query optimizer. We design a neu-
ral network (Order Value Network, OVN) to predict the
query execution time of a given plan, and leverage this
network within MCTS to score candidate query plans.
(We refer to this as AlphaJoin 1.0)

• Based on AlphaJoin 1.0, we design another neural net-
work called Adaptive Decision Network (ADN) to choose
between our AlphaJoin 1.0 and the PostgreSQL opti-
mizer for a given query which further improves the op-
timization performance. (We refer to this approach as



Figure 1: The encoding methods in AlphaJoin: SQL-

encoding and Plan-encoding.

AlphaJoin 2.0)
• Our experimental results demonstrate that AlphaJoin can

generate efficient join orders with improved performance
compared to the state-of-the-art optimization tool NEO
and PostgreSQL’s query optimizer on its own respective
execution engine.

2. APPROACH
In this section, we first describe two encoding methods

(SQL-encoding and Plan-encoding) and then provide an overview
of our proposed approach AlphaJoin. Note that AlphaJoin

2.0 is the extended version of AlphaJoin 1.0 to further im-
prove the optimization performance.

2.1 Encodings
AlphaJoin uses two encodings: SQL-Encoding, which en-

codes information regarding the SQL query, but is indepen-
dent of the query plan, and a plan-encoding, which repre-
sents the execution plan.

SQL-encoding encodes the table and attribute information
contained in the SQL query. Similar to previous work [11],
the representation of each query consists of two components:
the first component encodes the join graph of the query in
an adjacency matrix. A “1” in the matrix corresponds to
the join predicate connecting two tables, e.g. in Figure 1,
the “1” in the first row, second column corresponds to the
join predicate connecting A and C. The second component
is a simple “one-hot encoding” of the attributes involved in
contained SQL predicates.

Plan-encoding In addition to the SQL encoding, we also
require a representation of a partial or complete query execu-
tion plan. There needs to be a consistent one-to-one match
between each encoding and the corresponding join order.
In other words, the plan encoding method must be both
encodable and decodable at the same time. However, the
execution plan encoding in the proposed method ReJOIN [6]
uses Huffman coding which is hard to represent as a dense
tree and cannot distinguish between the left child and right
child, driving table and driven table. Inspired by the en-
coding method for the state of the Go board in AlphaGo,
we designed a new plan-encoding method that also consists
of two components. The only difference to SQL-encoding
is that we represent the join order instead of just the join
graph in the encoding matrix (using different order numbers
instead of only “1”). The larger a number in the matrix, the
higher priority of a join operation for two corresponding ta-
bles. For example, in the red dotted frame of Figure 1, the
“4” in the third row and fifth column corresponds to the
join predicate connecting C and E at the first of all. Then,
the “3” in the fourth row and third column corresponds to
the join predicate connecting the result of (C E) and D. The
“2” in the first row and second column corresponds to the

Figure 2: Overview of our proposed AlphaJoin which

includes two encoding methods (SQL-encoding and Plan-

encoding), two trained neural networks OVN and ADN,

and an optimizer which applies MCTS.

join predicate connecting A and B. Lastly, the “1” in the
third row and first column corresponds to the join predicate
connecting the result of (D (C E)) and the result of (A B).
Note that this process of execution plan encoding is similar
to the encoding of moves in AlphaGo.

2.2 AlphaJoin 1.0

Next, we introduce AlphaJoin 1.0, which consists of two
components: the Order Value Network and MCTS. After-
wareds, we show some preliminary results of AlphaJoin 1.0.

