
223

A System for Compression of Sequencing Data

Boryana Pulova-Mihaylova, Iliyan Mihaylov, Irena Avdjieva, and Dimitar Vassilev

FMI, University of Sofi a St. Kliment Ohridski, 5 James Bourchier Blvd., Sofi a 1164, Bulgaria

����������		�
����������	������

Abstract. The development of genomic sequencing technologies is directly related
to the storage, analysis, visualization of huge amount of sequencing data. These
data, in terms of quantity and quality, are a huge challenge for modern computer
science and bioinformatics related to compression and decompression of huge
data sets. The present study is devoted to the development of models and their
implementation for compression of sequencing data.
The main aim of the work is to develop a web-based system for sequencing data
compression that provides opportunities for faster and more accurate compression
and decompression, noise protection and error correction.
For the purposes of this study, we developed models for compression and
decompression based on the methods of literal coding. The developed Optimized
algorithm is related to the well-known methods of Huffman and Shanon-Fano.
Also are developed a web-based module (with user interface), a library of noise
protection algorithms for the compression and decompression of omics data, and a
server component to make the library accessible on the Internet.
The implemented web module with user interface provides easy access to server
methods for compression and decompression of sequences. Used data formats
allows the module to be integrated with open access systems such as NCBI,
UniProt, Ensembl and other well-known external resources.

Keywords: Sequencing data, Compression, Noise protection, Web-based system.

1 Introduction

The introduction of high-throughput sequencing technologies is accompanied by
generation of large amounts of biological data. The trend of increasing sets of
biological sequence data is due to the following main reasons:

 The declining cost of genome sequencing provides conditions for even larger
projects related to increased requirements for analysis of such data.

 Increasing knowledge about the relationship between genotype and
phenotype creates enormous opportunities for more specifi c in-depth
research of genome, especially in the context of personalized medicine.

Sequencing platforms are advancing both in length of sequencing reads and
in speed of data generation [1].

�����������������������	������������	�������	���	������������������
���������������	������	�������������� ���!�����������
�"���#$� ��%�

224

Typically, storing and managing DNA data, or sequential data, is by encoded
ASCII characters, which results in one byte for each base. Although this storing
approach is wasteful in terms of space, since no compression is applied, many
experts in the analysis of such data are accustomed to this data format. Its
advantages are that it allows software applications and programming languages
easily to access data, and also it is easy readable by humans. Of course, the big
drawback of storing, analyzing and transferring data in this format is the need for
huge and expensive resources of computer memory.

The situation becomes much worse when not only ready-made sequenced
genomes are stored, but also raw data of a certain quality. Presently, storing
10,000 genomes is a work in progress, but the rapid pace of sequencing, as well
as new third-generation sequencing technologies, pose major challenges to the
data being generated. [2]

Most approaches for sequencing data compression are based on two of the
most popular algorithms in recent years - Shannon-Fano and Huffman. These
algorithms are compared to an optimized new version, developed in our study,
which we will hereafter refer to as the “Optimized Algorithm”, based on the theory
of literal codes, but with an improvement in code uniformity and compression
/ decompression speed. Huffman and Shannon-Fano’s algorithms result in
compression as a result of non-uniform code, the main disadvantage of which is
that it is prone to loss of information (in data transfer) and hence incorrect data
recovery. With the Optimized Algorithm, a uniform code is obtained, which would
easily identify the data loss and prevent the wrong data recovery. In addition, for
large volumes of data (long DNA / RNA sequences) compression by a uniform
code produces better results than a non-uniform compression.

2 Related work

There are several basic types of compression approaches according to the data
processing method. They have some features in common but they are quite
different both methodologically and in scope [3].

The main methods for compression of nucleotide sequencing data are based
on statistics and entropy - by exploiting compression algorithms using repetition
detection and consequence statistics [4]. The increasing number of re-sequenced
genomes has led to many new suggestions for compression algorithms. In general,
compression algorithms can be divided into bitwise encoding, vocabulary-based
compression, statistical and referential approaches.

