

2 The Model

The proposed model consists of a 2-layered neural network with feed forward connections from layer 1 (L1) to
layer 2 (L2) and the L2 neurons form a fully connected graph. Similar to biological neurons, the processing
neurons will be either in the ”firing” state (yi = 1) or ”not firing” state (yi = 0)[4]. Unlike the asynchronous and
stochastic update strategy employed by Hopfield nets and Boltzmann machines, the proposed model employs an
update strategy that involves gradual increment or inhibition of the potential of each neuron (Zi) in L2 until it
crosses the threshold Ui and the neuron is activated. This draws inspiration from biological neurons and how
continued trains of action potential spikes in pre-synaptic axonal terminals trigger proportional neurotransmitter
release until the resulting post-synaptic depolarizations trigger an action potential. The synaptic weight between
the two neurons determines the rate of neurotransmitter release. The more the weight, the faster the post-
synaptic neuron gets depolarized and subsequently activated. The newly activated neurons would in turn help
in activating the rest of the neurons corresponding to the stored pattern.

The model uses two weight matrices W 1 = W 1
ij , ∀ i ∈ L1, j ∈ L2 and W 2 = W 2

ij ∀ i ∈ L2, j ∈ L2.

2.1 Neural Encoding

The user is required to specify the dimension d of the pattern vector space and the number of active neurons
that should fire for every pattern. This global count m is used as the winning criteria for the model to find a
winner set of neurons during the testing phase. This does restrict the model from using the full capacity of the
d-dimensional input vector. Although letting the model run for a certain number of epochs (set by the user)
may seem like a plausible strategy, it can incur excessive contamination in the output pattern depending on
the number of epochs. For a d-dimensional input vector and count of active neurons m, the number of possible
patterns that can be fed into the model would be

(
d
m

)
.

2.2 Memorizing Associations

(a) (b)

Figure 1: Training the model.
(a). The patterns Sp = [1 0 0 1] and Op

1 = [1 1 0 0] are introduced for training the pattern association Sp

→ Op
1 . The weights W 1

11, W 1
12, W 1

41, W 1
42, W 2

12, W 2
21 are rewarded (incremented) due to association between

firing neurons and W 1
13, W 1

14, W 1
43, W 1

44, W 2
13, W 2

14, W 2
23, W 2

24 penalised (decremented) due to feed forward
disassociation between the neurons (Note: We do not penalize W 2

31).
(b). The same input pattern Sp is trained with a different output vector Op

2 so as to memorize the pattern
association Sp → Op

2 . The weight update follows the same methodology as (a).

The training of the model is dependent upon the time duration for which the pattern associations are presented.
The patterns that need to be strongly remembered are given more training time. Consider the memorization of
the association Sp → Op. During the training phase for Sp → Op, we will assume that both the firing neurons
of Sp and Op remain firing till its training duration and there is no decay with time. At the start, when there is
no stored associations, the weight matrix is initialized as Wij = 0, ∀ i,j.

At each training epoch, the weights between the pattern get updated as follows:

W 1
ij = W 1

ij +
ui · vj · η · θ(t)

Dij
− (1− vj) · ui · γ · θ(t)

Dij

and,

W 2
ij = W 2

ij +
vi · vj · η · θ(t)

Dij
− (1− vj) · vi · γ · θ(t)

Dij

where :

• ui, uj ∈ Sp and vi, vj ∈ Op

• η and γ represent the learning rate and the unlearning rate respectively

• θ(t) is the multiplier that increases at the start of each training session. The most recent training session
will have the highest value of θ(t).

• Dij here represent the inter-neuronal distance. One measure of distance could simply be Dij = |i− j| + 1.

• Wij ∈ [0, ∞]. The weights are constrained via a rectified linear unit (ReLU).

2.3 Memory Recall

(a) (b) (c)

.

