CEUR-WS.org/Vol-2652/paper07.pdf

Secure Data Processing at Scale

Kajetan Maliszewski
supervised by Prof. Volker Markl
Technische Universitat Berlin

maliszewski@tu-berlin.de

ABSTRACT

Although the cloud is today a de-facto standard for scal-
able data processing, there are still many applications that
cannot make use of the cloud due to data or computa-
tion privacy. Sensitive data, such as in the health do-
main; and computations, such as core-business Al pipelines,
grew into valuable assets that made secure data process-
ing a hot topic in industry and academia. On one hand,
the existing data processing systems prioritize performance
and, to a certain level, trade users’ privacy. On the other
hand, privacy-preserving data processing systems sacrifice
performance. In this PhD thesis, we envision a fully secure
general-purpose data processing system for the cloud. Over-
all, we aim at devising: (i) algorithms that are adequate to
work with very limited memory, such as the one exposed
by trusted execution environments; (ii) scalable state man-
agement techniques; (iii) oblivious data-access algorithms;
and (iv) privacy-preserving query optimizations techniques
to speed up query execution.

1. INTRODUCTION

Processing data on the cloud has become omnipresent in
our days [2]. For example, services, such as Amazon AWS
and Microsoft Azure, have made trivial for companies, re-
searchers, and organizations (users for short) to set up and
maintain compute nodes. The cloud has given unprece-
dented power to users: they can now run applications and
analytics before they were not able to run. For instance, a
small company can easily offer scalable data analytics with-
out owning its data infrastructure [1].

However, there are still many applications from different
domains that cannot fully benefit from the cloud. Among
these, we mainly find users working with sensitive data,
e.g., on medical or transactional data, and users per-
forming sensitive computations, e.g., machine/deep learn-
ing pipelines defining the core business of a company. These
users typically have to classify their data or computations
and hence are subject to strict compliance rules that force

Proceedings of the VLDB 2020 PhD Workshop, August 31st, 2020. Tokyo,
Japan. Copyright (C) 2020 for this paper by its authors. Copying permitted
for private and academic purposes.

them to not trade privacy. As most cloud solutions do not
treat privacy as a first-class citizen, users end up working on
their premises sacrificing scalability and efficiency. This, for
example, is the case of most applications in the healthcare
domain, which use in-house solutions and infrastructure [8].

Even though, hybrid-cloud has recently appeared as a pos-
sible solution to this problem [17, 18], sensitive data and
computations still cannot be moved from the private cloud.
This is because existing data processing systems lack fea-
tures for preserving the privacy of data and computations.
Although few systems work on encrypted data [14, 15], most
cloud-based data processing systems, such as Spark and
Flink, expose data and computations at the hardware level.
The research community proposed using trusted execution
environments (TEEs) [12] to provide solutions to this prob-
lem [7, 9, 11, 16, 19]. Other works have also used oblivious
algorithms to provide stronger security for TEEs by hiding
data access patterns [7, 19]. Nevertheless, all these solu-
tions suffer from several of the following problems: they
(i) lack basic performance optimizations; (ii) do not scale
out; (iii) cannot support stateful operators nor large state
information; and (v) are ad-hoc to specific cases.

Therefore, despite all these efforts, we are still missing a
holistic solution that could be a panacea to all the afore-
mentioned concerns. The Holy Grail would be to replicate
the success of general-purpose distributed data processing
systems for secure, scalable cloud data processing. Users
should focus on the logic of their applications while the sys-
tem should take care of running and scaling out such applica-
tions efficiently and without any data/computation leakage.
To the best of our knowledge, there is no general-purpose
system that provides support for fully secure and scalable
cloud data processing.

Building such a system is particularly challenging for
many reasons. First, users must be able to easily define pri-
vacy constraints over their data and computations. Second,
we have to revisit data processing algorithms and state man-
agement techniques to work within secure environments.
Third, the system must ensure data and computation pri-
vacy on public compute nodes without sacrificing perfor-
mance. Fourth, it is not clear how the system optimizes
queries in the cloud when privacy is a first-class citizen.

