
Tunable Streaming Graph Embeddings at Scale

Serafeim Papadias
Technische Universität Berlin

supervised by Prof. Volker Markl

s.papadias@tu-berlin.de

ABSTRACT
An increasing number of real-world applications require ma-
chine learning tasks over large-scale streaming graphs, where
nodes and edges are continuously being added or deleted.
Graph embeddings have been widely used for solving such
tasks by capturing the graph structure and features into a
low-dimensional latent space. However, current approaches
have one or more of the following disadvantages: (i) they
are designed for either static or dynamic graphs and thus,
need retraining after each graph change or periodically up-
dating the embeddings after each snapshot arrival, (ii) they
fail to scale to today’s size of graphs composed of billions
of nodes, or (iii) yet the ones devised for streaming graphs
perform redundant retraining computations by mandating
continuous embedding updates even if the accuracy is not
improved. The goal of this thesis is to overcome the above-
mentioned problems by devising tunable streaming methods
that can scale to massive graphs. We envision an end-to-end
ML streaming system that achieves that goal and provides
users with abstractions to easily define their own streaming
embedding algorithms.

1. INTRODUCTION
Graphs are omnipresent in various domains such as so-

cial media, transportation, finance, IoT, and biological net-
works. Typically, real-world graphs are inherently dynamic,
entailing continuous additions and deletions of vertices and
edges. The frequency of these graph updates lies on a spec-
trum. In dynamic graphs, updates appear in batches as
graph snapshots and are applied periodically. In streaming
graphs, updates arrive spontaneously and are incorporated
on-the-fly. For instance, social networks that model friend-
ships between users are highly dynamic, while citations net-
works modelling relations among scholars in academic net-
works are less dynamic. Many real-world applications, such
as news recommendation or crime detection, can be mod-
eled as machine learning (ML) tasks over streaming graphs.

Proceedings of the VLDB 2020 PhD Workshop, August 31st, 2020. Tokyo,
Japan. Copyright (C) 2020 for this paper by its authors. Copying permitted
for private and academic purposes.

Characteristic tasks include vertex classification, link predic-
tion, link reconstruction, topic modeling, and, community,
anomaly, fraud, and outlier detection.

A very popular and effective technique for solving such
ML tasks are graph node embeddings (a.k.a network repre-
sentation learning). Given a graph G = (V,E) with n nodes,
a graph embedding maps each node v ∈ G to a compact fea-
ture vector in a lower k dimentional space (k � n), which
captures graph structure and properties in the vicinity of
v. These vectors are derived by optimizing objective func-
tions preserving geometric relationships among graph nodes.
Computing embeddings is a crucial problem by itself, as they
serve as inputs to downstream ML tasks mentioned above.

The frequency of updating the embedding vectors plays a
significant role on runtime performance and accuracy, and
should be driven by the subsequent ML task. For example,
critical downstream applications, such as anomaly detection,
should instantly react to graph changes for capturing all
anomalies; hence, their input embeddings must constantly
remain up-to-date for producing accurate results. For the
above scenario, static embedding methods, such as [9], are
unsuitable, as they need to retrain embeddings from scratch
after each graph change. Dynamic techniques, such as [6]
are not sufficient either, as they update embeddings period-
ically after each snapshot arrival; hence, fall short of discov-
ering anomalies appearing during the idle period between
two graph snapshots. Even though streaming algorithms [7,
10] refine the embedding vectors after every graph update,
this can be potentially unecessary as graph structure may
not be substantially altered to affect the accuracy of the
downstream ML task. Thus, anomaly detection and simi-
lar continuous ML tasks dictate flexible streaming solutions
that are tunable: they can adjust the frequency with which
the embeddings are being updated.

Nowadays, real-world graphs not only dictate (tunable)
streaming algorithms due to their ever-changing nature, but
also scalable solutions because of their massive size. How-
ever, the majority of existing embedding techniques, either
the ones concerning static graphs [3, 9, 11, 12] or the ones de-
signed for dynamic graphs [6, 7, 10], are centralized; hence,
they do not scale on massive graphs. Ideally, scalability
should be achieved through the distribution of processing
on clusters of commodity machines; thus, avoiding solu-
tions that utilize expensive servers machines with several
terabytes of main memory or unaffordable GPUs. Few avail-
able scalable graph embeddings systems [5] exist; however,
they are unable to operate on evolving graphs. Thus, there
is a lack of solutions that can both achieve scalability and

conduct streaming graph embedding processing.
As ML and graph embeddings in particular become more

and more popular there is a need for systems facilitating
the development of such algorithms by hiding the system
complexity from the users. For instance, how the system
distributes the processing of defined algorithms should be
agnostic to the users. There are few systems with this goal:
they provide primitives for distributed random walk com-
putation on static graphs [13] or for graph neural network
computation [14, 15]. However, no such comprehensive sys-
tem for (tunable) streaming graph embeddings exists.