2.2.1 Order Value Network
The order value network (OVN) is a deep neural network

to predict the best-possible query execution time degree for
a partial execution plan. The architecture of the OVN is
shown in Figure 2. It consists of an input layer I, three hid-
den layers H (2048, 512, 128-dimensional units) with ReLU
activation, and an output layer O. As the goal of this neu-
ral network is to estimatewhich query plans are fast or slow,
the data we feed to this network is the plan-encoding of
the query plan and the output is the result of a multi-label
classification, where the K = 4 possible labels indicate the
execution time degree (from 0 to 4, the lower the degree is,
the lower the execution time is) of the entered query plan.
Note that we tried other setups, but achieved the best result
with K = 4. We employ a softmax output to produce a
proper probability distribution over the execution time de-
gree and additionally dropout regularization [12] to prevent
overfitting. We train our network to minimize the cross en-
tropy [13] between the historical query plans and their cor-
responding predicted execution time (the standard loss for
multiclass classification problems) which is a measure be-
tween distributions. It is interesting to study other types of
neural networks to improve the prediction result, and we ex-
plored convolutional networks, but found no significant per-
formance improvements. Our model achieves about 60.9%
accuracy on Join Order Benchmark (JOB). Although the
predictive results are not on par with the results for most
predictive tasks, in the process of MCTS, a large number of
simulations will be performed to select the appropriate join
order, and these simulations will make up for the accuracy of
the network. Note that the value network of AlphaGo only
achieves 50% accuracy but still exhibits good performance.



Figure 3: The correspondence between the four distinct

steps in MCTS and join order selection.

2.2.2 MCTS for AlphaJoin
We first introduce the UCT algorithm, reward function in

MCTS and then discuss the MCTS for join order selection.

UCT Algorithm. The “Upper Confidence Bounds applied
to Trees (UCT)” [14] algorithm is a game tree search algo-
rithm to solve the problem of which tree node should be
selected. This algorithm adopts the well-known exploration
& exploitation scheme, which not only gives full search (the
learned experience) to the ability of the model but also ex-
plores more tree nodes that were previously never tried, to
reduce the possibility of falling into a local optimum. The

detailed UCT calculation formula is UCT (vi, v) = Q(vi)
N(vi)

+

C
√

logN(v)
N(vi)

where vi is the current node, v is its parent node,

Q(vi) refers to as the number of times to gain an advantage
at the current node, N(vi) (N(v)) is the total number the
current nodes (parent nodes) were accessed, and C is a pa-
rameter to adjust the sensitivity of exploration. Taking Al-
phaGo as an example, the first part of the formula refers to
exploitation which determines the probability of “win” after
selecting this node. The second part of the formula refers
to exploration, and there is a high probability of exploring
other untouched nodes (instead of vi) if N(vi) is large. Note
that the path from each child node to the root node in the
tree represents a complete join order.

Reward Function. Analogous to AlphaGo, we need to
define the “win” in AlphaJoin after a complete join order
was searched by MCTS. In the query optimization problem,
our goal is to generate a query plan that results in the lowest
execution time. Therefore, the lower the execution time,
the higher the probability of “win”. We designed a simple

reward function which is Rj =
K−kj

K
for the reward Rj of

the evaluated join order j by MCTS. K is the predefined
execution time degree in our OVN (Section 2.2.1); kj (range
from 0 to K) is the predicted execution time degree of the
tried join order j. The reward achieves the largest value 1 if
the execution time degree of the plan was predicted as the
lowest degree 0.

MCTS for Join Order Selection. The MCTS algorithm
is a decision-making algorithm that applies the Monte Carlo
method for tree search. MCTS expands the tree through
simulations when searching the space until making a deci-
sion, and feeds the final result of the decision (“win” or not)
back to the nodes in the tree for updating. After a large
number of simulations, the information of each node rep-
resents the ratio of the number of correct decisions to the
total number of simulations at this node, which indicates
the value of this node. In order to decrease the search space
from the root node to the leaf node, we define the number
of simulations required for each node as Sn = NC ∗Fs where
NC is the number of child nodes under the current node and

Fs is a search factor to control the whole simulation time.
The larger Fs is, the more search time MCTS will spend (we
set it to 15 and analyze the impact of different values on the
optimization performance in Section 2.2.3). The total num-

ber of simulations for each SQL query is
∑J

1 Sn, where J is
the number of joins in the query. This process will continue
until all possible join orders are searched or the predefined
maximum number of simulations is reached. Each simula-
tion of MCTS can be broken down into four distinct steps:
selection, expansion, simulation and backpropagation. Each
of these steps for join order selection is shown in Figure 3
and explained in details below:

1. Selection- We apply the UCT algorithm to select the
join order from the root node to the leaf node. Once a child
node which is also a leaf node is encountered during travel,
MCTS jumps into the expansion step.

