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Abstract. The development of genomic sequencing technologies is directly related 
to the storage, analysis, visualization of huge amount of sequencing data. These 
data, in terms of quantity and quality, are a huge challenge for modern computer 
science and bioinformatics related to compression and decompression of huge 
data sets. The present study is devoted to the development of models and their 
implementation for compression of sequencing data.
The main aim of the work is to develop a web-based system for sequencing data 
compression that provides opportunities for faster and more accurate compression 
and decompression, noise protection and error correction.
For the purposes of this study, we developed models for compression and 
decompression based on the methods of literal coding. The developed Optimized 
algorithm is related to the well-known methods of Huffman and Shanon-Fano. 
Also are developed a web-based module (with user interface), a library of noise 
protection algorithms for the compression and decompression of omics data, and a 
server component to make the library accessible on the Internet.
The implemented web module with user interface provides easy access to server 
methods for compression and decompression of sequences. Used data formats 
allows the module to be integrated with open access systems such as NCBI, 
UniProt, Ensembl and other well-known external resources.
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1 Introduction

The introduction of high-throughput sequencing technologies is accompanied by 
generation of large amounts of biological data. The trend of increasing sets of 
biological sequence data is due to the following main reasons:

 The declining cost of genome sequencing provides conditions for even larger 
projects related to increased requirements for analysis of such data.

 Increasing knowledge about the relationship between genotype and 
phenotype creates enormous opportunities for more specifi c in-depth 
research of genome, especially in the context of personalized medicine.

Sequencing platforms are advancing both in length of sequencing reads and 
in speed of data generation [1].
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Typically, storing and managing DNA data, or sequential data, is by encoded 
ASCII characters, which results in one byte for each base. Although this storing 
approach is wasteful in terms of space, since no compression is applied, many 
experts in the analysis of such data are accustomed to this data format. Its 
advantages are that it allows software applications and programming languages 
easily to access data, and also it is easy readable by humans. Of course, the big 
drawback of storing, analyzing and transferring data in this format is the need for 
huge and expensive resources of computer memory.

The situation becomes much worse when not only ready-made sequenced 
genomes are stored, but also raw data of a certain quality. Presently, storing 
10,000 genomes is a work in progress, but the rapid pace of sequencing, as well 
as new third-generation sequencing technologies, pose major challenges to the 
data being generated. [2]

Most approaches for sequencing data compression are based on two of the 
most popular algorithms in recent years - Shannon-Fano and Huffman. These 
algorithms are compared to an optimized new version, developed in our study, 
which we will hereafter refer to as the “Optimized Algorithm”, based on the theory 
of literal codes, but with an improvement in code uniformity and compression 
/ decompression speed. Huffman and Shannon-Fano’s algorithms result in 
compression as a result of non-uniform code, the main disadvantage of which is 
that it is prone to loss of information (in data transfer) and hence incorrect data 
recovery. With the Optimized Algorithm, a uniform code is obtained, which would 
easily identify the data loss and prevent the wrong data recovery. In addition, for 
large volumes of data (long DNA / RNA sequences) compression by a uniform 
code produces better results than a non-uniform compression.

2 Related work

There are several basic types of compression approaches according to the data 
processing method. They have some features in common but they are quite 
different both methodologically and in scope [3].

The main methods for compression of nucleotide sequencing data are based 
on statistics and entropy - by exploiting compression algorithms using repetition 
detection and consequence statistics [4]. The increasing number of re-sequenced 
genomes has led to many new suggestions for compression algorithms. In general, 
compression algorithms can be divided into bitwise encoding, vocabulary-based 
compression, statistical and referential approaches. 

Bitwise encoding - a compression algorithm that can process input strings 
of any format. For the fi rst common DNA characters (A, C, G, T as well as N 
(unknown)), seven bit encoding is used for three consecutive characters. Any 
other non-standard character is encoded with seven bits per character. Up to 128 
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additional characters can be encoded in this way. The free eight bit distinguishes 
whether a byte encodes three of the fi rst main characters or some other, specifi c 
character [3]. 

Dictionary-based compression - performs with multiple iterations over the 
input data. With each pass, it detects longer sequences and gradually enriches the 
dictionary. The algorithm runs until the dictionary is changed or the frequency 
threshold is reached.  The created dictionary is used to encode DNA sequences 
and is partially stored together with compressed data. This encoding allows 
random access to the compressed DNA sequences [5].

Another approach is so-called tree-based compression [6]. Splay trees are 
self-tuning binary search trees in which items that are last accessed are accessed 
faster. This property can improve the performance when you encounter local 
frequency changes. The methodology refers to the process of rearranging the 
trees as a specifi c element is placed at the root of the tree. Like evolutionary 
trees, symbols close to the root have shorter codes than symbols in other nodes. 
Another problem is the unequal distribution of DNA across the genome. One 
possible solution is to split the input of blocks and encode each block individually 
using different Markov models [7].

In [8], a “gene-wise compressor” is proposed as a mean for encoding 
non-repetitive portions of DNA sequences. In the initial implementation, the 
probabilities of the characters are evaluated and the corresponding Huffman coding 
is selected. The result is divided into blocks. Finally, each block is restructured 
in a way that allows effi cient coding of the execution length to be used in the 
fi nal step. Another approach is the input sequence is fragmented into blocks that 
do not overlap. For each block, a set of agents competes for coding: a Markov 
model, a two-bit base representation, and an approximate repetition that identifi es 
repetitions interrupted by only a few SNPs (single nucleotide polymorphisms). 
The model that broadcasts the shortest code length is selected and the compressed 
output is subjected to additional arithmetic compression. Unfortunately, this 
approach can handle only four main characters in the input sequences. A method 
is proposed where non-repetitive regions are encoded as well as discrepancies 
in repetitive regions or mutations like SNPs with arithmetical coder, based on 
a Markov model. The resulting bit stream is split into blocks to allow random 
access.