In this thesis, we plan to tackle the above research chal-
lenges and lay down the foundations of the foreseen general-
purpose system. We plan to proceed as follows: we will first
build a single node secure and efficient data processing en-
gine; we will follow with making our data processing engine
distributed and scalable, by considering public and trusted

nodes; we will focus on devising a privacy-preserving query
optimizer. In summary, we plan to make the following major
contributions:

1. We will devise an efficient general-purpose data pro-
cessing engine for TEEs. In particular, we will propose
new data processing algorithms that are adequate to
work with very limited memory (provided by TEEs
environments).

2. We will extend our data processing engine to support
stateful operators. We will particularly provide both
oblivious data-access algorithms and support for large
state information in TEEs environments.

3. We will propose bidirectional data anonymization al-
gorithms as well as data processing algorithms being
able to work over encrypted data.

4. We will then devise different privacy-preserving query
optimizations techniques to speed up query execution.

In the remainder of this paper, we first define the prob-
lem we plan to tackle in this thesis in Section 2. We present
related work in Section 3. In Section 4, we depict our envi-
sioned solution. We follow, in Section 5, with different open
challenges we must tackle to make our envisioned solution a
reality. Lastly, we conclude this paper in Section 6.

2. PROBLEM STATEMENT

Efficient and fully secure data processing on the cloud is
currently not possible at the terabyte scale. Guaranteeing
robustness and consistent privacy level requires (i) usage of
novel hardware technologies for low-level security, (ii) re-
designing existing approaches for new environments, and
(iii) efficient secure query processing engine. Data and com-
putations can only be fully protected using technologies such
as TEEs, combined with oblivious data access. Most of the
existing execution approaches cannot be easily mapped to
the new runtimes due to heavy limitations that TEEs en-
force on the users. Data processing algorithms have to be
redesigned having these limitations in mind. Most impor-
tantly, compute resources have to be wisely fully utilized
to guarantee high query execution efficiency. Moreover,
worker nodes need to be classified by the level of security
they require; private compute nodes are considered secure,
trusted/secure compute nodes can prove their security but
require data anonymization for privacy, and public compute
nodes need oblivious processing in a TEE.

Therefore, the problem, and main challenge, resides in
how to enable efficient and truly secure data processing jobs
to hybrid compute environments.

3. RELATED WORK

Efficient Execution & State Management. Sanctu-
ary [16] is a distributed streaming system. The authors
present a set of algorithms to manage large state, but they
blindly spill to disk the state information. Additionally, the
state is not managed obliviously, hence, the longer the job
runs, the more information leaks out. SecureStreams [9]
is a lightweight streaming platform running in SGX en-
claves. The jobs are build using a set of simple operators
but the system lacks optimizations (unnecessary encryp-
tion/decryption between each operator) and does not scale-
out well (inter-operator communication quickly becomes a

traffic bottleneck). It also does not protect against access-
pattern attacks. TrustedDB [5] is a secure database built
on a cryptographic coprocessor, an older trusted hardware
architecture. It stores large state externally and accesses
it using a Paging Module, which exposes the access pat-
terns. EnclaveDB [11] is a database utilizing SGX that only
handles state up to the size of the enclave memory (approxi-
mately 90 MB). The authors assume that the future releases
of SGX would support much larger memory, however, up
until the current release it has not happened.

The problem of tiny memory has been previously ad-
dressed in small footprint databases [6, 10]. They propose
lightweight solutions, however, drastically limiting function-
ality for their very specific use cases, i. e., handheld comput-
ers, and smartcards.

Data Access Privacy. ODbliDB [7] is an oblivious database
core engine for general workloads. It hides access patterns
using oblivious query processing algorithms that require a
full table scan for each query. However, it runs only on a
single node in an SGX environment. Opaque [19] executes
encrypted Spark jobs using oblivious access. It proposes a
query optimizer to mitigate the cost of obliviousness, how-
ever, it still reaches performance degradation of up to 46x.