Bitwise encoding - a compression algorithm that can process input strings
of any format. For the fi rst common DNA characters (A, C, G, T as well as N
(unknown)), seven bit encoding is used for three consecutive characters. Any
other non-standard character is encoded with seven bits per character. Up to 128

225

additional characters can be encoded in this way. The free eight bit distinguishes
whether a byte encodes three of the fi rst main characters or some other, specifi c
character [3].

Dictionary-based compression - performs with multiple iterations over the
input data. With each pass, it detects longer sequences and gradually enriches the
dictionary. The algorithm runs until the dictionary is changed or the frequency
threshold is reached. The created dictionary is used to encode DNA sequences
and is partially stored together with compressed data. This encoding allows
random access to the compressed DNA sequences [5].

Another approach is so-called tree-based compression [6]. Splay trees are
self-tuning binary search trees in which items that are last accessed are accessed
faster. This property can improve the performance when you encounter local
frequency changes. The methodology refers to the process of rearranging the
trees as a specifi c element is placed at the root of the tree. Like evolutionary
trees, symbols close to the root have shorter codes than symbols in other nodes.
Another problem is the unequal distribution of DNA across the genome. One
possible solution is to split the input of blocks and encode each block individually
using different Markov models [7].

In [8], a “gene-wise compressor” is proposed as a mean for encoding
non-repetitive portions of DNA sequences. In the initial implementation, the
probabilities of the characters are evaluated and the corresponding Huffman coding
is selected. The result is divided into blocks. Finally, each block is restructured
in a way that allows effi cient coding of the execution length to be used in the
fi nal step. Another approach is the input sequence is fragmented into blocks that
do not overlap. For each block, a set of agents competes for coding: a Markov
model, a two-bit base representation, and an approximate repetition that identifi es
repetitions interrupted by only a few SNPs (single nucleotide polymorphisms).
The model that broadcasts the shortest code length is selected and the compressed
output is subjected to additional arithmetic compression. Unfortunately, this
approach can handle only four main characters in the input sequences. A method
is proposed where non-repetitive regions are encoded as well as discrepancies
in repetitive regions or mutations like SNPs with arithmetical coder, based on
a Markov model. The resulting bit stream is split into blocks to allow random
access.

Mixed approach for compression: there are many variations and different
views and discussions in the literature. It is suggested that to store the differences
between the input compression sequence and the reference sequence [9]. They
look at three types of single based features: insert, delete, and replace. The main
contribution of their work is to analyze the process of encoding integers for
absolute and relative reference positions in the sequence. However, the authors
emphasize that the choice of reference sequence has a greater impact on the

226

compression ratio than the actual overall coding scheme. Similarly, other sources
present a compression reference algorithm that only accepts SNPs and many
basic INDELs between inputs and reference sequences. Each compression record
consists of a reference position and additional data such as coincidence length or
raw sequence.
Table 1. Compression algorithms comparison

Compression method Compression
Bitwise encoding 2:1 – 6:1
Dictionary-based compression 4:1 – 6:1
Statistical model 4:1 – 8:1
Mixed model 1:1 – 400:1

Once the sequence is compressed, it must be sent over the network. The
algorithms used for compression, namely Huffman, Shannon-Fano, and the
optimized algorithm, which belongs to the class of literal coding, are very
susceptible to errors. If even one bit is confused when transmitting network
information or reading to and from the recorder, restoring the correct sequence is
not possible. For this purpose, it is necessary to use error correction algorithms.
Literature sources cite noise protection algorithms as one of the most widely
used for this purpose [10]. They are applicable in all places where it is necessary
to correct errors at the lowest possible level (bitwise). In damping waves,
artifi cial intelligence models are also widely used in pattern recognition and error
correction in generated images. One of the most common algorithms is that of
Reed Mahler, suitable for data transmission in places where the connection is
poor or very weak [10].

The main goals of the work are: to present a new method for compression
of nucleotide sequencing data with improved performance, accuracy and noise
protection based on the known methods of Huffman, Shannon-Fano and Reed-
Miller, as well as to develop an interoperable and reusable software implementation
of the elaborated method.

