
Resilient and Scalable Architecture for
Permissioned Blockchain Fabrics

Suyash Gupta
Exploratory Systems Lab

Department of Computer Science
University of California, Davis

Supervised by Mohammad Sadoghi

ABSTRACT
Since the introduction of Bitcoin—the first widespread ap-
plication driven by blockchains—the interest in the design of
blockchain-based applications has increased tremendously.
At the core of these blockchain applications are consen-
sus protocols that aim at securely replicating a client re-
quest among all replicas, even if some replicas are Byzantine
faulty. Unfortunately, modern consensus protocols either
yield low throughput or face design limitations.

In this work, we present the design of three consensus pro-
tocols that facilitate efficient consensus among the replicas.
Our protocols help to scale consensus through the principles
of phase-reduction, parallelization, and geo-scale clustering
while ensuring no compromise in fault-tolerance. Further,
we believe that the focus on consensus protocols is only one-
side of the story. In specific, we present the design of a well-
crafted permissioned blockchain fabric that can help even a
slow consensus protocol outperform a faster protocol.

PVLDB Reference Format:
. . PVLDB, (): xxxx-yyyy, .
DOI:

1. INTRODUCTION
Since the introduction of Bitcoin the interest in the de-

sign of blockchain-based applications has increased tremen-
dously [13, 17]. Blockchain-based solutions have garnered
community interest as they guarantee democracy and de-
centralization. To exploit these guarantees, in recent years,
several new blockchain databases and fabrics have been pro-
posed [1, 2, 11, 18]. These blockchain databases achieve
decentralization by employing age-old replication semantics
and ensure democracy by running a fault-tolerant consen-
sus protocol. At the core of any blockchain application is
a BFT consensus protocol that ensures all replicas of this
blockchain application reach consensus on the ordering of
incoming client requests, this even if some of the replicas
are byzantine [4, 9, 11, 16, 21].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. , No.
ISSN 2150-8097.
DOI:

On looking closely, we find an unusual trend: even after
a decade of its introduction and after several prominent re-
search projects, crypto-currencies are still the major known
use-cases of blockchains. This raises a key question: Why
have blockchain applications seen such a slow wider adop-
tion? The low throughput and high latency of BFT con-
sensus are cited as key reasons for this. Prior works [14,
19] have shown that traditional distributed databases can
achieve throughputs of the order 100K transactions per sec-
ond, while the initial permissionless blockchain applications,
Bitcoin [17] and Ethereum [20], reach throughputs of only
a few transactions per second. In these crypto-currency ap-
plications, low throughputs are seen as acceptable, as the
techniques used enable an alternative currency that is unreg-
ulated by any government or corporation. Notice that these
crypto-currency blockchains support open-membership, as
anyone can anonymously join these blockchains.

Recent attacks on permissionless blockchains have high-
lighted that their open-membership is often unnecessary and
undesirable [7]. This led to industry-grade permissioned de-
signs, where only a select group of users, some of which
may be untrusted, can participate [2]. A majority of these
permissioned designs employ the classical Pbft protocol
and achieve throughputs of up-to 10K transactions per sec-
ond [1, 2], which is still short of the performance expected
of modern systems. This isn’t surprising because Pbft
achieves consensus in three phases, of which two necessi-
tate quadratic communication complexity. Moreover, since
the introduction of Pbft, several new BFT protocols have
been proposed [6, 16, 21]. We believe the inherent limita-
tions of these protocols as a logical consequence for existing
blockchain databases to skip these protocols.

In this work, we present the design of three new BFT pro-
tocols that yield high-throughput while providing the same
fault-tolerance guarantees as the Pbft protocol. First, we
employ speculation and facilitate out-of-order processing of
messages to achieve consensus in just two phases. Second,
we scale up the Pbft protocol by allowing multiple consen-
suses to happen in parallel. Third, we scale out the Pbft
protocol by clustering replicas, which permits consensus on
a global scale. Further, we also observe that the low through-
puts of existing permissioned fabrics are due to missed op-
portunities during their design and implementation. Hence,
we present the design of a well-crafted blockchain fabric that
can achieve an order-of-magnitude increase in throughput by
exploiting parallelization and pipelining opportunities.