2. Expansion- In this process, a new child node (join
order) is added to the tree to the node which was optimally
reached during the selection process.

3. Simulation- A simulation is performed by randomly
choosing moves or strategies until all the tables are joined.

4. Backpropagation- The backpropagation process is
performed from the new node to the root node. During
this process, the total number of simulations stored in each
node is incremented (add ”1”). If the new node’s simula-
tion results in a lower execution time, these nodes are also
incremented (add reward ”R”).

2.2.3 Preliminary Results for AlphaJoin 1.0
We first explore the performance impact of the search fac-

tor Fs on join order selection by AlphaJoin and then in-
vestigate the performance of AlphaJoin 1.0, PostgreSQL’s
join enumeration process and NEO via the Join Order Bench-
mark, a set of queries used in previous assessments of query
optimizers [8, 15]. Figure 4(a) shows the impact of differ-
ent search factors Fs on the optimized execution time and
search time. As the search factor Fs increases from 5 to
25, the optimized execution time by AlphaJoin 1.0 is con-
tinuously decreased but the search time of our method is
increased. This is because a larger Fs causes more simu-
lations on each node using MCTS. Therefore, a tradeoff is
required to select an appropriate Fs between the optimized
execution time and search time, thus we set Fs to 15.

Figure 4(b) shows the overall optimized performance of
AlphaJoin 1.0, PostgreSQL’s query optimizer and NEO. AlphaJoin
1.0 outperforms other candidates even when we include the
search time. This experiment demonstrates that our method
using MCTS efficiently selects appropriate join orders.

2.3 AlphaJoin 2.0
In order to further improve the optimized performance of

the AlphaJoin 1.0, it is interesting to compare the execu-
tion time of each SQL performed by PostgreSQL’s query
optimizer and AlphaJoin 1.0. Not all the join orders rec-
ommended by AlphaJoin 1.0 are better than the ones gen-
erated by PostgreSQL’s query optimizer. According to the
statistics, still about 48% (almost half of the cases) of queries
optimized by PostgreSQL’s query optimizer on its own re-
spective execution engine achieve a better performance than
AlphaJoin 1.0 (note that NEO achieves this in 41% of the
cases). We attributes this to the uncertainty of the UCT
algorithm in our method. Figure 4(c) shows the total ex-
ecution time of those queries which achieve a better per-



(a) (b) (c) (d)

Figure 4: (a) The impact of different search factors Fs on the optimized execution time and search time. (b) The

overall optimized performance AlphaJoin 1.0, PostgreSQL’s query optimizer and NEO. (c) The total execution time of

queries which achieve better performance via AlphaJoin 1.0 (left) and PostgreSQL’s query optimizer (right). (d) The

overall optimized performance AlphaJoin 2.0, AlphaJoin 1.0, PostgreSQL’s query optimizer and NEO.

formance via AlphaJoin 1.0 (left) and PostgreSQL’s query
optimizer (right). An interesting finding is that although
these two methods are similar in the number of preferred
queries, AlphaJoin 1.0 achieves a greatly improved per-
formance compared to the PostgreSQL’s join enumeration
process. In other words, AlphaJoin 1.0 performs better for
slow queries (queries with large execution time). This is
because these slow queries have more space for optimiza-
tion using our method. In contrast, for the optimization of
fast queries, our method is not suitable. In order to further
improve the optimized performance of AlphaJoin 1.0, we
introduce AlphaJoin 2.0. Note that we could also explore
other methods to decrease the search time of MCTS, e.g.,
by parallelizing MCTS [16].

In order to alleviate the situation we analyzed above, we
train another neural network referred to as the Adaptive
Decision Network (ADN, shown in Figure 2) to choose be-
tween our AlphaJoin 1.0 and the PostgreSQL optimizer for
a given query. ADN is learned from a labeled dataset of his-
torical execution times of the optimizer in PostgreSQL and
our AlphaJoin 1.0. The structure of ADN is similar to
OVN, the only difference are the inputs and outputs. The
input is the SQL-encoding of the query and the output is a
binary classification result which indicates which optimizer
should be chosen to perform. We refer to this architecture
as AlphaJoin 2.0.