3 Suggested methodology

The suggested compression approach in this study is based on coding and more
specifi cally on the Shannon-Fano and Huffman algorithms. The main idea behind
the Shannon-Fano and Huffman algorithms is to set a binary code to match each
of the characters in the input message (in our case bases in the input sequence).
The algorithm has the following characteristic properties:

 The length of the codes is variable (the code is uneven). Here is our fi rst
modifi cation of the algorithm, where the length of the codes is always the
same i.e. the compressed message has a uniform code. The sequences being

227

considered for compression are of the same length, and this comes from
the most used formats such as FASTA and FASTQ, where the length of
the sequence is always specifi ed, which could be used in advance to build
a classifi cation tree. Another feature of the code length is that when the
individual characters in the message are replaced with their corresponding
binary values, a compressed message of different sizes may be received. This
is because for each symbol, a different binary value is given, which in some
cases can be 1 and in others, it can be a combination of 0 and 1. For example,
for “A” a value of 11 can be calculated, for “T” - a value equal to 101, which
causes also change in the string size. This can be improved when using DNA
sequence data because they have a small number of characters that can be
encoded with equal length.

 The letters with higher probability are more likely to be encoded in fewer
bits than those with less likely ones. In addition, this is the next modifi cation
of the algorithm we suggest: an approach how to calculate the probability of
occurrence of individual characters in the message using frequency analysis,
which is the most time consuming process in this algorithm. In the case of
sequence compression, we make an improvement where there is no need to
perform frequency analysis because the characters included in the sequence
are countable small number. For DNA and RNA sequences, the symbols are
4 in number, for which mapping (aligning) has been prepared preliminary for
their respective binary sequences.

 The message shall be decoded unambiguously.
Advantages: When we encode the more common characters with shorter bit

sequences and the less common ones with longer bit sequences, we get better
results with respect to the length of the message being transmitted.

Disadvantages: A major disadvantage of uneven codes is their sensitivity
to wrong bits. For them, a wrong bit can cause the entire message to be decoded
incorrectly or impossible until the end. Whereas, with uniform codes, one wrong
bit causes only one character to be corrupted.

3.1 Building the optimal code

An optimized algorithm developed in the study, according to which sequences
based on the theory of optimal letter coding will be compressed has following
operational features:

 Sequence type recognition (RNA or DNA).
 Depending on the sequence, predefi ned binary values for each of the symbols

used in the sequence are selected - using the predefi ned values saves the

228

following procedures, which are necessary to construct the optimal code for
each arbitrary message in the Shannon-Fano algorithms and Huffman:

a The set of symbols of source A is arranged in order to reduce the
probability of message occurrence – pj

b The set of probabilities Pi is divided into two groups (p1, p2, …, pj) and
(pj+1, pj+2, …, pm), so that the difference shown below is minimal:

 (1)

c The characters whose probabilities are in the fi rst group are assigned with
the r-th code letter 0 and those in the second group are assigned with the r-th
code letter 1.

 For a single-element probability group, the procedure is completed, and
for each of the other groups in the multi-step procedure, the elements are
numbered from 1 to m and go recursively (r = r + 1) to step 2.

 Each of the characters in the sequence is replaced by the corresponding
binary entry.

Following the changes made to the Shannon-Fano algorithm and the Huffman
algorithm, all properties of the letter algorithms coming from the defi nitions and
theorems related to those algorithms retain, ignoring the steps for frequency
analysis and computation of the binary comparison tree.

Once the sequence is compressed, it can be stored or sent in a much smaller.
Reading the compressed sequence is another major problem with the Shannon-
Fano and Huffman algorithms. In the Optimized Algorithm suggested in this
study, this problem is solved by using a predefi ned coding tree. In Shannon-Fano
and Huffman’s algorithms, in order to decode a properly transmitted message,
it is necessary to have the same encoding tree generated when compressing the
message. The transfer of message for both algorithms consists of two parts - the
encoded message, and the coding tree so that the message can be read. These two
parts do not always need to be transferred together. Because algorithms can also
be used in the context of information security, where not everyone can decode the
message, i.e. not everyone should have a coding tree. In bioinformatics, this is an
important feature for working with sequences.