In this thesis, we strive to: (i) devise tunable streaming
methods that generate embeddings incrementally by adjust-
ing the frequency of vector updates, (ii) build a scalable
solution which processes streaming embedding algorithms
in a distributed manner, and (iii) provide abstractions that
ideally incorporate distinct classes of streaming embedding
methods. Our goal is to synthesize these solutions into
Kaixis1, a novel end-to-end system, capable of bridging the
gap between streaming and distributed embedding methods.

2. RELATED WORK
Representation learning on graphs received huge attention

from researchers in the past few years. There are three main
categories of graph embeddings based on: (a) random-walks,
(b) matrix-factorization, and (c) deep learning. In what fol-
lows, we focus on the first category as the other two incur
extremely high costs rendering them unsuitable for stream-
ing scenarios, i.e., deep learning-based train directly on the
whole graph and factorization-based suffer from expensive
matrix operations [6]. We mainly review random walk-based
(dynamic) network embedding algorithms and systems.

Walk-based Algorithms. Embedding methods based
on random walks mainly consist of two phases: the ran-
dom walking that explores, samples and captures certain
properties of the graph, and the training that subsequently
ingests the produced random walks and trains embedding
vectors e.g., using the well-known Skip-Gram [8] model.
Depending on the random walk type, different properties
are captured. Specifically, DeepWalk [9] performs trun-
cated random walks to preserve first-order proximities in
a graph, whereas node2vec [3] deploys biased second-order
walks capturing second-order proximities. LINE [11] opti-
mizes an objective function that preserves both first-order
and second-order proximities while deriving the embedding
vectors. GraRep [1] captures higher-order proximities in the
final embedding vectors. GraphCSC [2] deploys centrality-
based walks capable of learning embeddings that preserve
graph characteristics, such as degree and betweenness, and
finally aggregates them into one vector. Nevertheless, all
the techniques above are designed for static graphs; hence,
are unable to adapt in streaming scenarios that we focus on.

Interestingly enough, only [7, 10] address the problem of
streaming graph embeddings. In [7], a rather ad-hoc influ-
ence propagation model is used for locating nodes whose
embedding vector is influenced by a graph change (either
addition or deletion). Also, a vertex stream is assumed, i.e.,
each new node arrives along with its complete adjacency list,
which is a limitation. In [10], a method that incrementally

1From the turkish word Kayikçi; the owner of a fishing boat.

Kaixis System Graph ML Library

Embedding Primitives

Stateful Walker

 Random Walker

 Walk Storage

Training Monitor

Embedding Trainer Task Trainer

QoS & Results

Figure 1: System architecture of Kaixis.

maintains first and second-order random walks in a stream-
ing graph is proposed; however, it is centralized and lacks of
theoretical guarantees of correctness.

Walk-based embedding algorithms fall short mainly in two
crucial aspects. First, they incur computational costs pro-
portional to the number of deployed walks; rendering them
insufficient for massive graphs, especially the widespread
centralized solutions. Instead, massively-parallel and ideally
cost-effective solutions, such as distributing tasks into clus-
ters of commodity machines, are required. Secondly, there is
no well-established streaming walk-based technique, which
has robust theoretical analysis. In contrast, we aim for (tun-
able) streaming and distributed walk-based embeddings that
are also theoretically established.

