
214

A Modular Approach to Distributed Caching

Martin Kostov and Kalinka Kaloyanova

Faculty of Mathematics and Informatics, University of Sofi a St. Kliment Ohridski
5 James Bourchier Blvd., 1164, Sofi a, Bulgaria

kkaloyanova@fmi.uni-sofi a.bg

Abstract. It is essential today organizations to have fast and stable access to
information stored in different sources. Last generation of in-memory database
demonstrates much better productivity in data processing compared to classical
relational database management system. In this paper, an approach for modular
distributed caching is proposed. The approach is based on a modular layered
architecture, which extends the primary relational based systems and will make
it possible to increase the speed of queries processing. Some tests based on a
prototype are performed and discussed.

Keywords: database, cashing, distributed cache, modular architecture.

1 Introduction

 Despite the great achievements in modern database development, several issues
related to data processing have not yet been adequately addressed. For example,
the optimization of the processing data from large distributed data sets is still a
main challenge for many applications.

In this paper, we propose an approach for processing large data sets located
in different database management systems (DBMS) based on the distributed
modular cache [1]. The proposed modular model could operate in the memory
of different types of confi gurations. It could be implemented into existing
applications or deployed as a standalone cluster of applications, which can take
the data queries. Theoretically, the data can be pre-fetched from different sources,
but our focus will be on the relational database management systems (RDBMS)
due to their widespread use. Our main goal is to provide a way for improving the
performance of existing systems in order to keep them usable when they have to
transfer large amounts of data coming from different sources [17].

2 Related Works

At the time of the introduction of RDBMS, the number of processed requests
was much smaller than now. Nowadays RDBMS are attempting to overcome this
challenge [2]. All modern solutions have introduced asynchronous replication,

��������	
�
��
���
	���
�����
��
�	�
��	�����
���
�����		��
�����

����	���
�������
�������
�		����	���
��
��	����	�����
 ��
!"
��#�

215

which reduces the level of consistency [3]. They also support memory tables that
are completely stored in memory and queries do not need to access data on the
hard disks.

Furthermore, many query optimization problems were addressed with the
introduction of NoSQL solutions [8]. They try to respond to the queries faster
with greater throughput. Such an example is Streaming SQL for Apache Kafka
(KSQL) [18]. Another viable decision is RethinkDB [4]. It uses streaming
approach [12], [13] - once a request is processed, the database is responsible
to generate new responses for each change, which affects records matching the
request conditions. In the following sections of this paper with our modular
approach, we propose an extension of this decision.

3 Modular Model

In this section, we defi ne a model that practically works as a lightweight DBMS.
We will present the structure of the model (Fig.1). It is based on layers and we
will discuss several use cases of the application of this caching model.

Fig 1. Fundamental layers used to build modular distributed cache.

The proposed model consists of fi ve layers all of which are described in more
details below.

216

Loading layer (LL) is the layer that loads the data from a data source. The
load strategies are RDBMS independent [13], so they can work across different
systems with different DB drivers responsible for creating DB specifi c queries.
The strategies supported by the LL include:

 Updatable Immutable – in the initial load includes everything that
will be processed. Afterwards we only load newly added rows. The
modifi cation of existing rows is prohibited.

 Updatable – it is the same as Updatable Immutable, with the exception
that the modifi cation of existing rows generates updates.

 Full Updates – we do not load updates. In a scheduled manner all data
is loaded.

In terms of performance, the immutable way is the fastest, while full update
shows the only case with worst performance.

Streaming layer (SL) is responsible for generating standard stream from the
data retrieved by LL. We have the ability to use different streaming providers,
from in-memory to third party like Kafka [5] or RabbitMQ [6]. This is the
scalability layer of our distributed cache. With the introduction of this layer, we
may support the work of two identical applications A and B. Application A can
load its data from a RDBMS, and application B can load the very same data from
a Steam. The behavior of these two applications is identical. With the stream,
we can have easily geo-located applications, which load the data from a geo-
distributed stream [8]. In such case, we do not need to distribute our centralized
database to each location in order to have instant response times [11].

Processing layer (PL) - once we have all the changes as a stream, the PL is a
direct binding to the defi ned SL. We are subscribing with some sort of condition
(a query). In this layer, the data is stored in appropriate data structures. We have
clustered indexes, which sort and store the data rows in a dictionary like structure
based on their primary key values. We also provide standard non-clustered
indexes where key value entry has a pointer to a clustered entry.

Statistics Layer (StL) - this layer is responsible for storing all information
for the queries – the execution plan, how long a query was executing, etc. This
layer will support asynchronous indexation, which means it will be able to create
indexes in the background. In addition, using statistics indexes can be created on
“hot” columns, which are responsible for slow queries. In this layer, we analyze
the queries from the Querying layer and store statistics for them. These statistics
are used in the processing layer to update the indexation.