Query Optimization. The existing systems utilizing
hybrid-cloud [17, 18] perform the optimizations based on
manual tagging the data by the users with its sensitivity.
Later, only the insensitive data is processed in the public
cloud. This is cumbersome for the users and harmful for
workloads consisting mainly of sensitive data. In contrast
to these works on hybrid-cloud, we aim at sending sensitive
data to the public cloud and omit the tagging process by
leveraging secure hardware.

4. OUR VISION

To overcome the problem stated in Section 2, we envision a
system comprising a master node and three types of compute
nodes: (i) private compute nodes (a fully trusted worker),
(i) trusted/secure compute nodes (guaranteed with certifi-
cates of trust), (iii) public compute nodes (a fully untrusted
machine). We believe that these abstractions ideally fulfill
the performance needs while maintaining strong privacy.

A user submits a query to the master node. In turn, the
master node parses the query and optimizes it by exploiting
the knowledge about the topology and available resources. It
then compiles, executes, and monitors the query. Note that
it is the compute nodes that carry out the actual execution.

Figure 1 depicts the execution of a query over the three
types of machines, namely private, trusted/secure, and pub-
lic compute nodes. Each node has a rigorous way of process-
ing the query enforced by the query execution plan. Pri-
vate compute nodes are allowed to process the input data in
clear, i.e., neither encrypted nor anonymized (green arrow).
Trusted/secure compute nodes are considered trustworthy.
Hence, they can process data as a private node but might
also be forced to process anonymized data depending on its
trustworthy degree (orange arrow). Public compute nodes
are simply considered insecure. They thus receive enclave-
encrypted data and process it inside a TEE (red arrow).
Executing a query in such environments is far from being
trivial as data might be transferred from one kind of com-
pute nodes to another. For example, Figure 1 illustrates

master node

@ —‘—>[parsing]—-[optimization }——-[compilation }—-{ execution }
L |
query v

compute nodes

trusted/secure

S - 0—0%0—0

(((J

\ private

\‘x\public

N
o—0—e@

input source map

keyBy sink output

Figure 1: Overall architecture of our envisioned system: green arrows represent traffic in plain text, orange
arrows represent anonymized data, and red arrows represent data encrypted with the enclave key.

such data transfers with different arrow colors: while pass-
ing from orange to green means data de-anonymization, red
to green stands for decryption with the enclave key. At the
end of the query, the data is aggregated and sent to output
as defined by the query.

S. RESEARCH CHALLENGES

Building a system as described in Section 4 comes with
several research challenges, mainly around data access pri-
vacy, efficient query execution, state management, and query
optimization. We elaborate on each of these in the following.

5.1 Efficient query execution

Efficiently executing a query in TEEs is quite challenging
because of the extremely small main memory capacity in
TEEs, expensive CPU instruction set, and no system calls.
For example, Intel’s proprietary TEE technology (SGX) de-
fines an enclave, a private and highly protected region in
memory that cannot be accessed from outside of its process.
It places the enclave code and data in a special memory
area of 128 MB. Yet, excluding space for the SGX metadata,
there is approximately only 90 MB left for the application.

As a result, the design of state-of-the-art data processing
operations (e. g., a join operator) cannot simply be mapped
to enclave-enabled versions. For example, consider the case
of a hash-join operator. In the build phase, this operator
takes the smaller table and builds the hash table for the
selected key. Once the table reaches 90 MB in size, it will
start spilling the records to the memory outside the enclave
in an encrypted form. These data spilling operations cause
expensive calls to the CPU due to the context-switching
instructions and costly encryption.

Therefore, efficiently executing queries in TEEs requires
a radical change in the design of data processing operators.
We will investigate new techniques for cache management
inside the enclaves and optimizations on CPU instruction
set specifically for relational algebra. To speed up query
execution even further, we will investigate the use of query
compilation techniques to generate highly optimized code
for TEEs. Additionally, we will examine parallel enclaves
execution on multi-core CPUs. We will design data process-
ing operators relying on these new techniques.