3. PRELIMINARY RESULTS
We use the same benchmark and experimental setup to

evaluate the performance between PostgreSQL’s optimizer,
NEO, AlphaJoin 1.0 and AlphaJoin 2.0. We present pre-
liminary experiments in Figure 4(d) that indicate that AlphaJoin
2.0 can generate better join orders with lower execution
time compared to the ones generated by PostgreSQL’s op-
timizer (decreased by 60.1%), the state-of-the-art method
NEO [8] (decreased by 38.7%) and our previously proposed
version AlphaJoin 1.0 (decreased by 31.3%). Moreover, we
also decrease the ratio of the queries for which PostgreSQL’s
optimizer performed better from 48% to 9%.

4. CONCLUSION AND NEXT STEPS
In this Ph.D. work, we present AlphaJoin, the first MCTS-

based query optimizer that generates highly efficient join or-
ders for database optimizer. AlphaJoin iteratively improves
its performance through a combination of two neural net-
works and MCTS. Preliminary results show AlphaJoin con-
sistently outperforms the state-of-the-art method NEO and
the PostgreSQL’s optimizer.

As a next step, we plan to investigate methods for im-
proving the prediction accuracy of two networks OVN and
ADN to further optimize the search efficiency of MCTS.
Besides, our method still performs worse than the optimizer
in PostgreSQL on a set of fast queries, which we need to
investigate to further improve the overall performance and
propose “AlphaJoin 3.0”.

5. REFERENCES
[1] Benoit Dageville et al. Automatic sql tuning in oracle

10g. In VLDB, pages 1098–1109, 2004.

[2] Surajit Chaudhuri et al. Self-tuning database systems:
A decade of progress. In VLDB, pages 3–14, 2007.

[3] Dana Van Aken et al. Automatic dbms tuning through
large-scale machine learning. In SIGMOD, 2017.

[4] Ji Zhang et al. An end-to-end automatic cloud
database tuning system using deep reinforcement
learning. In SIGMOD ’19, page 415–432, 2019.

[5] Guoliang Li et al. Qtune: A query-aware database
tuning system with deep reinforcement learning. Proc.
VLDB Endow., 12(12):2118–2130, 2019.

[6] Ryan Marcus et al. Deep reinforcement learning for
join order enumeration. aiDM’18. ACM, 2018.

[7] Ryan Marcus. Towards a hands-free query optimizer
through deep learning. In CIDR, pages 1–8, 2019.

[8] Ryan Marcus et al. Neo: A learned query optimizer.
Proc. VLDB Endow., 12(11):1705–1718, 2019.

[9] Rémi Coulom. Efficient selectivity and backup
operators in monte-carlo tree search. In Computers
and Games, volume 4630, pages 72–83. Springer, 2006.

[10] David Silver et al. Mastering the game of go with deep
neural networks and tree search. Nature, 2016.

[11] Jennifer Ortiz et al. Learning state representations for
query optimization with deep reinforcement learning.
In DEEM’18. ACM, 2018.

[12] Nitish Srivastava et al. Dropout: A simple way to
prevent neural networks from overfitting. J. Mach.
Learn. Res., 15(1):1929–1958, January 2014.

[13] Ian Goodfellow et al. Deep Learning. MIT Press, 2016.

[14] Sylvain Gelly et al. Exploration exploitation in go: Uct
for monte-carlo go. In NIPS Workshop OTEE, 2006.

[15] Viktor Leis et al. How good are query optimizers,
really? Proc. VLDB Endow., 9(3):204–215, 2015.

[16] Anji Liu. Watch the unobserved: A simple approach
to parallelizing monte carlo tree search, 2018.


	Introduction
	Approach
	Encodings
	AlphaJoin 1.0
	Order Value Network
	MCTS for AlphaJoin
	Preliminary Results for AlphaJoin 1.0

	AlphaJoin 2.0

	Preliminary Results
	Conclusion AND NEXT STEPS
	References

