
Redesigning Query Engines for White-box Compression

Diego Tomé
tome@cwi.nl

CWI Amsterdam, NL
Supervised by Peter Boncz

ABSTRACT
Modern columnar databases heavily use compression to re-
duce memory footprint and boost query execution. These
techniques, however, are implemented as a ”black box”,
since their decompression logic is hard-coded and part of the
table scan infrastructure. We proposed a novel compression
model called White-box compression that views compression
actions as functions over the physical columns stored in a
block. Because these functions become visible as expressions
in the query plan, many more optimizations can be made by
the database system, boosting query execution speed. These
functions are learnt from the data and also allow the data to
be stored much more compactly, by decomposing string val-
ues, storing data in appropriate data-types automatically,
and exploiting correlations between columns.

White-box compression opens up a whole new set of re-
search questions. We started with (1) How to learn white-
box compression expressions (functions) from the data au-
tomatically? This Ph.D. research will subsequently study
(2) How to leverage white-box compression with (run-time)
query optimizations? (3) How can we integrate white-box
compression in a query engine, if the white-box functions
may be different for each block of data?

1. INTRODUCTION
Data compression is widely used on analytical databases

to reduce data storage size, as well as data transfer sizes
(over the network, disk, RAM) and provide faster query
execution. This is often effective on columnar databases,
where the data pertaining to the same column are stored
contiguously because compression algorithms perform bet-
ter on data with low information entropy [3]. While data
transfer can benefit from the improved compression ratio
in columnar databases, query execution might suffer from
slow decompression, requiring careful consideration of which
compression technique should be applied.

The literature provides a number of compression tech-
niques for databases. On the one hand, there are general-

Proceedings of the VLDB 2020 PhD Workshop, August 31st, 2020. Tokyo,
Japan. Copyright (C) 2020 for this paper by its authors. Copying permitted
for private and academic purposes.

purpose compression methods based on Huffman [12], or
arithmetic coding [19], and Lempel Ziv [20]. While they
achieve good compression ratios, encoding/decoding speeds
are relatively low, typically impacting query performance.
For this reason, columnar databases rely on compression
methods that are more light-weight, such as Run Length En-
coding (RLE), Frame-of-Reference (FOR), and Dictionary
compression (DICT)[3]. These lightweight schemes take into
account some knowledge of the data-type and -distribution,
resulting also in good compression ratio but much higher
(de)compression speed.

A limitation of the state-of-the-art is that these existing
techniques are implemented as ”black-box” in the current
database systems and the decompression logic is hidden in-
side the scan. The query plan is not aware of any decom-
pression step, while the current approach is to eagerly de-
compress all the data in the scan, keeping the execution
engine oblivious of the compression techniques – wasting op-
timization opportunities like predicate evaluation over par-
tially decompressed data. Furthermore, we observed that in
real-life datasets, data is often encoded in wrong data types
(typically as strings), contain codes that combine strings
and numerical parts (to which lightweight compression is
not applicable), and/or has highly correlated columns [9].
Regarding the latter, columnar formats like Parquet com-
press datasets with strong column correlations worse than
row-formats such as Avro, because of the general-purpose
compression typically slapped on top of these formats (in a
row-format, the co-located redundancies in a row get com-
pressed away). Column stores store each column indepen-
dently and lose this opportunity.

With white-box compression we proposed a completely
new framework for compression in database systems. A ta-
ble is a set of logical columns that is reconstructed by apply-
ing data-dependent functions over so-called physical columns
that are stored. The compression function is therefore also
data (meta-data), stored in the block header. This func-
tion is learnt from the data when writing it into blocks.
We showed in [9] that this is feasible, that it greatly reduces
storage size, and provides interesting query optimization op-
portunities.

