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Abstract. The purpose of this paper is to review the recent results in the area of 
infectious disease modelling using general branching processes. A new simulation 
method oriented to model the spread of the COVID’19 pandemic caused by 
SARS-CoV-2 coronavirus is proposed. General branching models turned out to be 
more appropriate and fl exible for describing the spread of an infection in a given 
population, than discrete time ones. Concretely, Crump-Mode-Jagers branching 
processes are considered as proper candidates of infectious diseases modelling 
with incubation period like measles, mumps, avian fl u, etc. It can be noted that the 
developed methodology is applicable to the diseases that follow the so-called SIR 
(susceptible-infected-removed) and SEIR (susceptible exposed-infected-removed) 
scheme in terms of epidemiological models. Different forecasts are proposed and 
compared on the ground of real data and simulation examples.

Keywords: SARS-CoV-2 coronavirus, basic reproduction number, general branch-
ing processes

1 Introduction

Since the Covid-19 pandemic outbreak, a large number of researchers started to 
model the pandemic with various mathematical models, and placed their results 
on the Internet; see e.g. [1], [2], [3]. However, the number of peer-reviewed 
papers is, for now, rather small, especially concerning the branching models used 
for this particular kind of pandemic. Hence, another objective of this paper is to 
contribute to the discussion on the coronavirus trajectory with the specifi c kind of 
branching processes modelling and for a pandemic caused by a newly emerged 
vector-borne disease.

Branching processes have been applied widely to model epidemic spread (see 
for example the monographs by Andersson and Britton [4], Daley and Gani [5] 
and Mode and Sleeman [6]. The process describing the number of infectious 
individuals in an epidemic model may be well approximated by a branching 
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process if the population is homogeneously mixing and the number of infectious 
individuals is small in relation to the total size of the susceptible population, 
since under these circumstances the probability that an infectious contact is with 
a previously infected individual is negligible (see, for example, Isham [7]). Such 
an approximation dates back to the pioneering works of Bartlett [8] and Kendall 
[9], and can be made mathematically precise by showing convergence of the 
epidemic process to a limiting branching process as the number of susceptible 
tends to infi nity (see Ball [10], Ball and Donnelly [11] and Metz [12]). The 
approximation may also be extended to epidemics in populations that are not 
homogeneously mixing, for example those containing small mixing units such as 
households and workplaces (see Pellis et al. [13]).

In nowadays situation with COVID’19 pandemic - without existence of 
vaccine, the non-pharmaceutical measures, like isolation, quarantine, lock downs, 
etc., have been applied all over the world. We are now still in the circumstances of 
ongoing pandemic and many typical questions raised are hard to be answered. For 
example, what is the basic reproduction number R0 for SARS-CoV-2 coronavirus, 
what are the duration outbreak and the size outbreak distributions and others, 
concerning the basic quantities needed to be estimated for making forecast. 
This work is the fi rst step of incorporating existing knowledge of unknown 
characteristics mentioned into the general branching processes (GBP) model. We 
are aware of the fact that GBP are specifi c tool and there are many differences of 
COVID’19 disease behavior from one country to another one and moreover from 
one particular region in a given country to another one, but the main idea behind 
this approach is to treat data available for each country in a unifi ed way, based on 
the estimates existing in the scientifi c literature at the moment for SARS-CoV-2 
coronavirus spreading.

The paper is organized as follows: Section 2 briefl y introduces the general 
branching processes model, while Section 3 is devoted to the statistical methodology 
developed and simulation results. First, the impact of basic reproduction number 
R0, refl ecting an effect of preventive measures applied on the future behavior 
of the epidemics is studied. Second, we apply the methodology for the data set 
collected on a daily base and published at Worldometer (see [14]) for Bulgaria, 
Belgium and South Korea. For every country, we made 1000 simulations to obtain 
the forecast of new cases emergence in three possible scenarios: main, optimistic 
and pessimistic. We end up the paper by discussion of the results in Section 4.

