
181

Applications of Existing Organized Data, in the Creation
of a Chatbot, Improving Customer Experience

Kristin Aleksandrova

University of Sofi a St. Kliment Ohridski, Sofi a, Bulgaria
����������	��
�������

Abstract. In today’s world, people expect instant reaction, when seeking a
resolution to their issues. This principle applies to all industries. Sampling the IT and
healthcare industries, we can see that there is a similarity in the currently available
information and the way it is structured and the industry requirements for a fast and
adequate response. The question is how much of that already existing information
is usable in its current state. An obvious candidate to answer that question would be
conversational interfaces.
The research presented in this paper is based on the existing SAP Product
documentation, with a focus on the HANA Server Installation and Update
Guide. The main objective is to develop a prototype of a generic conversational
interface, which can navigate through data, structured for a human’s ease of access,
independently from the industry it currently operated. The prototype strives to
open the discussion by carrying the naïve belief, that we can create one solution to
resolve all issues.
Overall, creating a chatbot, that would guide a user through the lifecycle management
procedures of interest, provides a new style of user experience for the target
group, performing those operations, and is feasible with the current technologies
available. This suggests a way of utilizing human readable structured information
that can result in general improvements of the business-customer relationship and a
reduction of the effort needed for general support. By relation, these principles can
be applied to all industries, especially for lightweight cases.

Keywords: chatbot, support, experience, conversational, interface, documentation.

1 Introduction

With the rapid development of technology, the expectation for software interaction
is evolving. Most products and services usually offer several user interfaces with
their variations, typically: command line (CLI) and graphical user interface
(GUI). Currently on the rise is the natural language interface (NLI). Also referred
to as conversational interface, it can be spoken or written. These days the written
form, or chatbots, are in high demand. Software consumers now expect such an
interface to be a natural part of every product, especially in the cases where a
service is being provided.

��	��������������������	�����
�������������������������������	����� ��!�����������"�#���$%� �&

182

Chatbot development however is hindered not by technical, but by ethical
problems. Let us take as a reference a general-purpose chatbot that will work
with all the available data on diseases and medication. A software solution like
that will be perceived as an omniscient authority that can be trusted. However,
we are constantly fi nding new diseases, new symptoms, and complications for
old ones and in addition, not all combinations between illnesses and their side
effects are documented. This could lead to two major issues: self-diagnosis and
self-treatment. In the case of self-diagnosis, based on what the user defi nes as
symptoms, or is prompted to consider, a decision will be made. As most people
are not licensed physicians, recognizing the right symptoms is already a problem.
On the other hand, if the diagnose is already available there is a risk that the
wrong treatment is chosen, since there are factors like drug compatibility and
personal and locational factors, to be considered. Not to mention, the overall
lack of empathy such a solution would have. Regardless of the choice of words
and phrasing, a user will always be aware that this is software. Similar opinions
were also observed by a web study that asked physicians their opinion of the
applications of chatbots in healthcare. [1]

This by no means implies that there is no application for chatbots in this
fi eld. If we were to remove the described ethical issues, we will see great
benefi ts. One example is a chatbot, dedicated to cancer patients. It can answer
all questions related to a patient’s treatment plan, the expected side effects and
overall progression of the illness during its phases. In this case, there is no self-
diagnoses or self-treatment and the lack of empathy is capitalized upon, as there
is no judgement towards what you ask. This simply proves that chatbots have
their place, when moral ambiguities are removed and there is a clear purpose for
their creation.

Usually the process for chatbot creation is as follows: defi ne the problem
area for your chatbot, gather the necessary data, clean and restructure it. This
creates multiple structures and models for the same dataset and makes reusing
and freely combining them harder than creating a new structure for every case.
This is hardly necessary for each problem to be resolved. To prove that I will
reverse the creation process and start by asking what data is already naturally
available and structured in some form.

1.1 Problem area

We as humans like to organize data; technically speaking all data conforms to
some structure. There is a clear expectation on how a book or manual would look
like in comparison to an article or a text message. Therefore, it would be a matter
of understanding the principle of the data structure. Since that is not the focus

183

presently, let us look at a structure that would be easy to explain to an algorithm.
Namely, product documentation.

Product documentation is usually written in some markup language to ensure
continuity and proper visualization. There are set rules on the meaning and
proper usage of words in the context of a product and that ensures no ambiguity
when looking at one specifi c documentation. That of course changes as between
companies and authors that notion differs. The main issue with documentation
is that in most cases it is been reorganized and reworked a few times. Presently
we are left to work with a hybrid combination of all those versions. Therefore,
it’s key to know the historic evolution of the structure and refl ect it properly. A
minor issue to consider is that there are multiple authors and they have a personal
preference to a markup syntax. This is mitigated by the requirement of a consistent
look and can be added to the logic of an algorithm.