However, we argue that to make this new idea usable
in data systems, we need to explore new query optimiza-
tion opportunities and redesign the query engine. Not only
does white-box compression introduce unexplored oppor-
tunities for selection push-down, late decompression, and
compressed execution. A significant challenge introduced
by white-box compression is that when a block of data is

written to disk, the white-box compressed model is learnt,
depending on the characterization of that block of data. As
such, each block may use a (slightly) different compressed
representation. This already used to be the case in tra-
ditional compression, but since black-box compression hides
the compression from the query engine this is only felt in the
scan. With white-box compression, the compression func-
tions, which are computational query plan expressions1 will
change continuously during query execution, whenever data
from a new block is processed. This calls for a database
system that continuously re-optimizes its query plans and
adapts them to the current characteristics of the data.

Paper Structure. The rest of this paper is structured
as follows. Section 2 provides an overview of related work.
Then, in section 3, we describe the white-box compression
model and we discuss possible solutions for the challenges
that arise. Finally, in section 4, we discuss our research plan.

2. RELATED WORK
The problem of efficient compression on database sys-

tems has received significant attention over the years [10,
16, 21, 3]. As a result, compression has been well-explored
on columnar databases for efficient query processing [21, 3,
5, 11, 15, 8, 14]. On these databases, one can achieve a
good balance between compression ratio and performance
with lightweight techniques.

The lightweight techniques provided advances on exploit-
ing compressed data during the data processing pipeline,
the so-called compressed execution [3, 4]. As a result, It
brought performance improvement by allowing the push-
down of predicates to compressed data in the scan oper-
ator [18]. On more advanced analytical systems like Hy-
per [14], data is stored in self-contained blocks allowing
predicate push-down and selective scan on compressed data.
Nevertheless, they have to sacrifice storage by keeping a
byte-addressable representation.

Decompression beyond scans has been also explored [6] by
re-compressing the data in between operators. The goal is
to reduce the memory footprint for large intermediates but
it is limited to the column-at-time processing model. On
white-box compression, decompression is part of the query
plan which allows the optimizer to delay decompression and
push-down predicates to partially decompressed data.

Google recently described its query engine called Pro-
cella and its new big data file format Artus [7]. Artus
introduces customized versions of lightweight techniques like
RLE, Delta, and Dictionary encoding. On the API of Artus,
RLE columns and dictionary indices are directly exposed to
the query engine, allowing the engine to aggressively push
computations down to the data format. In White-box com-
pression, we also want to expose the compressed data to the
query engine. Rather than implementing FOR explicitly,
white-box compression sees FOR as an additional function,
that adds a constant base to a physical column holding a
small integer. RLE in white-box compression stores a logi-
cal column as two (much shorter) physical columns holding
(count, value). On top of that, white-box compression allows

1In our current model, they could become even more adven-
turous as follow-up work.

A B P Q

Logical Physical

"GSA_8350"
"GSA_8351"
"HHS_2072"
"TREAS_4791"
"TREAS_4792"
"HHS_2073"
"GSA_8352"

"GENERAL SERVICES ADMINISTRATION"
"GENERAL SERVICES ADMINISTRATION"
"HEALTH AND HUMAN SERVICES"
"TREASURY"
"TREASURY"
"HEALTH AND HUMAN SERVICES"
"GENERAL SERVICES ADMINISTRATION"

0
0
1
2
2
1
0

8350
8351
2072
4791
4792
2073
8352

A = concat(map(P, dictAP), const("_").format(Q, "%d"))
B = map(P, dictBP)

0 "GENERAL SERVICES ADMINISTRATION"
1 "HEALTH AND HUMAN SERVICES"
2 "TREASURY"

0 "GSA"
1 "HHS"
2 "TREAS"

Dictionary BP Dictionary AP

Decompression Function

Figure 1: White-box compression model applied on
logical columns A and B.

much more complex data transformations, as well as the ex-
ploitation of column correlations (e.g. different dictionary-
encoded columns using the same physical column holding
the codes).

More recent research in compression has moved towards a
storage method for decomposing string attributes in column
stores [13]. This decomposition of strings relies on finding
patterns to split the string into segments and compress them
independently. White-box compression, on the other hand,
is a more generic model, not restricted to strings, and which
as mentioned can leverage column correlations. Further [13]
restrict query execution optimizations to the scan library,
while in our approach, compression functions become com-
putational expressions part of the query plan. Making that
work over blocks that are compressed differently is one main
challenge addressed in this thesis.

