
193

Multi-threaded Approach for Generation of Random 
Boolean Networks

Nikolay Shegunov1, Armyanov Peter1 and Ivanov Ivan2

1 Faculty of Mathematics and Informatics, University of Sofi a, Sofi a, Bulgaria

2 Veterinary Physiology & Pharmacology, Texas A&M University, College Station, USA

���������	
���
�����
�����

Abstract. The concept of Boolean networks (BNs), as a way to model a gene 
regulatory network, is often used to represent the dynamical properties of gene-
gene interactions. Although this dynamical system is a simplifi ed model of gene-
gene interactions, it is particularly useful when the participating in the model genes 
exhibit a switch-like behavior. The successful application of this model to real 
data depends on our understanding of the model’s properties. A typical study of 
BNs properties/features requires a reliable and fast generation of BNs that satisfy 
a specifi c set of constraints. In this paper, we describe an effi cient multi-threaded 
approach for generating of random BNs on N genes. Because the state space of 
the model grows exponentially with N, the generation of a large number of BNs 
that satisfy certain constraints requires a huge computational effort. With the recent 
advances of computer science, the problem of effi ciently generating a large sample 
of such networks and study the statistics of their features becomes even more 
relevant. Our novel multi-threaded approach for simulation and generation of BNs 
allows estimating the model’s mean attractor length, the average Boolean function 
bias and network connectivity of large samples of randomly generated networks in 
a parallel manner.

Keywords: random boolean networks, parallel generation, multi-threading.

1 Introduction

Stuart Kaufman pioneered the idea to use Boolean networks (BNs) as a model 
of a gene regulatory network in 1963. Boolean networks are an example of a 
discrete dynamical system. The model consists of a set of genes/nodes, that take 
one of the possible discrete values 0 or 1, and connections between them. Each 
gene value is updated synchronously according to its assigned Boolean function 
and the current state of the model. Each such Boolean function is consistent 
with the number of edges entering the respective gene in the gene connectivity 

�����������������
����������������������
���������������������
�����
�������������������������������
��������� �����������!�"���#$����%�



194

directed graph. The Boolean model is also often referred to as the N−K model 
where N is the number of genes and K represents the connectivity of the network 
[2]. Studying the behavior of the corresponding dynamical system can uncover 
fundamental principles of regulation of living systems or assist in the development 
of new gene-targeted therapies.

In this paper, we focus on random Boolean networks where the model 
instances are randomly selected from the set of all possible networks of a given 
N−K class. The ability to generate large samples of random BNs allows for 
proper statistical studies of the model’s general features, e.g. average Boolean 
function bias and network connectivity or attractor length [1]. Of a particular 
interest are those networks that have a relatively low connectivity - at the range of 
square root of the number of the participating genes, where a transition between 
a chaotic and ordered regime states occurs [2]. The generation and statistical 
description of these complex random systems is quite challenging. It requires a 
huge computational effort. For example, consider a network with only 64 genes. 
BNs from this general class have 264 states and 2264 possible Boolean functions, 
which emphasizes the importance of a careful computer memory and CPU 
management when studying the general structural and dynamical properties of 
the class. Our approach to address these issues is based on a shared memory 
model. It speed up of the simulation of random BNs and can be easily extended 
to a distributed memory.

The paper is organized as follows:
 The general mathematical setting of the N−K model including the defi ni-

tion of the state transition diagram is presented and discussed in section 
2;

 Section 3 focuses on the generation of random BNs and the properties of 
that task that allow for parallel implementation;

 Finally, section 4 presents result from our limited simulations.

2 Mathematical setting

A Boolean network is a pair (V, F) where V can be mathematically represented by 
a directed graph. In that graph, each node represents a gene. Each gene has only 
two possible states: either enabled (1) or disabled (0). Each gene can be infl uenced 
by other genes and the second component F of the model accounts for this. F is 
a vector of Boolean functions where each one of those functions is assigned to a 
unique node, i.e. F has as many components as the number of genes in V. Each 
respective Boolean function in F takes the values of the genes that have directed 
edges in V pointing to the gene function assigned to and returns the state of the 
assigned gene given the current states of those inputs. Each gene in V is updated 
synchronously according to the functions in F. As discrete objects, the Boolean 