Querying Layer (QL) is responsible for queries answering. This layer exposes
SQL like language as a tool to the users, but it is not full implementation with
some differences. The following shows an example query:

/query?select=*&from=MyData&where=Id=1&take=100 (1)

217

Select and from clauses are required, while where and take clauses are not
mandatory. Join operations are also supported as they are standard. The layer
is restful oriented and as such, order of parameters is irrelevant. In addition, it
is possible to query statistics gathered by the SL automatic indexation on “hot”
columns responsible for slow queries. Our prototype can work inside existing
application, in this scenario Language Integrated Query (LINQ) [16] can be used
in the application.

4 Typical Use Cases

Web application, web service, worker service, etc. usually read data from multiple
different RDBMS. We exclude the trivial case where these RDBMS can be linked
together if they are from the same provider. If the databases cannot be linked,
the application must retrieve the data from all the different sources, after which
it must produce the desired result. In this case, the developer must manually
provide standard SQL operations like join, fi lter or group.

In some scenarios, the application needs to react to fi ltered data. Legacy
applications tend to work with direct reads. There are already load balancers
like Nginx [10], which help with the distribution of web applications, with their
help one monolithic site can have hundreds of instances behind the same domain
name. Unfortunately, RDBMS do not scale well in this situation.

In the case where the large amount of data cannot be loaded from all applications
simultaneously, we can have dedicated application, which is exposing its Query
Layer restfully. In this way, we can combine and use different combination of
layers in different places.

In the next fi gures, we can see two different confi gurations. In Fig. 2a one
module, which contains all the layers inside, is presented. In Fig 2b we have three
modules. The difference between the two confi gurations is that DB1 and DB2 in
the second one may be from different vendor, so different DB Drivers must be
used. One of them is responsible for storing the data. The other two modules are
responsible for loading and streaming the data.

These most trivial use cases could be resolved using the cache model.

218

Fig. 2a. Single Module Confi guration Fig. 2b. Multi Module Confi guration

5 Results and Discussions

A prototype of the caching model has been developed. Several tests have been
performed. The tests implement the case, are shown in Fig. 2a.

Because of the limited functionality implemented in the prototype, the
focus of the tests is to provide information on how well the prototype of the
caching layer is working in high load scenarios, and how fast it is responding in
comparison with similar products. The obtained results are compared to several
NoSQL and RDBMS decisions.

5.1. Testing platform

The prototype is based on .NET Core version 3.1 framework [14]. In the prototype
we have implemented SL with Apache Kafka [5] driver for streaming.

 Testing tool: BenchmarkDotNet=v0.11.5
 OS: Windows 10.0.17134.885 (1803/April2018Update/Redstone4)
 CPU 3.60GHz 8 logical and 4 physical cores
 Memory: 2x8GB dual-channel 2400Mhz
 SDK: .NET Core SDK=3.1.201
 Our Prototype: 0.2.1
 Redis: 5.0.5
 SqlServer: 2017 Express Edition
 PostgreSql: 11.4

219

5.2. Dataset

The dataset, used for the tests is obtained from the IMDB movies database. The
name of the set is title.basics.tsv.gz [9] and it contains information about fi lms
and their details. The information in the dataset includes:

 tconst (string) - alphanumeric unique identifi er of the title
 titleType (string) – the format of the title
 primaryTitle (string) – the most popular title
 originalTitle (string) - original title, in the original language
 startYear (YYYY) – represents the release year of the title
 endYear (YYYY) – TV Series end year. ‘\N’ for all other title types
 runtimeMinutes – primary runtime of the title, in minutes
 genres (string array) – includes up to three genres associated with the title

Since the dataset is updated daily, we must mention that our tests were
provided over the version from 09 July 2019 when the total number of movies
inside the dataset was 9,439,923 [9].

5.3. Results Summary

In Table 1, the results summary for getting random row by primary key is
presented. The numbers show the amount of time required to obtain an item by
its primary key. The keys are randomly generated numbers from 1 to 1 000 000,
and this is repeated 1 000 000 times. The databases and the tested applications
were deployed in the same virtual machine, so the network delay is minimal.

Table 1. Results summary

Cache Mean Error StdDev Median Ratio RatioSD
Prototype 680.2 us 16.61 us 48.98 us 680.6 us 1.00 0.00

MSIM 1,093.9 us 110.24 us 325.06 us 1,003.1 us 1.61 0.48
Redis 2,635.7 us 54.26 us 117.95 us 2,634.1 us 3.87 0.30

SqlServer 2,909.4 us 57.75 us 150.09 us 2,871.8 us 4.28 0.37
PostgreSql 4,979.1 us 152.02 us 428.78 us 4,901.0 ms 7.32 0.81

Mean: Arithmetic mean of all measurements
Error: Half of 99.9% confi dence interval
StdDev: Standard deviation of all measurements
Median: Value separating the higher half of all measurements (50th
percentile)
Ratio: Mean of the ratio distribution ([Current]/[Baseline])
RatioSD: Standard deviation of the ratio distribution ([Current]/[Baseline])

220

The prototype of our modular distributed cache is set to be the baseline for
the ratio calculations. Several solutions are involved in the comparison: Redis
– a general-purpose in-memory database, the Microsoft in-memory (MSIM)
implementation [15], Redix and two relational DBMS – SQL Server and
PostgreSQL.