Walk-based Systems. KnightKing [13] is a distributed
system specific for computing random walks on static graphs.
It offers a walker-centric computation model, which is able
to express various walk algorithms. Its extreme efficiency
is attributed to the rejection sampling it utilizes, especially
when computing cumbersome higher-order walks. However,
KnightKing is incapable of computing streaming random
walks, as it requires the whole graph in advance. Except
for academia, industry has also shown huge interest on scal-
able systems for the graph neural networks (GNNs) [14, 15],
which are relevant to graph embeddings. Aligraph [15] pro-
vides primitive operators that abstract common concepts
among GNN algorithms, facilitating users in implementing
and deploying them. AGL [14] builts upon k-hop neighbor-
hoods2 and utilizes MapReduce and Parameters Servers to
speed up GNN training; a relatively straightforward task
due to the linear nature of GNNs. As far as we know,
there is no comprehensive system that provides primitives
for streaming embedding algorithms.

3. KAIXIS ARCHITECTURE
In this section we introduce Kaixis, our envisioned end-

to-end system for computing streaming random walk-based
graph embeddings on the fly and at scale. Figure 1 shows the
system architecture consisting of seven main components: a
Graph ML Library, the Embedding Primitives, a Stateful
Walker, an Embedding Trainer, a Task Trainer, a Training
Monitor, and the Results and QoS module.

The input of the system consists of continuous ML tasks,
such as anomaly detection, along with a graph stream source
and certain user-defined requirements (e.g., accuracy > 70%).
Kaixis perpetually computes tunable streaming graph em-
bedding vectors, which are subsequently forwarded as inputs

2For vertex v, the set of vertices reachable from v within at
most k steps.

to high stakes ML tasks. The output of the system con-
sists of (i) real-time results for the high-stakes tasks, and
(ii) quality of service (QoS) metrics, as depicted in Figure 1.
Kaixis addresses two types of users: end-users and develop-
ers. End-users interact with the system through the Graph
ML Library for specifying their ML task and QoS require-
ments. Developers use the flexible Embedding Primitives
for defining tunable streaming embedding algorithms. In a
nutshell, after users submit their queries, Kaixis follows con-
crete steps. Namely, the Stateful Walker constantly explores
the evolving graph and keeps the stored random walks up-
to-date. Subsequently, the Embedding Trainer updates the
existing embedding vectors on-the-fly, based on the walks
received from the Stateful Walker. Then, the Task Trainer
uses the embeddings to produce query results. The Training
Monitor has the power to switch on and off either of the Em-
bedding and Task Trainer. It selectively enables retraining
of existing embeddings and/or ML task models only when
needed to avoid excessive computation. In the following, we
detail each component.
Graph ML Library. End-users interact with Kaixis via
this library, which is a collection of possibly pre-configured
algorithmic operators directly invoked without necessitating
hyper-parameter tuning. These operators solve tasks, such
as link prediction, anomaly detection, fraud detection, out-
lier detection, graph reconstruction and vertex classification.
Embedding Primitives. Developers interact with Kaixis
through the Embedding Primitives, which enable them to
easily implement, integrate and deploy streaming embed-
ding methods, without having to worry about how the dis-
tribution is handled by Kaixis. Additionally, any optimized
implementation of a primitive, also speeds up every method
that utilizes this primitive. Hence, Embedding Primitives
unify optimizations of distinct embedding methods.
Stateful Walker. Random walks are core concepts of
graph embeddings. A Stateful Walker in Kaixis, consists
of two parts: the Random Walker and the Walk Storage.
The former constantly explores the ingested graph stream
and produces new random walks for newly appearing nodes
or updates walks attributed to already existing nodes. The
Walk Storage unit is responsible for efficiently storing the
latest random walk corpus.
Embedding Trainer. As shown in Figure 1, the random
walks produced (either newly formed or new parts of modi-
fied ones) are forwarded to the Embedding Trainer to refine
and output the latest embedding vectors by conducting in-
cremental training. In doing so, the trainer hosts a variety
of training algorithms in its artillery e.g., online Skip-Gram
and Stochastic Gradient Descent models.
Task Trainer. The user’s selected ML application e.g.,
anomaly detection, has to be executed in a continuous way.
We thus opt for online ML algorithms where the training of
the model is performed in an online fashion similarly with
the serving part. Kaixis deploys the Task Trainer to update
on-the-fly the model of the specified ML task and finally
output the prediction results.
Training Monitor. Both Embedding and Task Trainer
perform online training. However, it is important to note
that performing blindly online training, i.e., updating the
model after every single change in the streaming graph may
lead to unnecessary excessive computation and thus, de-
grade the system’s performance. Specifically, the frequency
of Task Trainer should be large enough to satisfy the user-

defined requirements. The frequency of Embedding Trainer
should be driven by the downstream (possibly critical) ML
tasks, such that the embeddings are kept up-to-date. Thus,
the embedding training is not everlasting but tuned in real-
time by the Training Monitor. For instance, if the user wants
to detect outliers in an evolving graph, the embedding vec-
tors should be updated just as frequently as it is necessary
for capturing all outliers instantly. In other words, if an up-
date in the embedding vector does not yield any change in
the prediction results, it should not be performed to avoid
unnecessary computation.