3. WHITE-BOX COMPRESSION
In white-box compression, we define an operator as a func-

tion o that takes as input zero or more columns and optional
metadata information and outputs a column: o : [C × C ×
...]×[M]→ C. The domain of o is composed of columns and
metadata and the co-domain is a set of columns. A column
is defined by its data type and the values that it contains.
All the values that do not fit the chosen data representation
are considered exceptions and receive special treatment. In
the model, these values are stored separately in physical ex-
ception columns that can themselves be further white-box
compressed.

Figure 1 illustrates a table compressed with white-box
compression. Column A has a particular pattern composed
of a string prefix, an underscore character, and a number.
In this case, it is not possible to compress this column with
dictionary encoding because it has a high cardinality. There-
fore, the only way of compressing this column would be by
using a heavyweight technique like LZ4 or some other vari-
ant that has the problem of slow de/compression.

Type/Column Logical Physical

varchar 80.3% 3.0%
tinyint 0% 31.7%
smallint 13.7% 60.4%
double 2.3% 0.3%
decimal 2.1% 4.6%
integer 0.9% 0%
boolean 0.7% 0%

Table 1: Data types distribution for logical and
physical columns on the Public BI benchmark.
Physical columns are the result of applying white-
box compression.

For cases not covered by any lightweight technique, the
white-box model can enable compression by changing the
physical representation of columns. For instance, column A
can be decomposed into three other columns that can be fur-
ther compressed. The prefix string can be now stored as the
dictionary AP, the underscore as a constant and the number
can be stored as an integer that can be further compressed
with some other lightweight technique.

Another compression opportunity happens when column
B is stored in the dictionary BP. In this case, we are able to
represent one column as a function of another (i.e. column
correlation) by identifying the same association between dic-
tionaries AP and BP. As a result, only one physical column
(i.e. P) is stored together with the two dictionaries and the
decompression function to reconstruct the logical columns.

Column Correlations. The particular focus of this work
on correlations is based on their frequent occurrence on real-
world datasets. We have recently introduced the Public BI
benchmark [1], a real-world dataset derived from 46 of the
biggest Tableau workbooks [2]. While exploring this data,
we noticed that it tends to comprise patterns not found in
synthetic database benchmarks like TPC-H and TPC-DS.
In this dataset, data is often skewed in terms of value and
frequency distribution and it is correlated across columns.
In particular, most of the correlations are between nominal
values (i.e. strings).

In our work [9], we formally define the white-box compres-
sion model and propose a learning algorithm to identify pat-
terns on the data. Our initial approach already doubles the
compression factor on the public BI benchmark [1]. White-
box compression is very effective here because this data has
many string columns. In Table 1 we show the data type dis-
tribution for logical and physical columns on the public BI
benchmark. Thanks to white-box compression the volume
of strings is reduced and the dataset becomes more com-
pressible. Integer columns are stored in smaller types while
boolean columns are represented as constant operations in-
side an expression. Correlated columns play an important
role since we noticed a reduction of 70% in the number of
columns after white-box compression.

4. WHITE-BOX DECOMPRESSION
In the previous section we showed how White-box com-

pression is defined and the main advantages over black-box

Q
ue

ry
 E

xe
cu

tio
n

/ D
ec

om
pr

es
si

on

SELECT t2.B, t1.C FROM t1, t2 WHERE t2.B = t1.C AND A LIKE ’TREAS%’

101010
100110

Block of data

⋈

Γ

map format

concat map

...

...

Ex
ce
pt
io
ns

Physical
columns

Logical
columns

C A

P QX

White-box decompression

B,C

LZ4 FOR DICT

header

Sc
an

LIKE 'TREAS%'

Q
ue

ry
 E

xe
cu

tio
n

/ D
ec

om
pr

es
si

on

101010
100110
Blocks of data

⋈

Γ

map

...

...