Figure 2: The Recall Process.
(a). Sp = [1 0 0 1] is introduced into the model for testing and all the associated neurons in L2 start getting
depolarized.
(b). After a few epochs, the first winner in the competition y4 in L2, gets activated. The newly activated neuron
helps in boosting the depolarization of y3 due to high association of y4 and y3 (See Figure 1 (b)).
(c). When y3 gets activated the competition ends due to number of activated neurons being equal to m and the
output is Y p = [0 0 1 1].

The recall of stored associations is facilitated when the pattern Sp is introduced as input into the model. The
recall process involves the triggering of depolarizations in the output vector Y p. The depolarizations are recorded
by the vector Z. A neuron yi in Y p is activated (yi = 1) if the depolarization for that neuron (Zi) exceeds the
threshold (Ui). The d-dimensional output vector Y p is continually updated as the recall phase goes on and the
recall is completed when the number of active neurons in Y p is m.
At the nth epoch:

Zn
i = Zn−1

i +
∑
j

W 1
ji · un−1

j +
∑
j

W 2
ji · yn−1

j

yni =

{
1, if Zn

i > Ui

0, if Zn
i < Ui

where uj ∈ Sp and yi,yj ∈ Y p

2.4 Traversal of the Stored Memories

The model so far gives a single output when an input is presented. This output is determined by the winner set
of neurons among the competing neurons. There seems to be a lot of wasted potential in the sense that other
output patterns associated with that particular input pattern are forgotten or cannot be retrieved. To tackle
this problem, we introduce an inhibition vector Ip that inhibits the set of winner neurons to let the other set of
competing neurons win.

The inhibition vector Ip is implemented as a hash table. The entries of Ip are set when a recall is ended and
the output is retrieved. For a set of active neurons {yi1 , yi2 , . ., yim}, the hash table entry is filled by a hash
function h(i1, i2, .., im).

Algorithm 1 Breadthwise Traversal

1: procedure BT(Sp, num patterns)
2: T ← {} . A list of traversed patterns T
3: Ip ← (0, 0, ...0)d . The inhibition vector Ip

4: i← 1
5: while i 6= num patterns do
6: Y ← (0, 0, ...0)d
7: keys← {}
8: Y ← Recall(Sp, Ip) . Recall the stored pattern
9: T.add{Y }

10: j ← 1
11: while j 6= d do
12: if Y [j] == 1 then
13: keys.add(j) . Add index to list of keys

14: j ← j + 1

15: Ip[h(keys)]← 1 . Set the entry in Ip

16: i← i+ 1

17: return T

During the end of a recall session i.e when
∑d

i=1 yi = m, the inhibition is triggered and updates Zi as:

Zi =

{
0, if yi · Ip[h(keys)] = 1

Zi, if yi · Ip[h(keys)] = 0

The deactivation of the previously active neurons will let the other competing neurons cross the threshold and
emerge as the winning set of active neurons.This algorithm when repeated over and over, facilitates a breadthwise
traversal of stored patterns in the implicit pattern association graph (corresponding to the origin input pattern).

The depthwise traversal of the memory graph can be achieved by simply using the recalled output as the new
input to be recalled.

(a) (b)

(c)

Figure 3: Change in Recall Process.
(a). This pattern output produced during recall is not retrieved due to the presence of a set entry in Ip for this
particular set of active neurons.
(b). The active neurons are inhibited and the other neurons (y1 and y2) are allowed to compete.
(c). y1 and y2 is the winner set of active neurons and Y p is retrieved.