Results & QoS. This component serves as a reporting
unit gathering results and QoS metrics of the ML task from
the Task Trainer. QoS consist of accuracy metrics, e.g., area
under the curve (AUC) and micro-F1 score, and performance
measurements, such as throughput and execution time.

4. THE RESEARCH ROAD AHEAD
Our goal is to serve dynamic applications that can lever-

age graph embeddings used for retrieving information from
an evolving graph. In essence, Kaixis extracts embeddings
from a graph stream in a tunable way and feeds them to
downstream ML tasks. The system can operate at the finest
granularity, i.e., always derive the latest vectors and train
the latest ML model of a task. However, its profound goal
is actually to avoid excessive training and instead strive for
continuously adjusting retraining frequency by monitoring
the QoS metrics.

4.1 Research Challenges
Realizing Kaixis is far from straightforward. Below, we

highlight five research challenges:

(1) Streaming Random Walks. Maintenance of random
walks on evolving graphs should not compute all walks from
scratch after a graph update, but only revise the already
kept walk corpus. Most importantly, the refined walk corpus
at time t+ 1 should be statistically equivalent to the corpus
at time t. Equivalently, the updated walk corpus at time
t + 1 should have the same probability of being produced
as a corpus derived from scratch by totally recalculating
all the walks. Different policies can be used for updating
walks [10], but clearly much remains to be done; both on
the theoretical side for coming up with sound policies and
on the performance side via distribution.

(2) Scalable Random Walks. The huge magnitute and
the high dynamicity of nowadays graph data renders cen-
tralized random walk calculation highly insufficient. Yang
et al. [13] crafted a whole system solely dedicated to dis-
tributed random walks computation. Adapting their ideas
to streaming graphs is far from trivial. One cannot afford
to store the entire graph stream in a streaming setting. In
addition, one should carefully distribute the graph on-the-
fly to facilitate the walk calculation by cluster nodes, while
avoiding excessive communication. Network communication
is too costly, therefore acute streaming graph partitioning
should ensure extremely scalable streaming random walks.

(3) Walk Storage Sharing. In graph node embeddings,
numerous random walks are created for each single vertex,
resulting in walk sets with overlapping parts. Since Kaixis
needs to maintain a random walk corpus, effective techniques
that store overlapping walk parts only once are crucial. The

real challenge, is to come up with compression schemes for
succinct representation of the whole walk corpus. Ideally,
the compression should be lossless and enable processing of
walks in their compressed form without the need for de-
serialization. Finally, the streaming setting increases the
complexity of the problem, as it dictates the possibility of
updating the walks while in compressed form.

(4) Monitoring. The Training Monitor is the brain of
our conceived system: It tunes the frequency of retraining
performed by either the Embedding Trainer or the Task
Trainer. A number of research questions arise, such as:
(i) when should the Training Monitor trigger the Embedding
and Task Trainers, e.g., periodically or based on a certain
reasonable mechanism, (ii) what is the impact of a trainer
that is disabled to the final ML task result, and (iii) how each
specific ML task chosen affects the monitor’s decisions, i.e.,
high stakes ML tasks would differ from non-critical ones.
Clearly, the monitor’s behaviour is driven by downstream
ML tasks.

(5) Primitives. To facilitate users implementing, integrat-
ing and deploying streaming embedding methods, Kaixis
should offer primitives that hide the implementation details
of how distribution is handled. Designing such primitives
is challenging as it implies breaking various embedding al-
gorithms down to “atoms”. In Kaixis, primitives are ex-
ecuted as extremely performant streaming and distributed
random walk-based operations. These abstractions offer the
potential for transparent optimizations, i.e., optimizations
to a primitive used by many algorithms, end up optimizing
them all in one shot.