Now that the data is present, the questions is what problem can product
documentation solve? There is always the possibility to create yet another
search engine. Considering most documentations are properly indexed and
searchable form the internet, we can consider other options. An interesting case
is troubleshooting, as usually the documentation is read after a problem occurs.
However, there is one page per solution for troubleshooting, unless you record
every interaction with a product. A better data for that problem would be blogs
and user forums that go into the details of the issue and its resolution. In the end,
I settled for procedure guidance.

When talking about long running procedures, such as system or product
updates, the product documentation could be 200-300 pages. That volume of data
is hard to comprehend on one read, especially as each sentence has a warning for
the future. So, the usual situation is:

 a user triggers a procedure and gets an error somewhere in the execu-
tion, the documentation is of no help due to the sheer volume;

 a support ticket is opened to resolve the issue;
 since support queues are at times overloaded the likely resolution is to

read the documentation, as the proper execution is explained there;
 this answer takes time and brings no value, hitting the instant gratifi ca-

tion problem;
 the customer experience is very poor as the procedure was not ex-

ecuted and the user was not able to help themselves.
To improve the customer experience, we need to look at the instant

gratifi cation problem. To quote Baron [2]:
“The industry numbers speak for themselves: 60% of respondents believe that
one minute is too long to be on hold, 42% complain about the need to speak
to different agents, and 78% terminate contracts because of bad support. This
amounts to $1.6tr annual losses due to poor customer support in the US alone.”

184

Hiring new people is not a scalable solution, especially to fast growing
businesses, therefore the answer lies in automation. The positive aspect is that
customer incidents follow the 80/20 rule. Meaning that 80 percent of the problems,
customers face, are similar and simple enough for their resolution to be automated
and for the other 20 percent a human involvement and a deeper look is needed.
If we combine that with the need of instant support and the growing demand for
personalized experience, we get conversational interfaces as a potential solution
again.

The goal of this research would be to create a prototype that would serve
as an evaluation of the already existing human-readable organized data. The
premise would be to understand if there is a need for a sophisticated preprocessed
knowledge database for lightweight cases.

2 Building a prototype chatbot

Once our goal has been defi ned and we have our initial research, it is time to start
building a prototype. In order to have a productive chatbot, we want to build it
in a way that can scale the three P’s, which are three core ideas to keep in mind
when developing a conversational interface. Namely personality, positioning, and
proactivity. Abiding those allows creating an identity for the chatbot and setting
the right expectations in its future user base, so that we minimize unhandled
situations. To ensure that, we will use an existing bot platform or framework.
After searching the fi eld, the choice is SAP’s Conversational AI.

2.1 Conversation fl ow

Let us imagine how the conversation would look like (Fig. 1). In blue is the
user input, we would analyze to understand the user intention. The green blocks
represent a response generated by the chatbot. It can be a simple reply in the case
of “Greetings” or an inquiry for additional information, as is the case with “Ask
for target version”. The purple rhombs represent conditionals that need to be
refl ected in the algorithms we design. This can be part of the SAP Conversational
AI platform or part of the server side, considering that in yellow are the calls to
the server, it is obvious where to check those points.

185

Fig. 1. Sample conversation fl ow for the HANA update guidance bot.

2.2 Data gathering

Let us acquire all the needed data. There is no public API to SAP’s documentation,
which leaves us with crawling for the needed information. If we are to write a
crawler however, fi rst we need to ensure that the website allows this kind of data
extraction and has planned a suffi cient server size to accommodate the load from
an automated solution. All websites provide this information in their robots.txt
fi le. This check can be integrated as part of the chatbot itself, however considering
our objective, we will not leave the premise of SAP’s help portal, and therefore a
manual check is suffi cient (Fig. 2).

Fig. 2. SAP Help Portal – robots.txt.

We see there are no limitations for agents, and therefore no additional
constraints are to be implemented for our solution.

SAP’s documentation is based on SAPUI5, which is means that the
documentation pages are JavaScript based and the actual content we are interested

186

in is loaded after the defi ned, in the page, JavaScript code is executed. However, in
most cases, the documentation supports a version that does not require rendering
and instead provides the html itself. The HANA Server Update documentation
is one of them. Opening them side by side we see that while this solves the need
of preloading and adding additional weight to the chatbot, the table of contents
is now missing. Which makes us reliant on each page is content and links only.
The main difference in the consumption of the documentation’s pages is a slight
change in the URLs themselves. Namely crawling “https://help.sap.com/doc/...”
instead of “https://help.sap.com/viewer/...”