2 General Branching Processes Model

Before proceeding we give outline descriptions of some common branching 
process models (see e.g. Jagers [15] for further details), which describe the 
evolution of a single-type population, which in what follows will be supposed to be 
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the one of infected individuals. In all of these branching models, individuals have 
independent and identically distributed reproduction processes. The reproduction 
process in terms of epidemic spread meaning the random process signifying the 
new infected by each contact with infectious one. In the case of SARS-CoV-2 
coronavirus it is known that each contact results in new infective. If not, this 
situation could be incorporated into the model with introducing in addition the 
probability that after a contact an individual may not get infection, say with 
probability p. In a Bienayme-Galton-Watson branching process, each individual 
live for one unit of time and then has a random number of children, distributed 
according to a random variable, ξ say. In a Bellman-Harris branching process, 
each individual live until a random age, distributed according to a random variable 
I say, and then has a random number of children, distributed according to ξ, where 
I and ξ are independent. The Sevastyanov branching process is defi ned similarly, 
except I and ξ may be dependent, so the number of children an individual has is 
correlated with that individual’s lifetime. In all of the mentioned above classes 
of BP there is one feature in common which is distinguishing them as a whole 
from the general BP. That is the assumption that every individual after living 
a random (or unit) time, dies leaving a random number of ancestries. Finally, 
in a general branching process, also called a Crump-Mode-Jagers branching 
process (CMJBP), each individual live until a random age, distributed according 
to I, and reproduces at ages according to a point process ζ. More precisely, if an 
individual, i say having reproduction profi le (Ii,ξi), is born at time bi and 0 ≤ τi1 
≤ τi2 ≤ ... ≤ Ii denote the points of ξi, then individual i has one child at each of 
times bi + τi1, bi + τi2,.... This model permit that a mother could have more than 
one child during her life or in terms of epidemic that every contaminated case 
could contact and pass the viral infection to more than one susceptible during its 
infectious period. However, the situation with SARS-CoV-2 coronavirus is rather 
different in comparison to other viruses existed until now. It was reported that 
an individual could just transfer the virus without being ill and/or symptomatic, 
which complicates the contact process as a whole and the tracing the contacts 
consequently.

This paper is primarily concerned with models for epidemics of diseases, 
such as measles, mumps and avian infl uenza, which follow the so-called SIR 
(Susceptible → Infective → Removed) scheme in a closed, homogeneously 
mixing population or some of its extensions. A key epidemiological parameter for 
such an epidemic model is the basic reproduction number R0 (see Heesterbeek 
and Dietz [16]), which in the present setting is given by the mean of the offspring 
distribution of the approximating branching process. In particular a major 
outbreak (i.e. one whose size is of the same order as the population size) occurs 
with non-zero probability if and only if R0 > 1.

Suppose that R0 > 1 and some preventive transmission measures are taken 
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in advance of an epidemic. If there were a vaccine this could be expressed in 
such a way that fraction c of the population is vaccinated with a perfect vaccine 
in advance of an epidemic. Then R0 is reduced to (1 − c) R0, since a proportion 
c of infectious contacts is with vaccinated individuals. It follows that a major 
outbreak is almost surely prevented if and only if R0

– . This well-known result, 
which gives the critical vaccination coverage to prevent a major outbreak and 
goes back at least to 1964 (e.g. Smith [17]), is widely used to inform public health 
authorities, but if there is a vaccine.

As a consequence of the above result, many analyses in the epidemic 
modelling literature have focussed on reducing R0 to its critical value of one. In 
the case of COVID’19 pandemic it is done by closing public institutions, schools, 
universities, etc., social isolation, lock downs of towns and/or regions and our 
aim is to present an approach of measuring an effect of these measures.

3 Statistical Method and Simulation Results

3.1 The impact of basic reproduction number R0, refl ecting an effect of 
preventive measures applied

Our methodology is based primarily on the CMJBP as a model of epidemic spread. 
It this section by use of the statistical software especially developed for branching 
processes simulations [18] we fi rst fi t the parameters of the model to the data 
available for particular country, as it is obvious that there is a variety of different 
behaviours among them. We are interested in the similarities and differences 
between them and the reasons they stemmed from. The two main characteristics 
running the behaviour of the CMJBP are the distribution of the fertility period 
duration of individuals and the point process governing the reproduction process 
of any individual, which may depend on the age of individual. These quantities in 
terms of epidemic spreading mean the distribution of the serial interval, which is 
the sum of incubation period and delay period (see Fig. 1) and the point process 
signifying the number of new infected individuals any infective individual, may 
pass the virus to.

Each potential new infection was assigned a time of infection drawn from 
the serial interval distribution. Secondary cases were only created if the infector 
had not been isolated by the time of infection. In the example in Fig. 1, person 
A can potentially produce three secondary infections, but only two transmissions 
occur before the case was isolated. Thus, a reduced delay from onset to isolation 
reduces the average number of secondary cases in the model.