In the proposed method, only one has a coding tree. Each compressed /
encoded sequence can only be read by the same programming apparatus with
which it was compressed / encoded. This is because a unique hashing algorithm

229

is used to generate the coding tree in order to ensure the uniqueness of each
coding tree. Each sequence has its own encoding tree and can only be decoded /
decompressed by this encoding tree. This approach eliminates the shortcomings
of both Shannon-Fano and Huffman’s algorithms for decoding and protecting
information. In the proposed Optimized Approach, each of the characters will be
encoded with exactly 2 bits. As before the compression, each character occupied
8 bits, here is the fi rst place where we have a 1:4 compression. After applying the
algorithms, a compression of up to 1:400 can be achieved.

3.2 Compressing algorithm comparative analysis

The three algorithms’ coding/decoding abilities were tested with a 20-letter, 160-
bit sample DNA sequence: AACTTTGACGGTATACGCAA.

The Shannon-Fano and Huffman algorithms code the sample in three steps:
1) symbol frequency analysis, 2) grouping, 3) assigning each symbol a binary
code. Once the binary codes for each of the four symbols are assigned, a coding
binary tree is generated, resulting in coding the sequence as 41-bit string:

00110101010111011011111110010011011111000
Decoding requires the generated binary code and the coding tree, which is

traced from root to leaves depending on the input symbol – left path for 0 and
right – for 1.

The Optimized Algorithm omits the frequency calculation step an assigns a
two-digit bit code to each of the four symbols: A=00, C=01, G=11, T=10. This
coding table is static and does not need to be generated each time. Coding is done
by simple substitution, resulting in the following 40-bit string:

0000011010101100011111100010000111010000
Decoding the sequence requires the coded sequence and the static table, thus

omitting the need of a coding tree.
As shown in Table 2, the Optimised Method produces 5% less bit length than

Shanon-Fano and Huffman methods. The result code is also uniform, which may
prevent possible bit loss, while in uneven code such errors cannot be detected due
to different length of bits in coding sequence.
Table 2. Comparative analysis of compression algorithms

Coding method Input length Compressed length
Shannon-Fano 20 bases, 160 bits 41 bits
Huffman 20 bases, 160 bits 41 bits
Optimized method 20 bases, 160 bits 40 bits

3.3 Software realization and user interface

The application utilizes several platforms combined under Ubuntu Linux OS.
There are three main software components:

230

 User interface

 C++ library

 Programming adaptor to connect the library to an intermediate language

The user interface is based on Vue.js, Vuetifi e, node.js, and npm version
manager. Vue.js uses JavaScript templates to generate HTML in real time,
which allows the interface to work on different devises and different screen
resolutions, because each HTML is generated for the specifi c devise. Vuetifi eе
is a programming module that upgrades Vue.js by adding predefi ned templates.
Node.js allows JavaScript to be used as server provisioning method by dynamic
building in executable code. It provides the possibility to call each individual
HTML element in the user interface separately, and visualize the result when ready
– an approach called „reactive programming“. JavaScript was chosen because of
its compatibility with RESTful services and JSON data transfer format.

Version management of the used Vue.js, Vuetifi le and Node.js modules is
done by npm, which allows multiple storage for the modules to be registered, and
automatically detects and downloads them.

3.4 Choosing programming medium for the compression algorithms

C++ was chosen for the algorithms for literal and noise protection coding, for its
execution speed and lower memory usage, compared to other languages. It also
allows direct memory access, easy and intuitive realisation of bitwise operations
and lower-level resource management. These advantages make algorithms
written in C++ more optimal than C# and Java. This is one of the main reasons
to include connections between platforms in this application, because it utilises
both C++ and C#.