2.3 Recognizing user intent

To build the procedure steps from the documentation, fi rst we need to recognize the
intent of the user to perform the procedure. As described in the SAP Conversational
AI documentation, we start by creating a custom entity recognizing a HANA
version was mentioned in the sentence.

In compliance with the platform recommendation we’ve kept the entities
simple and distinguishable, only adding one for the HANA version, keeping in
mind that the version is actually comprised of two parts the HANA major version,
that could be 1.0 or 2.0 and the SP level, so in the end a HANA version looks like
“2.0 SP00”. Separating those however would make it hard to handle the cases
where the user provides their starting and target version in the same sentence. As
they follow a numeric sequence, getting the higher version would be suffi cient
in the current implementation. In the case of separation, we risk mismatching the
versions and SP levels. So instead of moving a HANA 1.0 SP12 to HANA 2.0
SP00, we could be trying to do a HANA 1.0 SP00 to HANA 2.0 SP12 migration,
which in the example would fail, as the target version doesn’t exist currently,
however if that was not the case we would be providing completely wrong
information from the beginning.

Afterwards we create a skill, called hana_update, that is triggered when the
custom entity hana_version is present, as currently we want to focus solely on
the update procedure - this is suffi cient, however to include additional HANA
procedures it would be easy to add a new entity, that helps recognize the intention
of the user.

Currently the logic implemented is completely independent of the product.
Besides the custom entity that we use to recognize the intent, we mention
nothing about update or HANA; this is achieving the initial goal of perusing
a general, unconstrained solution. However, we fi nd ourselves in the situation
that we heavily depend on the exact structure of the documentation, and even
when we stay in the premise of the HANA update documentation, in between
versions there are inconsistencies as missing links or adjustments in the

187

structure. To end, we rely on the assumption that all procedure steps are in the
same subsection.

2.4 Finding the right documentation pages

Now that we have recognized that the user wants to update a HANA system in
the platform, we can start building, in the backend, the tree of pages that describe
the procedure. We start with the initial page for the update procedure. It’s easy
to notice that the target version, which is also containing the documentation of
interest, is part of the URL:“https://help.sap.com/viewer/2c1988d620e04368aa4
103bf26f17727/2.0.00/en-US/a428e6802a454f34bd3599782060c116.html”, and
changing only that part in the URL is suffi cient to get the starting process page
for our desired version. While for each version there are several related links,
provided in the initial page, not all of them represent steps and not all of them are
mandatory, so how do we handle their content?

We design an algorithm, refl ecting a simple approach, to parse a page that
does not contain procedure steps. We look on paragraph level and we look at
all paragraphs in the html that have a tag <cite class=”cite”> … </cite>. That
translates into paragraphs that have a citation of a related link. Therefore, if a
paragraph is describing a mandatory step, but it is not providing any additional
information on how to execute it, the chatbot would not mention it, as it cannot
provide additional information and guidance without shifting its focus to a search
engine. Additionally, there are times where paragraphs have citations, but the
information is not linked in the related links. To summarize we look at each
paragraph that has an existing link in related links, tagged as a citation:
1. Look for conditional statements that imply this is an optional step dependent

on the customer’s specifi c setup. For example: “If you (need)…”, “If you
would like…”, “In case you…”

2. Look of imperative statements that imply the step is mandatory. For example:
“…required…”, “…have to be fulfi lled…”, “…must be done…”

3. Other paragraphs usually have a “for more information…” style approach, so
those consisting statements like that and all other, we consider optional steps.
The condition of their execution being, the user’s desire to do so.

The order of those conditions is of importance, as the agent needs to be able to
handle statements of the kind: “…If you…it is required…”

This is our work on the initial page; we can now start with the next pages.
Following the linked next pages, we notice that some steps of the procedures
have multiple ways of being executed, and those ways are added one after the
other. For steps, with similar naming, suggesting they describe the same step,
like: “Download Components from SAP Service Marketplace Using the SAP
HANA Studio” and “Download Components from SAP Support Portal Using

188

the Web User Interface”, we can try and implement some logic to deduce they
are the same step, for example a variation of TF-IDF and cosine similarity. One
major issue with that however would be that steps like “Before updating” and
“Updating” would get similar rates. Therefore, working with a combination of a
step title and description can be benefi cial.