Algorithm 2 Depthwise Traversal

1: procedure DT(Sp, num patterns)
2: T ← {} . A list of traversed patterns T
3: i← 1
4: while i 6= num patterns do
5: Y ← Recall(Sp) . Recall the stored pattern
6: T.add{Y }
7: Sp = Y
8: return T

n = 5 n = 10 n = 20

m = 3 m = 5 m = 8 m = 3 m = 5 m = 8 m = 3 m = 5 m = 8

d = 10 0.8785 0.7840 0.6802 0.7466 0.7187 0.5982 0.6017 0.5513 0.4502

d = 30 0.7167 0.6897 0.6277 0.6698 0.6623 0.5201 0.5926 0.5022 0.4003

Table 1: Average testing accuracies over different batches of training sessions for random pattern associations

l = 5 l = 10 l = 20

m = 3 m = 5 m = 8 m = 3 m = 5 m = 8 m = 3 m = 5 m = 8

d = 10 0.8301 0.8012 0.7433 0.7306 0.7000 0.6302 0.6105 0.5801 0.5258

d = 30 0.7213 0.7051 0.6811 0.6899 0.6366 0.5330 0.5135 0.4992 0.4161

Table 2: Average testing accuracies over different batches of training sessions for multi-output associations of
the same input vector

3 Results

The model was trained with random d-dimensional pattern vectors of m active neurons with a training time of
500 epochs per training sample. Table 1 shows the results of the average testing accuracy over varying numbers
of stored associations (n), m and d on different training batches. For lower-dimensional pattern inputs (d < 30),
the recall is almost perfect with an accuracy of around 0.8785. This metric was further bumped up when trained
and tested against a set of mutually orthogonal pattern vectors and showed a mean testing accuracy of 0.9017
(The error only stemming from multi-output associations). For higher dimensional pattern inputs (d > 30), the
testing accuracy dips as low as 0.4003 and the output suffers from contamination. This is effectively due to the
saturation of the weight matrix which fails the competitive learning procedure. The accuracy, however, was high
(0.8314) when a set of mutually orthogonal pattern vectors were chosen.

Further, we simulated the training of the model for a single input vector associated with multiple output
vectors (l) and the results are shown in Table 2. The testing was done by utilizing breadthwise traversal to
recall the multi-output pattern associations. The results were quite similar to that of the recall of random
pattern associations. Lower-dimensional vectors (d < 30) achieved an average testing accuracy of 0.8785 whereas
higher-dimensional vectors (d > 30) went as low as 0.4161

4 Conclusion and Future Work

Our results showed that the proposed model was able to efficiently store and retrieve pattern associations with
minimal error (for lower dimensions). Further, in combination with the traversal schemes devised, the model
is a great candidate for multi-modal information retrieval. Although restricted by the neural encoding scheme
presented in this paper, there is still a high storage capacity (before excessive contamination).

However, there is much to be improved. We believe that the model can be made even better by introducing
several layers of neurons and thus induce multi-stage competition among neurons that would further enhance
learning. Like [8], future work needs to be done to introduce a framework for multi-modal information retrieval
that utilizes this model and the flexibility in searching that it provides.

References

[1] H. He, Y. Shang, X. Yang, et al. Constructing an Associative Memory System Using Spiking Neural
Network. Front Neurosci. 2019;13:650. Published 2019 Jul 3. doi:10.3389/fnins.2019.00650

[2] J. A. Anderson. A simple neural network generating an interactive memory. Mathematical Biosciences,
vol. 14, pp. 197-220, 1972.

[3] B. Kosko. Adaptive bidirectional associative memories. Appl. Opt. 26, 4947-4960 (1987)

[4] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity W. Bulletin
of Mathematical Biophysics. (1943) 5: 115.

[5] John J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences 79.8 (1982): 2554-2558.

[6] Dmitry, John J. Hopfield and Krotov. Dense associative memory for pattern recognition. Advances in
neural information processing systems (pp. 1172-1180): 2016

[7] Geoffrey E. Hinton. (2007-05-24). Boltzmann machine. Scholarpedia. 2 (5): 1668.

[8] P. Joshi, V.M. Ladwani, V. Ramasubramanian, R. Shriwas. Multi-modal Associative Storage and Re-
trieval Using Hopfield Auto-associative Memory Network. Theoretical Neural Computation. ICANN
2019. Lecture Notes in Computer Science, vol 11727. Springer, Cham