4 Results and Discussion

Our web-based application for sequence data compression is adapted for various
device screen resolutions – from mobile phone (375x812) and tablet (768z1024)
to 8k (7680x4320). The user interface is shown on Figure 1 (mobile devise).
Filed (B) allows the selection of fi le(s) to be compressed. The application accepts
FASTA and MULTIFASTA fi le formats, and one or multiple fi les can be selected,
thus allowing parallel compression. The selected fi les are listed as labels (A) in
fi eld (B), and can be deleted by pressing the “clear” symbol (C).

231

Fig. 1. User interface – File input fi eld (B) with one fi le uploaded (A) and confi rmation button (D)

Button (D) confi rms the query and shows how many fi les are selected for
compression. Then, the fi les are parsed to extract metadata such as sequence IDs,
fi le size (in bytes), and sequence length (in number of nucleotides).

For test compression, four sequences with different length from the Ensembl
database were saved as a single, multifasta fi le:
• ENST00000288602.11 - BRAF-201, B-Raf proto-oncogene serin/threonine kinase
• ENSE00001025715.1 chromosome:GRCh38:X:38317316:38317465:-1
• ENSE00001025717.1 chromosome:GRCh38:X:38321027:38321089:-1
• ENSG00000157764.13 chromosome: GRCh38:7:140719327:140924928:-1

Each sequence is compressed with the three algorithms, and the time needed
for compression is calculated. Figure 2 shows the result for each sequence in the
fi le as a separate, auto-expandable fi eld (Б). Each fi eld shows information about
the sequence:

Fig. 2. Visualization of compressed sequences

• Sequence name (A) – this is obtained from the FASTA format, and if
it matches a naming pattern from an entry in one of the public sequence
databases, a hyperlink to that entry is created

232

• Current sequence size [in bytes] (B) – this is the sum of the byte size of the
ASCII characters corresponding to the letters coding each nucleotide. Then,
depending on the sequence length, it is converted to the closest B, KB, MB,
GB of TB value by following the International Electrotechnical Commission
(IEC) standard where 1 KB = 1024 B.

• Drop-down arrow (Г) shows/hides detailed information about the compressed
sequence

• In the detailed fi eld, (Д) is the sequence name and size label, and by clicking
on it the original, uncompressed sequence is shown. (Ж) shows the sequence
after compression (E) by each of the three algorithms. Additionally, for each
algorithm, a summary of the size [bytes] and time [seconds] of compression
is shown.
In the current example, there is practically no difference in the compressed

sequence size between the three algorithms; considerable difference is seen when
compressing sequences of several GB in size.

Different access points on the server are used for each of the three sequence
compression algorithms. The calling for each algorithm is also parallelized for
each sequence, as seen in Figure 3:

Fig. 3. Parallel execution of queries for each compression algorithm

Another part of the server provides remote access to compression algorithms,
developed as libraries. The library is accessed either through the server or by
downloading and compiling it, thus making it usable by applications without
Internet access. The library can be used as a DLL from several high-level
programming languages, such as C# and Java.

During development, several compression algorithms were tested, and the
performance of each is summarized on Figure 4:

233

Fig. 4. Compression methods comparison: left vertical scale shows size in bits, right scale shows
time in milliseconds. Bars indicate the sequence size after compression, and line shows the time.

The illustrated above is based on the compression of a 9,219,726 byte
sequence, obtained from the public database Genome, part of NCBI. This is the
entire genome sequence of the bacteria Bradyrhizobium japonicum, which can be
accessed from Genome’s own FTP servers, or through the RefSeq database under
the ID NC_017249.1.

Six compression methods were applied to the sequence, including the already
discussed in this paper Shannon-Fano, Huffman, Optimized Algorithm. They were
compared to: 1) Zip algorithm, developed for compressing and archiving one or
multiple fi les; 2) Tar.xz – UNIX and Windows-based compression software that
allows no-loss compression; and 3) 7zip – open-source fi le archiving software.

The results clearly show the advantage of the fi rst three algorithms that utilize
bitwise coding, which result in a very similar performance, producing smaller
compressed fi le and are generally faster than the others (with the exception of
Zip).