2. BYZANTINE FAULT-TOLERANCE

1



b

r2

r1

p

c m

Pre-prepare Prepare Commit

Figure 1: The three-phase PBFT protocol.

Pbft [4] is often described as the first BFT protocol to
allow consensus to be incorporated by practical systems.
Pbft follows the primary-backup model where one replica is
designated as the primary while other replicas act as back-
ups. Pbft guarantees a successful consensus among n repli-
cas if at most f of them are byzantine, where n ≥ 3f + 1.

When the primary replica receives a client request, it as-
signs it a sequence number and sends a Pre-prepare mes-
sage to all the backups to execute this request in the se-
quence order (refer to Figure 1). Each backup replica on re-
ceiving the Pre-prepare message from the primary shows
its agreement to this order by broadcasting a Prepare mes-
sage. When a replica receives Prepare message from at
least 2f distinct backup replicas, then it achieves a guar-
antee that a majority of the non-faulty replicas are aware
of this request. Such a replica marks itself as prepared and
broadcasts a Commit message. Next, when this replica re-
ceives Commit messages from 2f + 1 distinct replicas, then
it achieves a guarantee for the order of this request, as a
majority of the replicas must have also prepared this re-
quest. Finally, this replica executes the request and sends a
response to the client.

Multi-Path Execution. Zyzzyva [16] introduces a multi-
path protocol to achieve efficient consensus. In the fast-path,
the consensus happens in a single linear phase. When a
backup replica receives a Pre-Prepare message from the
primary, it executes the request and sends a response to the
client. Hence, a replica does not even wait to confirm that
the order is the same across all the replicas. However, if the
primary is malicious, Zyzzyva switches to the slow-path. In
specific, for the fast-path to be successful, the client waits for
responses from all the replicas. If the client timeouts while
waiting for responses, it switches to the slow-path. Hence,
the fast-path of Zyzzyva cannot handle even one simple
failure. Note that Zyzzyva depends on good clients to en-
sure correct order if the primary is malicious. Moreover, a
recent work has uncovered a flaw in Zyzzyva’s design [6].

Sbft [6] removes the flaw from Zyzzyva’s design but re-
quires two linear phases in its fast-path and an additional
third phase in its slow-path. Moreover, in all the proto-
cols we have discussed until now, if the primary is mali-
cious, then it is replaced. This replacement requires detect-
ing the faulty primary and exchanging correct states among
the replicas. Hotstuff [21] suggests switching primary af-
ter each consensus. However, this comes at a significant
cost; Hotstuff requires sequential consensus processing.
In Hotstuff, each subsequent primary needs to wait for
messages from a quorum of replicas before starting the next
consensus. This negatively impacts the system throughput
as messages can no longer be processed out-of-order.

3. PROOF-OF-EXECUTION
Our first step is to concoct a fast yet reliable consensus

protocol. We call this protocol Proof-of-Execution (PoE) [8],

b
r2

r1

p

c T

propose support certify inform

Figure 2: Normal-case algorithm of PoE: Client c sends its
request containing transaction T to the primary p, which
proposes this request to all replicas. Although replica b is
Byzantine, it fails to affect PoE.

which employs three ingredients for ensuring efficient con-
sensus. First, PoE prevents use of any multi-path design
as switching from fast to slow path requires dependence on
timeouts, which degrades system performance [5]. Second,
PoE allows replicas to speculatively execute the requests
but facilitates rollbacks in case of inconsistencies. Final,
PoE allows out-of-order processing, which eliminates any
bottlenecks associated with sequential consensus protocols.

In Figure 2, we sketch the normal-case working of PoE.
As no one size fits all systems, we believe the design of a
BFT protocol should be independent of the choice of un-
derlying cryptographic signature scheme. Hence, PoE can
adapt itself to both symmetric and asymmetric-cryptographic
signature schemes [15]. For the sake of brevity, we will de-
scribe PoE built on top of Threshold Signatures TS.