4.2 Research Plan
To conclude, we present our research strategy for tackling

the aforementioned challenges and realizing Kaixis.
Streaming and Scalable Random Walks. The first

step is to design the Stateful Walker for calculating stream-
ing random walks using streaming graph partitioning and
distribution. To assist our goal we plan to use an efficient
and succinct walk storage representation. Finally, we plan
to establish the Stateful Walker theoretically by: (i) proving
the statistical equivalence of walk update policies, and (ii) de-
riving complexity bounds for procedures updating walks.

Monitored Embedding Training. On the one hand,
we plan to investigate relevant online training algorithms
proposed in the literature (e.g. [4]) and thoroughly evaluate
them to decide which ones to incorporate in the Embedding
Trainer’s artillery. On the other hand, we plan to design
the Training Monitor such that it configures frequency of
retraining/updating embeddings, driven by the importance
of the downstream ML tasks; for high stakes tasks, this fre-
quency is larger. To achieve scalability, both the Embedding
Trainer and the Training Monitor should be carefully con-
jured to operate in a fully distributed manner, also aiming
on minimizing communication between them.

Powerful Primitives. Our perpetual goal along this en-
deavour is to conjure expressive primitive abstractions that
facilitate users. Finally, we strive for devising effective op-
timizations for each primitive, as various methods enclosing
such a primitive will benefit simultaneously.

Acknowledgments. The author would like to thank
Prof. Volker Markl and Dr. Zoi Kaoudi for their pristine
guidance, as well as Dr. Eleni Tzirita Zacharatou for her
invaluable feedback. This work was funded by the German
Ministry for Education and Research as BIFOLD - Berlin
Institute for the Foundations of Learning and Data (ref.
01IS18025A and ref. 01IS18037A).

5. REFERENCES
[1] S. Cao, W. Lu, and Q. Xu. GraRep: Learning Graph

Representations with Global Structural Information.
In CIKM, pages 891–900, 2015.

[2] H. Chen, H. Yin, T. Chen, Q. V. H. Nguyen,
W. Peng, and X. Li. Exploiting Centrality Information
with Graph Convolutions for Network Representation
Learning. In ICDE, pages 590–601, 2019.

[3] A. Grover and J. Leskovec. Node2vec: Scalable
Feature Learning for Networks. In KDD, page
855–864, 2016.

[4] N. Kaji and H. Kobayashi. Incremental Skip-gram
Model with Negative Sampling. In EMNLP, pages
363–371, 2017.

[5] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt,
A. Bose, and A. Peysakhovich. PyTorch-BigGraph: A
Large-scale Graph Embedding System. In SysML,
page 285–296, 2019.

[6] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu.
Attributed Network Embedding for Learning in a
Dynamic Environment. In CIKM, page 387–396, 2017.

[7] X. Liu, P.-C. Hsieh, N. Duffield, R. Chen, M. Xie, and
X. Wen. Real-Time Streaming Graph Embedding
Through Local Actions. In WWW, page 285–293,
2019.

[8] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed Representations of Words and
Phrases and their Compositionality. In NIPS, pages
3111–3119, 2013.

[9] B. Perozzi, R. Al-Rfou, and S. Skiena. DeepWalk:
Online Learning of Social Representations. In KDD,
page 701–710, 2014.

[10] H. P. Sajjad, A. Docherty, and Y. Tyshetskiy. Efficient
Representation Learning Using Random Walks for
Dynamic Graphs. CoRR, abs/1901.01346, 2019.

[11] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and
Q. Mei. LINE: Large-Scale Information Network
Embedding. In WWW, page 1067–1077, 2015.

[12] D. Wang, P. Cui, and W. Zhu. Structural Deep
Network Embedding. In KDD, page 1225–1234, 2016.

[13] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and
Y. Jiang. KnightKing: A Fast Distributed Graph
Random Walk Engine. In SOSP, page 524–537, 2019.

[14] D. Zhang, X. Huang, Z. Liu, Z. Hu, X. Song, Z. Ge,
Z. Zhang, L. Wang, J. Zhou, and Y. Qi. AGL: a
Scalable System for Industrial-purpose Graph Machine
Learning. arXiv preprint arXiv:2003.02454, 2020.

[15] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai,
Y. Li, and J. Zhou. AliGraph: A Comprehensive
Graph Neural Network Platform. VLDB,
12(12):2094–2105, 2019.