It is important to say that the notion of “age” in the epidemic context means 
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the “stage” of the disease in the human organism and consequently the number 
of newly infected individuals emerging from the contact with an infectious one 
is depending on the phase at which the infected individual passes the disease. 
That is why we model the serial interval (see [19]) as a sum of incubation period 
during which an infected individual is asymptomatic but could transmit the virus 
and a delay period which is the interval after the symptoms appeared (and the 
infected individual may pass the virus to the contacted one or may not if he or she 
is being isolated) up to the time of isolation.

In the present study for the parameters of the general branching process, we 
use the left-truncated normal distribution N(35,5.12), using known estimates from 
[19] that the incubation period is distributed by an average of 5.8 and a standard 
deviation of 2.6 and in the absence of any measures, the contagious individual is 
not isolated, i.e. he or she infects other people throughout the infection. However, 
if there is an isolation of the infected case after symptoms have emerged, 
to incorporate this event into the model, we should take this into account by 
introducing another distribution of delay time between the onset of symptoms 
and the isolation, which is judged to be with mean 3.83 and dispersion 5.99 (see 
[19]). For the point process modelling the number of infected individuals by one 
infected, we use gamma distribution with appropriately defi ned parameters, i.e. 
Γ (7.2734,1.3240) (see [19]).

There are many estimates of the reproduction number for the early phase 
of the SARS-CoV-2 outbreak in Wuhan, China (see [19] and the references 
therein) and therefore we used the values 1.5, 2.5, and 3.5, which span most of 
the range of current estimates. For any particular value of R0 = 1;1.5;2.5, 1000 
simulations have been made using the statistical software especially developed 
for branching processes simulations [18], which reveal the behaviour of the 
number of contaminated at a given time by taking additional measures to isolate, 
quarantine and block certain areas. The effect of the measures taken in reducing 
this number is seen as an estimate of the number of infected individuals in Fig. 
2 and 3, while in the absence of such measures as in Fig. 4 and 5 this number 
is increasing. In both cases, however, for the selected parameters of the general 
branching process, the horizon of 90 days from the onset of the infection in the 
population is short to can claim that the epidemic is eliminated within this period.
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Fig. 1. An example of serial interval

Fig. 2. Forecast of new cases at certain time under mitigation interventions, when R0 = 1, i.e. the 
branching process is critical



121

Fig. 3. Forecast of new cases at certain time under mitigation interventions, when R0 = 1.093, i.e. 
the branching process is slightly super-critical

Fig. 4. Forecast of new cases at certain time without mitigation interventions, when R0 = 1.5, i.e. 
the branching process is supercritical
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Fig. 5. Forecast of new cases at certain time without mitigation interventions, when R0 = 1.5, i.e. 
the branching process is supercritical

3.2 Forecasts of COVID’19 development in Bulgaria

In this subsection, we are illustrating the methodology using the CMJBP after 
fi tting the theoretical model to the historical data published at Worldometer (see 
[14]). This way we acquire the values, which are best revealing and explaining 
the structure of the historical data representing the new daily cases and total 
cases, as well. Then with the values of estimated parameters - R0 and the serial 
interval distribution, giving the best fi t to the data, we are projecting further the 
behaviour of the new daily cases in three scenarios. The main scenario is when 
for the forecast we used the estimated value of R0, for the optimistic scenario we 
decrease the estimated value of R0 and for the pessimistic one - we increase R0. 
On Fig. 6, one can see the results of the fi t of the model (in blue) vs observed (in 
black) total cases and on Fig. 7 of the fi t of the model (in blue) vs observed (in 
black) new daily cases, both for Bulgaria. On Fig. 8 are presented the forecasts 
for Bulgaria by three scenarios: main (in lilac) together with the 90% confi dence 
interval, optimistic (in green), pessimistic (in brown) and the actual new daily 
cases (in black) using the data from the beginning of the infection on March 8, 
2020 up to May 27, 2020. So following the graphics on Fig. 8 one can see in the 
period after May 27, 2020 up to approximately June 10, 2020 the fi t between the 
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model vs observed new daily cases is very good, but after that it is possible to 
have three possible trajectories according to the three different scenarios all of 
them projecting to September 2, 2020.