Unlike the next pages where the link was always part of the same tag object
in the same place, the procedure steps are placed in different parts of the pages,
depending on the existence of prerequisites or paragraphs before and after. While
the structure varies, in the observed pages of documentation, a rule of thumb
is that the name Procedure is added in some tag and the steps themselves are
organized as an organized list, or in other words the … tag.

2.5 Objects and data structures

The documentation already has a tree structure, translating this into computer
logic is trivial; the question is how useful said tree would be. What we notice
is that we rely on properly designing the tree, and representing each step on its
rightful level, as optional steps positioning in the tree structure is not always
clear. They may need to be executed at an exact time, therefore being represented
as a level on their own, which makes skipping over them a case to be covered
or they could be on the same level as a mandatory step. Additionally, according
to our defi nition of optional, having multiple ways described, for the same step,
makes all of those pages - optional steps, yet choosing one of them is mandatory.
If we consider the user’s perspective, it would be better to see all options and let
an actual person judge their similarity instead of arbitrarily miss clearly linked
steps.

As the functionalities are implemented, it becomes clear that in most cases
representing the tree as a stack is quicker and easier to work with. To construct
the aforementioned stack, each html fi le is represented as an object with a few
properties. We have added the property name, which allows us to introduce a
naming convention and distinguish between the origins of the object. Whether it
is a procedure step, its deriving is not currently implemented, or a general step
that points to a new documentation page derived from a related link or a next step.
The property url, contains the URL used to access this page, with the addition
of several checks it ensures that we don’t create a cycle in the tree of steps, the
properties question and fl ag are related to the previously explained algorithm,
used to compile the necessary documentation pages. In the cases where we have
an optional step, we generate the question needed to defi ne its execution. For
example, while parsing the paragraphs, if we come across a conditional statement,
we transform it to a question that is then carried with the object. The existence
of that question is the defi ning factor of its optional nature. In the case where the

189

paragraph has the “If you need… statement”, that related link would be added
with the question “Do you need. An important thing to note is that all questions
are formed in the way that a positive user reply would indicate the execution of
said step, while a negative one would skip it.

2.6 Response algorithm

The SAP Conversational AI platform can consume responses from the backend
as long as they abide to the specifi ed format [3]. The backend sends the message
in a JSON format, specifying the type (e.g. text, picture, buttons, etc.), we use this
to return the next step, that should be executed.
After the update intent has been recognized, the platform calls the webhook
that constructs the stack of steps, by the target version available. Afterwards
the backend returns to the chatbot itself and waits for confi rmation that the user
would like to be guided through the procedure.

There are two states recognized afterwards, the user gave a positive reply
and the user gave a negative one. Both states have an entity defi ned and a skill.
In addition, we introduce in the backend-maintained objects the properties
procedureFlag and the procedureQuestion. Both are True/False fl ags with different
purpose. The procedureFlag indicates whether the agent detects Procedure steps
in the next page. It is based on that the decision to propose said breakdown is
made. On the other hand, the procedureQuestion is equivalent to the questionFlag,
as it shows that we already asked this question and should now process the reply.

All steps are currently kept in a stack, the simplest logic being that once we
provide a step, we pop it from the stack. There are several cases when the user
gives a positive answer and the chatbot needs to make the corresponding decision.

The fi rst one is the user just executed step n and is now confi rming they would
like to continue by receiving information regarding step n+1, however that step
could be an optional one or a mandatory one. As we previously outlined optional
steps are distinguished by the existence of a question in their object description.
Therefore, in this case we need to provide the next step if it is mandatory and
pop the stack or ask the question of the optional step and leave the stack as it is.
Since we leave, the stack as it is there is no way to differentiate this case from the
second one, which is why we raise the questionFlag.

The second one is the user has executed step n and step n+1 is an optional
one. The positive reply is in response to the question of the optional step, as we
know from the convention applied when forming the question this indicates, the
step will be executed, and we proceed as if it is mandatory. To deduce that the
question has been asked we check the questionFlag, an optional step with a false
fl ag needs to provide the user its question, while an optional step with a true fl ag
would adopt behavior dependent on the user input.

190

The logic for a negative reply is similar; we start by checking if there are any
steps left in the stack, as the last one could have been optional. Afterwards the
user may be replying to the question of the optional step or choosing to stay on
the current step and ask for additional help.

Every time we introduce procedure steps for execution, we merge a list of
them with the current list of steps. To do that said steps need to be represented
as HTMLObjects, yet we would like to differentiate and not just by name. As a
compromise, we create the objects with the URL of their page and we add the
actual procedure step in the title property, as anyways in the already implemented
response algorithm we provide the user with the page titles and a link to see them
in the offi cial documentation.