The consensus steps of the PoE protocol are sketched in
Figure 2. In PoE, the client c initiates execution by sending
its request m to the primary p. To initiate replication and
execution of m as the k-th transaction, the primary proposes
m to all replicas by broadcasting a Propose message.

After a replica r receives a Propose message from p, it
checks whether at least 2f other replicas also received the
same proposal from p. To perform this check, each replica
agrees to support the first k-th proposal it receives from the
primary by sending a Support message that includes its
unique threshold share to the primary. The primary p waits
for 2f + 1 threshold shares, and on receiving such shares,
it combines them into a threshold signature and broadcasts
as a Certify message. When a replica r receives the Cer-
tify message, it view-commits to m as the k-th transaction
in view v. After r view-commits to m, r schedules T for
speculative execution. Consequently, m will be executed by
r after all preceding transactions are executed. After exe-
cution, r informs the client of the order of execution and
of any execution result r. A client considers its transac-
tion successfully executed after it receives identical response
messages from 2f + 1 distinct replicas.

4. PARALLEL CONSENSUS
Until now, all the BFT protocols that we studied fol-

lowed a primary-backup model. This dependence on the
primary severely affects the throughput and scalability of
these protocols. The primary replica not only receives all
client requests but is also responsible for ensuring consensus
is reached on the order for these requests among all other
replicas. If the primary fails to ensure consensus, then all re-
maining replicas need to replace this primary. This replace-
ment process is necessary as, without it, non-faulty replicas
may never converge. Unfortunately, primary replacement is
not cheap, as it requires pausing consensus on all outstand-
ing requests until the primary is replaced.

A promising solution to all these problems is to make a
BFT consensus primary agnostic. Such a solution would

2



Parallel Consensus Unification Execution

Run z parallel PBFT 
instances.

Create a secure 
global order of all 

the requests.

Execute the requests 
and reply to clients.

Figure 3: Three stages of the MultiBFT protocol.

require us to give all replicas the power to act as a pri-
mary. This brings us to the design of our Multiple Byzantine
Fault-Tolerance (MultiBFT) paradigm [9, 10]. MultiBFT
parallelizes the consensus by requiring each replica to run
multiple instances of the Pbft protocol in parallel.

Using parallelization, MultiBFT ensures that the non-
faulty replicas are always accepting and ordering client re-
quests, this independent of any malicious behavior or attack.
Figure 3 illustrates a succinct representation of our Multi-
BFT paradigm. For the sake of explanation, we assume
MultiBFT works in rounds. Each round of MultiBFT in-
cludes three stages: parallel consensus, unification, and exe-
cution. The notion of a round helps in generating a common
order and recovering from instance failures but it does not
prevent individual primaries from working independently.

Prior to any round, MultiBFT requires each replica to
prepare to run z instances of Pbft protocol in parallel. A
round r begins when the primary of each instance proposes
a client request. Firstly, in the parallel consensus stage, each
instance runs Pbft on its client request. Secondly, in the
unification stage, the replica waits for all its z instances to
complete replication (reach consensus on their respective re-
quests). If every instance successfully replicates a request,
then a common order for execution of these requests is de-
termined. If one or more instances are unable to replicate re-
quests, then the primaries for those instances must be faulty
and recovery is initiated. Finally, in the execution stage,
each replica executes all the client requests in the common
order. Notice that in Figure 3, we have a loop. This loop
states that while unification and execution are ongoing for
requests of round r, the instances are already replicating
requests for round r + 1.

5. GEO-SCALE CONSENSUS
To enable geo-scale deployment of a permissioned block-

chain system, we believe that the underlying consensus pro-
tocol must distinguish between local and global communi-
cation. To resolve this challenge, we present our Geo-Scale
Byzantine Fault-Tolerant consensus protocol (GeoBFT) [11]
that uses topological information to group all replicas in a
single region into a single cluster. Likewise, GeoBFT as-
signs each client to a single cluster. This clustering helps
in attaining high throughput and scalability in geo-scale de-
ployments. GeoBFT operates in rounds, and in each round,
every cluster will be able to propose a single client request for
execution. Each round consists of the three steps sketched
in Figure 4: local replication, global sharing, and ordering
and execution, which we further detail next.