Fig. 6. The comparison between the model vs observed total cases for Bulgaria
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Fig. 7. The comparison between the model vs observed new daily cases for Bulgaria

Fig. 8. Forecast of new daily cases in Bulgaria by three scenarios: main, optimistic and 
pessimistic ones using the data from Worldometer
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3.3 Forecasts of COVID’19 development in Belgium

The results for Belgium are presented on Fig. 9, where is the fi t of the model (in 
blue) vs observed (in black) total cases and on Fig. 10 is the fi t of the model (in 
blue) vs observed (in black) new daily cases. Then, on Fig. 11 one could see the 
forecasts for Belgium by three scenarios: main (in lilac) together with the 90% 
confi dence interval, optimistic (in green), pessimistic (in brown) for the actual 
new daily cases (in black) using the data from the beginning of the infection on 
March 8, 2020 up to May 27, 2020. It is interesting to note that the epidemic started 
at the same time in Bulgaria and Belgium and that is one of the reasons to choose 
to present here the results for these two countries. So following the graphics on 
Fig. 11 one can see in the period after May 27, 2020 up to approximately June 
10, 2020 the fi t between the model vs observed new daily cases is very good, but 
after that it is possible to have three possible trajectories according to the three 
different scenarios all of them projecting to September 2, 2020. Also, as it could 
be seen the behaviour by pessimistic scenario in Belgium is rather different from 
that in Bulgaria and one of the reasons for that is the difference in the outbreak 
smoothing curve corresponding to new daily cases in Bulgaria (see Fig. 8) and 
that for Belgium (see Fig. 11).

Fig. 9. The comparison between the model vs observed total cases for Belgium
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Fig. 10. The comparison between the model vs observed new daily cases for Belgium

Fig. 11. Forecast of new daily cases in Belgium by three scenarios: main, optimistic and 
pessimistic ones using the data from Worldometer
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3.4 Forecasts of COVID’19 development in South Korea

The case of South Korea turned out to be quite different from those of Bulgaria and 
Belgium. It is known that in South Korea, the measures applied are technological 
and this country does not take social isolation and other typical measures we 
already mentioned before. Rather, the tracing of contacts together with the 
secondary cases is taken with high probability.

First, one can see the difference in the results of the fi t of the model vs observed 
total cases between South Korea (Fig. 12) and those for Bulgaria (see Fig. 6) and 
Belgium (see Fig. 9). The curves of total cases for South Korea (Fig. 12) are 
steeper than those for Bulgaria (see Fig. 6) and Belgium (see Fig. 9) which has its 
explanation in the different policies followed in the three countries.

Second, because of measures taken in South Korea on Fig. 13, one could 
observe that the smoothing model curve for daily outbreaks has different behaviour 
in comparison to those of Bulgaria and Belgium. It is because the limitations are 
not so strict in South Korea, which is resulting in a faster growth, than in the other 
two countries, of the size of new daily cases and the appearance of the second wave. 
Because of that scenario accepted in South Korea, however, there is a possibility of 
the next major outbreak in that country, as it is presented on Fig. 14.

Fig. 12. The comparison between the model vs observed total cases for South Korea
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Fig. 13. The comparison between the model vs observed new daily cases for South Korea

Fig. 14. Forecast of new daily cases in South Korea by three scenarios: main, optimistic and 
pessimistic ones using the data from Worldometer
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4 Discussion

In this paper, we have presented a mathematical tool to tackle infectious disease 
outbreaks in order to estimate the impact of preventive measures applied. In 
particular, this tool addresses various technical questions posed by the author to 
support the ongoing public health response to COVID-19. This approach considers 
both estimation efforts for key parameters, and investigative efforts (often-
numerical simulations) in assessing the effectiveness of various intervention or 
control measures. Mutual concern of estimation and simulation efforts is critical. 
Parameter estimates are obtained using a certain set of assumptions regarding the 
data, and investigations or simulations utilising these estimates should guarantee 
that their underlying assumptions are consistent. These challenges in model 
construction and applicability of statistical methods become more complex by 
the limitations of the data with which decisions must be made.

There are many complications when modelling an outbreak of a novel 
infectious disease. To address some of these, we have described a possible 
technique to serve as part of a generally applicable toolkit. However, our proposed 
model, and many other models, are subject to important restrictions, which must 
be considered prior to their application. Signifi cant among these are the lack 
of heterogeneous population mixing, such as through age and different risk-
groups, and spatio-temporal variations all of which have an impact on modelling 
estimates and predictions.

Nevertheless, the relative simplicity of the presented model allows for the 
development of qualitative intuition regarding the effi cacy of various intervention 
methods, whilst providing tractable theoretical frameworks, which can be further, 
developed and better inform policy-makers.
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