Ex
ce
pt
io
ns

Physical
columns

C B

PX

B,C

LZ4

FOR

header

P=2

Sc
an

σ

Logical
columns

101010
100110

header

Different
Decompression

Logic

Adaptive White-box decompression

B

σ

Figure 2: Fusing decompression and Query execu-
tion on top of white-box compressed data.

compression. We now discuss fast decompression and its
integration in the query plan.

On the white-box model, the decompression functions to
rebuild the logical columns are stored in the block meta-
data. Decompression will be implemented in two phases. In
phase 1, the compressed data is first unpacked using fast
SIMD codecs into byte-addressable physical columns. This
partially decompressed representation can be represented as
columnar vectors in the query plan as long as needed, and
once an operator like a join, group by, or projection requires
the logical representation the second phase of the decom-
pression is performed (lazy decompression). Many oper-
ations can thus take place on the data still in (partially)
compressed form. The second phase is the full decompres-
sion of physical columns into logical columns.

Figure 2 depicts our proposal for decompression and query
execution on a white-box representation. In the left part,
we show an unoptimized approach where the physical co-
lumns are black-box decompressed into columns X, P, and
Q. In this scenario, the query optimizer is able to push-down
predicates straight to physical columns, avoiding unneces-
sary decompression steps. The challenge in this approach is
the black-box decompression steps still present, which lim-
its the ability of the execution engine to operate over the
physical columns in compressed format.

In the right part of Figure 2, we illustrate the optimized
version of the query plan fused with decompression. The
optimizer can adapt the plan by pruning some decompres-
sion steps and pushing-down predicates to the partially de-
compressed data. The column compressed with frame-of-
reference becomes also a white-box representation repre-
sented by a column of values and the reference with dif-
ference operator.

Adaptive Query Processing. In [9], we considered a
simple approach in which the entire logical column would
use the same decompression function for the whole table. If
these functions may change for each block of data, integra-
tion of white-box compression in the query engine becomes

more tricky: whenever a block of data is read, we should
stop the query execution and re-instantiate a new query
plan and re-optimize. We argue that a vectorized engine
is more likely to succeed in quickly handling such changes,
than an alternative approach with a JIT-compiled engine,
which would introduce-recompilation latency for each new
data block. To further save time, we propose to split query
optimization into a main strategical phase that is executed
once before execution and perform lightweight tactical re-
optimization whenever a new data block is brought in and
the strategic query execution plan is adapted to it.

5. RESEARCH PLAN
We believe white-box compression is the foundational idea

for a next-generation of database engines, where compressed
columnar execution is critical to leverage powerful SIMD
units. It also unlocks many optimization possibilities by
learning data representations from the data and is less vul-
nerable to ill-designed database layouts that are often ob-
served in cloud usage situations.

We describe the following as the aspects that shall be
explored in this research during the next two years:

(De)compression Library: We start with developing a
basic library for compression and decompression of data in
the white-box representation. Our first goal is to have this
library independent of any database system and evaluate
compression and decompression speeds.

Storage Layout: Besides the de/compression library it is
necessary to define how expression trees will be stored and
instantiated during query execution. Therefore, the second
step is the definition of a file layout to represent data on
white-box representation on disk. We plan to have all the
information for white-box decompression on block headers
that will be instantiated whenever a block is loaded.

Compressed Execution: In a white-box compression mo-
del, the push-down of database operators within the decom-
pression tree becomes more transparent. It is not so clear,
however, which kind of expressions can be built aiming com-
pressed execution or which database operators allow such ex-
ecution. To clarify these question we will perform a careful
investigation on which database operators get benefit from
compressed execution and how to generate decompression
expressions that enable such an approach.

Vectorization vs. JIT Compilation: With an adap-
tive query processing on white-box representation a JIT-
compiled engine might suffer from compilation overhead.
For every new block, the decoder has to be JIT-compiled
and the overhead grows with the number of different com-
pression schemes per column. Therefore, on this thesis, we
narrow down our design to a vectorized query engine where
changes in the decompression logic can be best handled and
interpreted. We will consider DuckDB [17] as our target
since its the only open-source columnar store with a vector-
ized execution engine.