Huffman and Shannon-Fano give similar results when working with DNA
sequences. This is due to the fact that DNA uses only 4-letter alphabet, thus
creating similar frequency analyses and overlapping trees with each of those
algorithms. The other three methods perform poorly due to them being versatile
for various data types and not having been optimized to work with sequences.

The main advantage of our Optimized Algorithm is the speed, because it
omits the multiple frequency calculations and tree generation of the other two.
It also performs better with sequence decompression, not needing to send or
store the compressed sequence tree. This results in faster and safer data transfer,
because a sequence-coding tree is also sensitive information in terms of software
security. All datasets, samples and the software realization itself, are available:
https://github.com/BroyanaPulova/DNA_compression_web
https://github.com/BroyanaPulova/DNA_compression

234

5 Conclusion

The Optimised Algorithm proposed here has been developed for sequence
data compression. It performs better in terms of speed, noise-reduction, and
compression size than similar methods such as Shannon-Fano and Huffman.
A library with these bitwise coding algorithms was created, with compression/
decompression methods for each. The library utilises low-level primitives so that
it can be re-used on various platforms.

The Optimised sequence compression algorithm was implemented in a
number of software products with web-based user interface that allows easy,
multi-device and multi-resolution access to the server. All components work in a
container-based environment, which allows fast and easy regulation.

Future work on this project is going to expand its abilities by adding more
compression algorithms, the ability to choose which one(s) to use, and updating
the library to work with more programming

Acknowledgements

This work is supported by the project “GloBIG: A Model of Integration of Cloud
Framework for Hybrid Massive Parallelism and its Application for Analysis and
Automated Semantic Enhancement of Big Heterogeneous Data Collections”;
contract DN02/9/2016.

References
[1] Kahn, S.D. (2011) On the future of genomic data. Science (80-.). https://doi.org/10.1126/

science.1197891
[2] Via, M., Gignoux, C. and Burchard, E.G. (2010) The 1000 Genomes Project: New opportunities

for research and social challenges. Genome Med. https://doi.org/10.1186/gm124
[3] Hudson, T.J., Anderson, W., Aretz, A., Barker, A.D., Bell, C., Bernabé, R.R. et al. (2010)

International network of cancer genome projects. Nature. https://doi.org/10.1038/nature08987
[4] Trelles, O., Prins, P., Snir, M. and Jansen, R.C. (2011) Big data, but are we ready? Nat. Rev.

Genet. https://doi.org/10.1038/nrg2857-c1
[5] Schadt, E.E., Turner, S. and Kasarskis, A. (2010) A window into third-generation sequencing.

Human Molecular Genetics,. https://doi.org/10.1093/hmg/ddq416
[6] Kuruppu, S., Beresford-Smith, B., Conway, T. and Zobel, J. (2012) Iterative dictionary

construction for compression of large DNA data sets. IEEE/ACM Transactions on
Computational Biology and Bioinformatics,. https://doi.org/10.1109/TCBB.2011.82

[7] Cao, M.D., Dix, T.I., Allison, L. and Mears, C. (2007) A simple statistical algorithm for
biological sequence compression. Data Compression Conference Proceedings,. https://doi.
org/10.1109/DCC.2007.7

[8] Antoniou, D., Theodoridis, E. and Tsakalidis, A. (2010) Compressing biological sequences
using self adjusting data structures. Proceedings of the IEEE/EMBS Region 8 International
Conference on Information Technology Applications in Biomedicine, ITAB,. https://doi.
org/10.1109/ITAB.2010.5687689

235

[9] Kaipa, K.K., Bopardikar, A.S., Abhilash, S., Venkataraman, P., Lee, K., Ahn, T. et al. (2010)
Algorithm for DNA sequence compression based on prediction of mismatch bases and repeat
location. 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops,
BIBMW 2010,. https://doi.org/10.1109/BIBMW.2010.5703941

[10] Pratas, D. and Pinho, A.J. (2011) Compressing the human genome using exclusively Markov
models. Advances in Intelligent and Soft Computing,. https://doi.org/10.1007/978-3-642-
19914-1_29