195

functions are completely described by their truth tables. Thus, randomly selecting 
a Boolean truth table is equivalent to randomly selecting a Boolean function. 
Since the truth table for the Boolean function that guides the state of a given gene 
is randomly selected it may turn out that some of the input parameters (genes) 
are not essential variables for that Boolean function, i.e. they do not infl uence the 
function’s output. Hence, the connectivity K parameter of the model is interpreted 
as the maximum number of infl uencing genes or incoming connections to any 
node in V. Viewing the Boolean networks as discrete dynamical systems, one 
can represent them as state transition diagrams. Each network has 2N possible 
states, where N is the number of genes. A state of the network is a vector of 
length N where each position i of this vector represents the state of gene i. Each 
state of the system transitions deterministically to its successor according to the 
Boolean functions in F. The totality of such transitions is a directed graph - the 
state transition diagram of the model. Being a directed graph, the state transition 
diagram can be easily encoded as a matrix - the state transition matrix where each 
row has all but one of its entries equal to 0. The only non-zero entry equals 1, 
which indicates the relation between the respective states in the dynamic of the 
model.

Using this general setting of random Boolean networks, we consider a set of 
tree fundamental model statistics in our simulations: (i) average function bias, 
(ii) average connectivity, and (iii) average attractor length. These statistics can 
be computed using the network’s state transition diagram; however, randomly 
generating the state transition diagram is quite challenging because of the 
constraints on the structure of the N−K model. Therefore, our simulation study 
fi rst focuses on N−K networks generation, and then computes the corresponding 
transition matrix. The approach is as follows:
 Select a non-negative integer value for the parameter N.
 Uniformly randomly pick a non-negative integer number for the connec-

tivity K in the range of (0, N].
 For the selected N−K class of networks randomly generate Boolean func-

tions, according to the connectivity parameter K.
 Finally, represent each generated network as a transition matrix and com-

pute the statistics (i), (ii), and (iii).

3 Parallel implementation

Our implementation consists of several steps. The fi rst one is the generation of a 
random N−K BN. The next step focuses on the calculation of the state-transition 
matrix. Then the three statistics of interest are calculated - the average network 
connectivity, average function bias and attractor length. These steps are then 
repeated to generate a large random sample from the respective N−K class and 



196

results for the three statistics are aggregated. During this repeated sampling, it may 
happen, that a generated sample have the same statistical properties as previously 
generated sample. Having two BNs with the same values for our three properties 
of interest does not necessarily imply that those BNs are identical. It could mean 
also that they are isomorphic, i.e. one of them can be transformed into the other 
by a proper relabeling of the genes and rearranging the Boolean functions. While 
the problem of identifying isomorphic BNs in the randomly generated sample is 
important on its own, we decided to allow the generation of BNs with identical 
statistics (i), (ii), and (iii) for our current simulation because our main objective is 
to study the parallel implementation of the generation algorithm.

Each one of the steps, except fi nding the average attractor length, can be easily 
implemented in a parallel manner. The most time-consuming part is the generation 
of random Boolean functions that satisfy the constraints of a given N−K class. 
Because of the synchronous update scheme of the network state the Boolean 
functions are considered independent from each other and their generation can 
be split into an arbitrary amount of parallel jobs. Similarly, calculation of the 
specifi c network connectivity and function bias can be split into independent jobs. 
The algorithm for calculating the attractor length is not trivial for parallelization; 
however, our simulations show that it runs much faster than all other steps and its 
parallelization does not appear to lead to a notable speedup. Taking all of these 
points into consideration, we implemented a code, that executes each step on 
several threads and the network samples are processed sequentially to compute: 
(i) average function bias, (ii) average connectivity, and (iii) average attractor 
length. Our simulations show that for networks, with N greater than 25, the 
parallel implementation speedup is nearly proportional to the number of threads 
used. Of course, the maximum number of threads have to be less than the number 
of available CPU cores. It is important to note that the proposed approach is not 
suitable for relatively small networks. It is not suitable for a computing system 
with a distributed memory is used. We propose a different approach for such 
cases. In particular, each step of our algorithm is executed on the same thread, 
but the individual samples/BNs are processed in parallel on separate threads. 
This modifi cation of the implementation leads to speedup, nearly proportional 
to the number of CPU cores when generating a large number of samples from a 
given N−K class. It is clear that this approach requires that each thread have to 
build its own network model, which consumes large part of the shared system 
memory. Thus, we recommend out modifi ed approach for experiments with large 
number of samples drawn from a N−K classes with a relatively small N; or when 
calculations are executed on system with distributed memory, e.g. using an MPI 
framework. Currently, we have implemented only the shared-memory approach, 
using a thread pool where the tasks are split in one of the two possible ways:

 Proportional to their size. This is relatively easy to implement with 



197

OpenMP or with classical threads, organized in a pool. Note, that this 
approach is suitable when all the jobs have similar length.

 Create small, independent jobs and place them in a queue where each 
thread of the pool takes a job from, processes it and then proceeds to take 
another one. This approach is suitable in cases of signifi cant differences 
in the jobs’ length.

The steps of network generation and calculating the function bias result in jobs 
with same size for a set of given network parameters. However, the size of the 
job for the step of calculating the network connectivity can vary signifi cantly for 
different sizes of network samples. Our simulations seem to confi rm this: using 
24 threads to generate 10000 samples, the difference between the slowest and 
the fastest thread is approximately 4.03 seconds - close to the average time for 
computing a single sample - 4.05. Interestingly, the thread with least number of 
samples processed 413 samples while the thread with largest number of samples 
processes 422 samples. Note, that the average number of samples, if distributed 
equally, is 416.

4 Results

Fig. 1 presents the results from a simulation of 90000 random samples for Boolean 
networks with size N=20. Based on the randomness of the generation and the 
large size of the sample, one would expect approximately normal distribution of 
the parameters of the networks in the sample, a feature that is clearly manifested. 
Networks with average bias close to 0.5 have approximately the same number 
of zeros and ones in their Boolean functions truth tables and exhibit larger 
connectivity. In addition, the binary logic dictates that the results should be 
symmetrical with respect to the 0.5 bias. Similarly, the average attractor length 
is also strongly coupled with the bias. Function bias close to 0.5 means larger 
probability of a connection between genes, and potentially longer cycles in the 
state transition graph.

Fig. 1. 20 Gene RBN generation, 90000 samples



198

Fig. 2 presents our results concerning the strong scaling behavior of the 
problem. The proposed algorithm achieves a good scaling behavior taking 
into account the small sample size. The diagonal black line gives the potential 
theoretical speedup, while the red and the blue lines represent the actual 
experimental speedup. Clearly, the tread pool approach provides very good scaling 
of the problem. However, the random nature of the network sampling leads to a 
great variability in the time for computing the attractor length and connectivity. 
Thus, a pre-determined load on a thread is not feasible. The disadvantages, of 
this approach are the price for creating and spawning threads and the lack of a 
guarantee that the jobs will be optimally distributed.

Fig. 2. Parallel performance

5 Conclusions

The proposed parallel approach for generation of random BNs, i.e. the job queue 
parallelism, gives promising results as our limited simulation study shows. Our 
experiments suggest that simply distributing the samples equally among all 
threads is not suffi cient - it does not provide reliable allocation of the resources 
due to the variable job length. We believe that an approach based on a job queue 
parallelism should also be considered for implementations involving distributed 
memory.

Our simulations confi rm the expectation that the generation of the random 
truth tables tends to be an expensive operation: the time spent for it dominates the 
computational time for BNs with a relatively small number of genes. One could 
potentially try to speed up the implementation by using the GPU architecture and 
moving the job of generation the networks to the GPUs.



199

References
 Gershenson, C.: Introduction to Random Boolean Networks. arXiv:nlin/0408006.
 Kauffman, S. A.: Origins of Order: Self-Organization and Selection in Evolution. Oxford Univ. 

Press, Oxford (1993). 
 Shmulevich I., Dougherty E.R., Kim S., Zhang W.: Probabilistic Boolean Networks: a rule-

based uncertainty model for gene regulatory networks. Bioinformatics 18 (2) : pp 261-274. 
(2002)

 Pal R., Ivanov I., Datta A., Bittner M.L., Dougherty E.R: Generating Boolean networks with a 
prescribed attractor structure. Bioinformatics 21 (21) : pp 4021-4025. (2005)