2.7 Architecture

Fig. 3. Architecture of the HUG bot.

1. The user interacts using a communication channel of choice, currently the
supported options are the SAP Conversational AI platform and Slack.

2. The request if forwarded to the bot connector in the platform.
3. The bot connector provides the message content to the intent recognition

component.
4. Recognizing the intent triggers the skill connected to it.
5. The skill calls a webhook to the on premise server, running on python and

fl ask
6. The server calls the SAP Help Portal, residing on the SAP Cloud Platform, to

get the documentation.
7. Based on the documentation a response is formed and returned from the

server to the bot connector.
8. The bot connector provides it to the communication channel, where the user

can see it.

191

3 Conclusion

This research strived to explore the already existing structured data in the world
around us, without changing it in any way and as this is the starting point for a
bigger discussion, there is no additional labeling or context added. Objectively
speaking, the process of cleaning and organizing knowledge is the most time and
resource-consuming task when working on a problem space in a specifi c industry.
In addition, while going for a one solution fi ts all approach sounds unrealistic,
there could be principles that are relevant across different industries.

To fi nd those principles we develop a conversational interface that uses the
already existing structured documentation to guide a user through a standard
technical maintenance process. To summarize our fi ndings, generating a procedure
from the existing documentation is dependent on the style and formatting of
the documentation. As usually that is done by humans, there are expected
inconsistencies, that only a machine can stumble upon, such as changing the
naming convention in the source page tags. To go around that and consume the
pages in their natural state, regardless of those inconsistencies, requires signifi cant
investment in text analysis, extending on the concepts, currently applied, for
example when detecting action items in mail communication. What was proven
with the HUG bot is that as long as the scope is kept narrow, we can rely on a
rule-based approach, reinforcing again the current positioning of conversational
agents, as described in the introduction. Comparing the effort needed to defi ne
the specifi c scope rules and implement them and the effort needed to invent new
algorithms handling profi ciently the recognition of actionable steps, with their
optionality in mind and preserving their order and priority, it is clear which would
be the quicker win from a business perspective.

Creating the user interface was simplifi ed by the existence of a framework as
SAP Conversational AI; however, it is obvious that chatbot creation, even when
aided by such tooling introduces a new way of thinking when designing software.
The entity, intent, skill trio is not specifi c to the SAP solution, instead it is the
current industry standard for platforms providing such capabilities. Therefore,
mapping the expectations of the interface and the capabilities of the procedure
generating functionality needs to be refl ected in the defi ned format a procedure
would be transferred from one side to the other.

In conclusion, creating a chatbot, that would guide a user through the lifecycle
management procedures of interest, provides a new style of user experience for
the target group, performing those operations, and is feasible with the current
technologies available. However, to ensure that the solution is production-ready
and suited to the business needs, it needs to be clearly positioned with the right
context provided, in the sense of user background, solution capabilities and brand
digital identity. To do so it needs to utilize the capabilities of conversational agents,

192

while keeping an open mind, concerning automation of the business logic. As
now, the effort for handing this over to a machine is still higher, when combined
with its error rate, than having a person manually defi ne this, especially in cases
where this business logic is executed only once, e.g. the HUG bot’s procedure
steps generation.

To go back to where we started, using such a solution would prove to be an
ethical issue. There is always the risk of problems and inconsistencies between
versions of documentation as it is written by humans. Introducing a procedure
guidance chatbot would improve the customer experience greatly as the fast
response from an authority would solve the instant gratifi cation problem and allow
for a more latent customer, since the most common issues can be described there.
However, documentation is prone to human errors and the chatbot would not be
able to recognize those and instead of helpful, will prove harmful. In addition,
while this is a risk to be calculated on a case-by-case basis, it is undisputed that
there was no need for a new data model, another restructure or re-tagging of the
documentation to resolve this lightweight case.

References
 Palanica A, Flaschner P, Thommandram A, Li M, Fossat Y, Physicians’ Perceptions of Chatbots

in Health Care: Cross-Sectional Web-Based Survey, J Med Internet Res 2019;21(4):e12887,
DOI: 10.2196/12887, PMID: 30950796, PMCID: 6473203

2. Baron, J., 2018. Why You Need To Automate Your Customer Support With Chatbots, https://
cai.tools.sap/blog/customer-support/, last accessed 2020/04/21.

3. SAP Conversational AI, 2018. Offi cial documentation, https://sapconversationalai.github.io/
docs/concepts/intent, last accessed 2020/04/21.