Tactical Query Optimization: Compressed execution of-
fers opportunities to better use SIMD resources (thinner
data can execute in more lanes in parallel), but also allows
for early pruning of data using cheap(er) test on thin frag-
ments of the data. It can also lead to hash-tables that are
smaller and thus faster and network communications that

are reduced. However, in order to apply these optimizations
in the face of continuously changing white-box compression
functions, we need to quickly re-optimize query plans when
new data arrives. For this purpose, we plan to split query
optimization into two phases: a heavy strategical phase that
includes join ordering and is executed only once, and a tac-
tical phase that applies cheap optimization that leverage
compressed execution opportunities, specifically.

6. REFERENCES
[1] Public BI Benchmark.

https://github.com/cwida/public bi benchmark.

[2] Tableau Public. https://public.tableau.com.
[3] D. Abadi, S. Madden, and M. Ferreira. Integrating

Compression and Execution in Column-oriented Database
Systems. In SIGMOD, pages 671–682, 2006.

[4] D. J. Abadi. Query Execution in Column-oriented
Database Systems. PhD thesis, 2008. AAI0820132.

[5] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based
Order-preserving String Compression for Main Memory
Column Stores. In SIGMOD, pages 283–296, 2009.

[6] P. Damme, A. Ungethüm, J. Pietrzyk, A. Krause,
D. Habich, and W. Lehner. Morphstore: Analytical query
engine with a holistic compression-enabled processing
model. arXiv preprint arXiv:2004.09350, 2020.

[7] B. C. et al. Procella: Unifying Serving and Analytical Data
at YouTube. PVLDB, pages 2022–2034, 2019.

[8] Z. Feng, E. Lo, B. Kao, and W. Xu. ByteSlice: Pushing the
Envelop of Main Memory Data Processing with a New
Storage Layout. In SIGMOD, pages 31–46, 2015.

[9] B. Ghita, D. G. Tomé, and P. A. Boncz. White-box
Compression: Learning and Exploiting Compact Table
Representations. In CIDR, 2020.

[10] G. Graefe and L. D. Shapiro. Data Compression and
Database Performance. In Symposium on Applied
Computing, pages 22–27, April 1991.

[11] B. Hentschel, M. S. Kester, and S. Idreos. Column
Sketches: A Scan Accelerator for Rapid and Robust
Predicate Evaluation. In SIGMOD, pages 857–872, 2018.

[12] D. A. Huffman. A Method for the Construction of
Minimum-Redundancy Codes. IRE, pages 1098–1101, 1952.

[13] H. Jiang, C. Liu, Q. Jin, J. Paparrizos, and A. J. Elmore.
PIDS: Attribute Decomposition for Improved Compression
and Query Performance in Columnar Storage. PVLDB,
2020.

[14] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz,
T. Neumann, and A. Kemper. Data Blocks: Hybrid OLTP
and OLAP on Compressed Storage Using Both
Vectorization and Compilation. In SIGMOD, pages
311–326, 2016.

[15] Y. Li and J. M. Patel. BitWeaving: fast scans for main
memory data processing. In SIGMOD, pages 289–300, 2013.

[16] O. Polychroniou and K. A. Ross. Efficient Lightweight
Compression Alongside Fast Scans. In DAMON@SIGMOD,
pages 9:1–9:6, 2015.

[17] M. Raasveldt and H. Mühleisen. DuckDB: An Embeddable
Analytical Database. In SIGMOD, page 1981–1984, 2019.

[18] V. e. a. Raman. DB2 with BLU Acceleration: So Much
More Than Just a Column Store. PVLDB, pages
1080–1091, 2013.

[19] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
Coding for Data Compression. Commun. ACM, pages
520–540, 1987.

[20] J. Ziv and A. Lempel. A Universal Algorithm for
Sequential Data Compression. IEEE Transactions on
Information Theory, pages 337–343, 1977.

[21] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
RAM-CPU Cache Compression. In ICDE, pages 59–, 2006.