5.2 State Management

The state is an essential element of an operator. During
execution, it is used for storing metadata and intermedi-
ate results, e.g., a rolling aggregation while scanning a ta-
ble. Handling large state management efficiently for enclave-
enabled operators is challenging because of the extremely
small main memory capacity in TEEs (see Section 5.1).

Existing systems store large states in the memory out-
side of the enclave[5, 16]. However, constant paging, and
thus, data encryption and decryption, imposes great per-
formance deterioration. For example, TrustedDB [5] uses a
custom-built Paging Module that stores all pages outside of
the Secure Coprocessor. The pages are pulled on-demand
as needed by the query processing engine. Thoma et al.
in [16] propose stateful operators for stream processing us-
ing SGX’s built-in paging mechanism. Yet, both systems are
not sufficiently optimized for secure hardware. For example,
in [16], a hash-join operator blindly spills the hash table to
the outside memory, leading to expensive calls outside the
enclave whenever it looks for a tuple.

Thus, new state management techniques are required for
settings where the main memory is drastically limited. We
will investigate new data structures and data indexes that
allow for state management outside the enclave while at the
same time reducing the unnecessary outside calls.

5.3 Data Access Privacy

Although TEEs (such as SGX) provide secure data pro-
cessing via hardware, it is still possible to have data leak-
age by understanding the data access patterns done by the
operators inside the enclave. There have thus been many
proposals on how to achieve data access privacy in systems
designed for specific use-cases, e.g., homomorphic encryp-
tion [14] and oblivious algorithms (7, 19].

However, it is a perpetuating problem how to glue these
proposals together to provide a general-purpose data pro-
cessing engine with oblivious data access and without hurt-
ing performance. For instance, Opaque [19] provides obliv-
ious data processing on SGX, but comes with an overhead
of up to 46x! Similarly, ObliDB [7] comes with a huge over-
head as it performs a full table scan for each query to achieve
obliviousness.

We will explore different ways of reducing such overhead
incurred by current oblivious data access algorithms. Par-
ticularly, we plan to investigate how to set a lower-bound on
the number of non-relevant tuples that are necessary to hide
access patterns. Such a lower-bound guarantee is required
to not compromise privacy while not harming performance.
Another research direction we will explore is to store inside
the enclave metadata about table values (similar to Oracle’s
Zone Maps [3]). Having such knowledge ahead of a query
can even prevent scanning a table at all.

5.4 Privacy-Preserving Query Optimization

Intel SGX is notorious for its performance degradation
and vulnerability to some attacks [4]. End-to-end encryp-
tion and data de/anonymization are known to be compu-
tationally intensive. Inter-cloud data transfers have been
identified as a bottleneck in cloud computing [18]. These
are some of the aspects the query optimizer will consider
when deciding which data is to be executed on which nodes.

Existing systems reduce the problem space by reducing
their functionality [7, 13]. However, while VC3 [13] is not
using oblivious access and thus it is vulnerable to data access
pattern attacks, ObliDB [7] runs only in an SGX-enabled
environment. Essentially, all these systems are designed for
homogeneous environments, i.e., they assume all compute
nodes in the system provide a TEE environment. This is
not the case in our envisioned system where multifarious
machines with different requirements co-habit together in
the same system. Enforcing a unified policy across all of
them would end up in performance degradations.

To solve this challenge, we will study the performance
of connecting operators with different privacy constraints.
This will add a new dimension to the query optimization
and will force us to rethink the optimization techniques
for logical and physical query plans. Moreover, we will in-
vestigate new techniques for data anonymization and de-
anonymization, data processing over encrypted data, and
query optimization for heterogeneous secure environments.