At the start of each round, each cluster chooses a single
transaction of a local client. Next, each cluster locally repli-
cates its chosen transaction in a Byzantine fault-tolerant
manner using Pbft. At the end of successful local replica-
tion, Pbft guarantees that each non-faulty replica can prove
successful local replication via a commit certificate.

Next, each cluster shares the locally-replicated transaction
along with its commit certificate with all other clusters. To
minimize inter-cluster communication, we use a novel opti-
mistic global sharing protocol. Our optimistic global shar-

r2,3

r2,2

r2,1

PC2

c2

r1,3

r1,2

r1,1

PC1

c1

m2

m1

Local Pbft
Consensus

on m2

Local Pbft
Consensus

on m1

E
x
ecu

te
m

1 m
2

E
x
ecu

te
m

1 m
2

Local
Request

Local
Replication

Global
Sharing

Local
Sharing

Local
Inform

C2

C1

Figure 4: Representation of the GeoBFT protocol running on
two distinct clusters.

4 8 16 32
Number of Replicas

50

75

100

125

150

175

Th
ro

ug
hp

ut
 (K

Tx
ns

/s
)

ResilientDB
Zyzzyva

Figure 5: Two permissioned applications employing distinct
BFT protocols (80K clients per experiment).

Client 
Requests

Prepare
& Commit

Input

Network

Message 
from

Clients and 
Replicas

Batch Creation

Worker

Checkpoint

Execute

Message to 
Clients and 

Replicas

Output

Network

Figure 6: Pipeline at ResilientDB replicas.

ing protocol has a global phase in which clusters exchange
locally-replicated transactions, followed by a local phase in
which clusters distribute any received transactions locally
among all local replicas. Finally, after receiving all trans-
actions that are locally-replicated in other clusters, each
replica in each cluster can deterministically order all these
transactions and proceed with their execution. After exe-
cution, the replicas in each cluster inform only local clients
of the outcome of the execution of their transactions (e.g.,
confirm execution or return any execution results).

6. RESILIENTDB
Although efficient consensus can help increase the through-

put of a permissioned blockchain application, we believe this
philosophy only reflects a one-sided story. In specific, the de-
sign and implementation of the underlying system also plays
a major role in determining its scalability.

We use Figure 5 to illustrate such a possibility. In this
figure, we measure the throughput of our optimally designed
permissioned blockchain system ResilientDB [11, 12] against
a protocol centric permissioned blockchain system that adopts
practices suggested in BFTSmart [3]. We intentionally make
ResilientDB adopt the slow Pbft protocol while the other
system employs the fast Zyzzyva protocol. Despite this,
ResilientDB achieves a throughput of 175K transactions
per second, scales up to 32 replicas, and attains up to 79%
more throughput.

3



ResilientDB lays down an efficient client-server architec-
ture. At the application layer, we allow multiple clients to
co-exist, each of which creates its own requests. For this pur-
pose, clients can either employ an existing benchmark suite
or design a Smart Contract suiting to the active application.
Next, clients and replicas use the transport layer to exchange
messages across the network. ResilientDB also provides a
storage layer where all the metadata corresponding to a re-
quest and the blockchain is stored. At each replica, there is
an execution layer where the underlying consensus protocol
is run on the client request, and the request is executed.

ResilientDB includes multi-threaded deep pipelines that
allow it to achieve high-throughput consensus among its
replicas (refer to Figure 6). We permit increasing (or de-
creasing) the number of threads of each type. With each
replica, we associate multiple input and output threads to
communicate with the network. ResilientDB also asso-
ciates multiple batch-threads with the primary replica to
batch client requests. Using an optimal batching policy can
help mask consensus costs. To process other messages and
run the phases of an underlying consensus protocol, Re-
silientDB also includes several worker-threads. Once a re-
quest is replicated, each replica asks its execute-thread to
execute the request and reply to the client. Depending on
the underlying protocol, we also allow threads for check-
pointing, garbage collection, and certificate exchange.