The results show that the prototype model is very stable and fast. It is 61%
faster than the closest solution, provided by MSIM and more than 3 times faster
than Redix. Th e execution times of relational databases are highest, as expected.

5.4. Detailed Results

In Fig. 3, we can see the response histogram from the work of our prototype.
The prototype was able to respond faster to the other contenders, even faster than
application in-memory cache, because of better primary key usage. In general, the
response time is stable, and the deviation is very small. In 1% of the responses,
the time required by our prototype was less than 533.699 us. In addition, we
have the stabilization in the interval between 628.364 us and 730.890 us. In this
interval, we answered up to 75% of the requests. Moreover, the slowest 1% of the
queries took more than 782.933 us.

Fig. 3. Prototype Response Histogram

The primary difference between our solution and the one, implemented via
in-memory cache, is that instead of general-purpose implementation which use
GUID as a key, our solution uses a generic key, which in our movie dataset is
of type int64 (long). In addition, this is the main reason for the difference in the
response time. Redis is proven stable in its performance and we can see it in the
histogram below.

221

As shown in Fig. 4 the response histogram from Redis cache implementation
is similar. Redis had stable interval between 2.372ms and 2.836ms where 96%
requests were. Only 4% were outside of the interval.

Fig. 4. Redis Response Histogram

6 Conclusions

In this paper, we propose a model for distributed processing of data retrieved
from multiple different RDBMS. We are combining the data into standardized
stream. To work effectively with this stream, we propose a specifi c toolset, which
is RDBMS independent and this tool could be shared between different data
providers.

Indexing data in memory reduces the response time for complex queries.
Processing data streams from a constant fl ow in the background, enables us
to have a stable solution with predictable and low latencies over time. Using
predefi ned modular deployments in a cluster helps us to scale the number of
streams reading applications very well, without a direct performance penalty on
the primary RDBMS.

Having the stream of data provides unique opportunity to the users, because
now they can use it with all available tools for the specifi c streaming provider.

Further testing may include comparison of our prototype with different
streaming providers.

222

Acknowledgements

This research was supported by the project BG05M2OP001-1.001-0004
Universities for Science, Informatics and Technologies in the e-Society (UNITe)
and the project “GloBIG: A Model of Integration of Cloud Framework for Hybrid
Massive Parallelism and its Application for Analysis and Automated Semantic
Enhancement of Big Heterogeneous Data Collections”, contract DN02/9/2016.

References
1. Modular Distributed Caching, https://github.com/KostovMartin/Cache.Collections/tree/0.1.0
2. Dimitrov V, Data Structures in Initial Version of Relational Model of Data, In Proc. of Seventh

International Conference Information Systems & Grid Technologies, Sofi a, Bulgaria, 2013,
pp:365-369

3. Werner Vogels. Eventually consistent. Communications of the ACM, January 2009 vol. 52, no.
1, Doi:10.1145/1435417.143543

4. RethinkDB. https://rethinkdb.com/docs/architecture
5. Kafka. https://kafka.apache.org/uses
6. RabbitMQ. https://www.rabbitmq.com/#features
7. Redis. https://redis.io/modules
8. Anil Pacaci, M. Tamer Özsu. Distribution-Aware Stream Partitioning for Distributed Stream

Processing Systems. Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and
Systems for MapReduce and Beyond. June 2018. Article No 6. Pages 1–10. https://doi.
org/10.1145/3206333.3206338

9. IMDb Dataset with information for titles. https://datasets.imdbws.com/title.basics.tsv.gz
10. NGINX. https://docs.nginx.com
11. Michael Armbrust, Tathagata, Joseph Torres. Structured Streaming: A Declarative API for

Real-Time Applications in Apache Spark. ACM. SIGMOD ‘18: Proceedings of the 2018
International Conference on Management of Data. May 2018. Pages 601–613. https://doi.
org/10.1145/3183713.3190664

12. Javed M. Haseeb, Xiaoyi Lu, Dhabaleswar K. (DK) Panda. Characterization of Big Data Stream
Processing Pipeline: A Case Study using Flink and Kafka, In the Proceedings of the Fourth
IEEE/ACM International Conference on Big Data Computing, Applications and Technologies,
2017. pp. 1–10. https://doi.org/10.1145/3148055.3148068

13. Nori Anil K. Distributed caching platforms. Proceedings of the VLDB Endowment, Vol.3, Issue
1-2, 2010. https://doi.org/10.14778/1920841.1921062

14. BenchmarkDotNet. https://github.com/dotnet/BenchmarkDotNet
15. Distributed Memory Cache. https://docs.microsoft.com/en-us/aspnet/core/performance/

caching/distributed?view=aspnetcore-3.1#distributed-memory-cache
16. Language Integrated Query (LINQ) https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/concepts/linq/
17. Kuppili Venkata, S., Musialy K., Sub-query Fragmentation for Query Analysis and Data

Caching in the Distributed Environment, Preprints 2019, 2019100054
18. Introducing KSQL: Streaming SQL for Apache Kafka, https://www.confl uent.io/blog/ksql-

streaming-sql-for-apache-kafka/