6. CONCLUSION

We presented our plan towards a general-purpose secure
and scalable data processing system for hybrid environ-
ments (i.e., composed of private, trusted, and public com-
pute nodes). We showed that each of the existing systems
solves only a piece of the problem. State-of-the-art solu-
tions force users to work with sensitive data or computations
only within a private environment, hence underutilizing the
available computing resources. Moreover, some works trade
users’ privacy or drastically limit the use-case, e.g., to a
centralized system not suitable for very large datasets. We
showed that we are still missing a system that sees the bigger
picture and solves the problem of truly secure data process-
ing at scale. We presented our envisioned system to solve
such a problem and discussed the main research challenges
that we must tackle to make our vision a reality.

7. ACKNOWLEDGMENTS

This work was funded by the German Ministry for Edu-
cation and Research as BIFOLD - Berlin Institute for the
Foundations of Learning and Data (ref. 01IS18025A and ref.
01IS18037A).

8. REFERENCES

[1] AWS Startup Stories. https://aws.amazon.com
/campaigns/aws-startups-stories/.

[2] Microsoft’s Growth ReAzuring Under Nadella.
https://markets.businessinsider.com
/news/stocks/microsoft-s-growth-reazuring-under-
nadella-1028372914.

[3] Oracle Database Concepts. https://docs.oracle.com.

[4] P. Antonopoulos, A. Arasu, K. Eguro, J. Hammer,
R. Kaushik, D. Kossmann, R. Ramamurthy, and
J. Szymaszek. Pushing the limits of encrypted
databases with secure hardware. arXiv preprint
arXiw:1809.02631, 2018.

[5] S. Bajaj and R. Sion. TrustedDB: A Trusted
Hardware Based Database with Privacy and Data
Confidentiality. In SIGMOD, 2011.

[6] C. Bobineau, L. Bouganim, P. Pucheral, and
P. Valduriez. PicoDBMS: Scaling down database
techniques for the smartcard. In VLDB, 2000.

[7] S. Eskandarian and M. Zaharia. ObliDB: oblivious
query processing for secure databases. PVLDB, 2019.

[8] L. Griebel, H.-U. Prokosch, F. Kopcke,

D. Toddenroth, J. Christoph, I. Leb, I. Engel, and
M. Sedlmayr. A scoping review of cloud computing in
healthcare. BMC Med. Inf. & Decision Making, 2015.

[9] A. Havet, R. Pires, P. Felber, M. Pasin, R. Rouvoy,
and V. Schiavoni. Securestreams: A reactive
middleware framework for secure data stream
processing. In DEBS, 2017.

[10] J. S. Karlsson, A. Lal, C. Leung, and T. Pham. IBM
DB2 everyplace: A small footprint relational database
system. In ICDE, 2001.

[11] C. Priebe, K. Vaswani, and M. Costa. Enclavedb: A
secure database using SGX. In S&P, 2018.

[12] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted
Execution Environment: What It is, and What It is
Not. In Trustcom/BigDataSE/ISPA, 2015.

[13] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,

M. Peinado, G. Mainar-Ruiz, and M. Russinovich.
VC3: Trustworthy data analytics in the cloud using
SGX. In S&P, 2015.

[14] J. J. Stephen, S. Savvides, V. Sundaram, M. S.
Ardekani, and P. Eugster. STYX: stream processing
with trustworthy cloud-based execution. In SoCC,
2016.

[15] S. D. Tetali, M. Lesani, R. Majumdar, and
T. Millstein. MrCrypt: Static analysis for secure cloud
computations. In OOPSLA, 2013.

[16] C. Thoma, A. J. Lee, and A. Labrinidis. Behind
enemy lines: Exploring trusted data stream processing
on untrusted systems. In CODASPY, 2019.

[17] X. Xu and X. Zhao. A framework for privacy-aware
computing on hybrid clouds with mixed-sensitivity
data. In HPCC/CSS/ICESS, 2015.

[18] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan.
Sedic: privacy-aware data intensive computing on
hybrid clouds. In CCS, 2011.

[19] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and 1. Stoica. Opaque: An oblivious and
encrypted distributed analytics platform. In NSDI,
2017.