7. CONCLUSIONS
In this work, we present design of three efficient BFT

protocols that aim to reduce the costs associated with BFT
consensus. Our protocols present mechanisms to reliably re-
duce phases of Pbft protocol, parallelize Pbft protocol and
scale Pbft to global setting by clustering replicas. More-
over, these protocols can be easily combined to yield a single
high-throughput consensus protocol. Further, we illustrate
that the design and implementation of the underlying per-
missioned blockchain fabric is equally important.

8. REFERENCES

[1] M. J. Amiri, D. Agrawal, and A. E. Abbadi. CAPER:
A cross-application permissioned blockchain.
Proceedings of the VLDB Endowment,
12(11):1385–1398, 2019.

[2] E. Androulaki et al. Hyperledger Fabric: A
distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys
Conference, pages 30:1–30:15. ACM, 2018.

[3] A. Bessani, J. Sousa, and E. E. P. Alchieri. State
machine replication for the masses with bft-smart. In
DSN, 2014.

[4] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation, pages
173–186. USENIX Association, 1999.

[5] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making byzantine fault tolerant
systems tolerate byzantine faults. In Proceedings of the
6th USENIX Symposium on Networked Systems
Design and Implementation, NSDI, pages 153–168.
USENIX Association, 2009.

[6] G. Golan Gueta, I. Abraham, S. Grossman,
D. Malkhi, B. Pinkas, M. Reiter, D. Seredinschi,

O. Tamir, and A. Tomescu. Sbft: A scalable and
decentralized trust infrastructure. In 49th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 568–580, 2019.

[7] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi.
An in-depth look of BFT consensus in blockchain:
Challenges and opportunities. In Proceedings of the
20th International Middleware Conference Tutorials,
pages 6–10. ACM, 2019.

[8] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi.
Proof-of-Execution: Reaching Consensus through
Fault-Tolerant Speculation. CoRR, abs/1911.00838,
2019.

[9] S. Gupta, J. Hellings, and M. Sadoghi. Brief
announcement: Revisiting consensus protocols
through wait-free parallelization. In 33rd International
Symposium on Distributed Computing (DISC 2019),
volume 146, pages 44:1–44:3, 2019.

[10] S. Gupta, J. Hellings, and M. Sadoghi. Scaling
blockchain databases through parallel resilient
consensus paradigm. CoRR, abs/1911.00837, 2019.

[11] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi.
Resilientdb: Global scale resilient blockchain fabric.
PVLDB, 13(6):868–883, 2020.

[12] S. Gupta, S. Rahnama, and M. Sadoghi. Permissioned
blockchain through the looking glass: Architectural
and implementation lessons learned. In 40th IEEE
International Conference on Distributed Computing
Systems, 2020.

[13] S. Gupta and M. Sadoghi. Blockchain Transaction
Processing, pages 1–11. Springer International
Publishing, 2018.

[14] S. Gupta and M. Sadoghi. EasyCommit: A
non-blocking two-phase commit protocol. In
Proceedings of the 21st International Conference on
Extending Database Technology, pages 157–168. Open
Proceedings, 2018.

[15] J. Katz and Y. Lindell. Introduction to Modern
Cryptography. Chapman and Hall/CRC, 2nd edition,
2014.

[16] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative byzantine fault
tolerance. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles,
pages 45–58. ACM, 2007.

[17] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2009.

[18] F. Nawab and M. Sadoghi. Blockplane: A global-scale
byzantizing middleware. In 35th International
Conference on Data Engineering (ICDE), pages
124–135. IEEE, 2019.

[19] T. Qadah, S. Gupta, and M. Sadoghi. Q-store:
Distributed, multi-partition transactions via
queue-oriented execution and communication. In
Proceedings of the 23nd International Conference on
Extending Database Technology, pages 73–84.
OpenProceedings.org, 2020.

[20] G. Wood. Ethereum: a secure decentralised
generalised transaction ledger, 2016. EIP-150 revision.

[21] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and
I. Abraham. HotStuff: BFT consensus with linearity
and responsiveness. PODC, 2019.

4