Mixed approach for compression: there are many variations and different 
views and discussions in the literature. It is suggested that to store the differences 
between the input compression sequence and the reference sequence [9]. They 
look at three types of single based features: insert, delete, and replace. The main 
contribution of their work is to analyze the process of encoding integers for 
absolute and relative reference positions in the sequence. However, the authors 
emphasize that the choice of reference sequence has a greater impact on the 
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compression ratio than the actual overall coding scheme. Similarly, other sources 
present a compression reference algorithm that only accepts SNPs and many 
basic INDELs between inputs and reference sequences. Each compression record 
consists of a reference position and additional data such as coincidence length or 
raw sequence.
Table 1. Compression algorithms comparison 

Compression method Compression
Bitwise encoding 2:1 – 6:1
Dictionary-based compression 4:1 – 6:1
Statistical model 4:1 – 8:1
Mixed model 1:1 – 400:1

Once the sequence is compressed, it must be sent over the network. The 
algorithms used for compression, namely Huffman, Shannon-Fano, and the 
optimized algorithm, which belongs to the class of literal coding, are very 
susceptible to errors. If even one bit is confused when transmitting network 
information or reading to and from the recorder, restoring the correct sequence is 
not possible. For this purpose, it is necessary to use error correction algorithms. 
Literature sources cite noise protection algorithms as one of the most widely 
used for this purpose [10]. They are applicable in all places where it is necessary 
to correct errors at the lowest possible level (bitwise). In damping waves, 
artifi cial intelligence models are also widely used in pattern recognition and error 
correction in generated images. One of the most common algorithms is that of 
Reed Mahler, suitable for data transmission in places where the connection is 
poor or very weak [10].

The main goals of the work are: to present a new method for compression 
of nucleotide sequencing data with improved performance, accuracy and noise 
protection based on the known methods of Huffman, Shannon-Fano and Reed-
Miller, as well as to develop an interoperable and reusable software implementation 
of the elaborated method.

3 Suggested methodology

The suggested compression approach in this study is based on coding and more 
specifi cally on the Shannon-Fano and Huffman algorithms. The main idea behind 
the Shannon-Fano and Huffman algorithms is to set a binary code to match each 
of the characters in the input message (in our case bases in the input sequence). 
The algorithm has the following characteristic properties:

 The length of the codes is variable (the code is uneven). Here is our fi rst 
modifi cation of the algorithm, where the length of the codes is always the 
same i.e. the compressed message has a uniform code. The sequences being 
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considered for compression are of the same length, and this comes from 
the most used formats such as FASTA and FASTQ, where the length of 
the sequence is always specifi ed, which could be used in advance to build 
a classifi cation tree. Another feature of the code length is that when the 
individual characters in the message are replaced with their corresponding 
binary values, a compressed message of different sizes may be received. This 
is because for each symbol, a different binary value is given, which in some 
cases can be 1 and in others, it can be a combination of 0 and 1. For example, 
for “A” a value of 11 can be calculated, for “T” - a value equal to 101, which 
causes also change in the string size. This can be improved when using DNA 
sequence data because they have a small number of characters that can be 
encoded with equal length.

 The letters with higher probability are more likely to be encoded in fewer 
bits than those with less likely ones. In addition, this is the next modifi cation 
of the algorithm we suggest: an approach how to calculate the probability of 
occurrence of individual characters in the message using frequency analysis, 
which is the most time consuming process in this algorithm. In the case of 
sequence compression, we make an improvement where there is no need to 
perform frequency analysis because the characters included in the sequence 
are countable small number. For DNA and RNA sequences, the symbols are 
4 in number, for which mapping (aligning) has been prepared preliminary for 
their respective binary sequences.

 The message shall be decoded unambiguously.
Advantages: When we encode the more common characters with shorter bit 

sequences and the less common ones with longer bit sequences, we get better 
results with respect to the length of the message being transmitted.

Disadvantages: A major disadvantage of uneven codes is their sensitivity 
to wrong bits. For them, a wrong bit can cause the entire message to be decoded 
incorrectly or impossible until the end. Whereas, with uniform codes, one wrong 
bit causes only one character to be corrupted.

3.1 Building the optimal code

An optimized algorithm developed in the study, according to which sequences 
based on the theory of optimal letter coding will be compressed has following 
operational features:

 Sequence type recognition (RNA or DNA).
 Depending on the sequence, predefi ned binary values for each of the symbols 

used in the sequence are selected - using the predefi ned values saves the 
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following procedures, which are necessary to construct the optimal code for 
each arbitrary message in the Shannon-Fano algorithms and Huffman:

a The set of symbols of source A is arranged in order to reduce the 
probability of message occurrence – pj

b The set of probabilities Pi is divided into two groups (p1, p2, …, pj) and 
(pj+1, pj+2, …, pm), so that the difference   shown below is minimal:

   (1)

c The characters whose probabilities are in the fi rst group are assigned with 
the r-th code letter 0 and those in the second group are assigned with the r-th 
code letter 1.

 For a single-element probability group, the procedure is completed, and 
for each of the other groups in the multi-step procedure, the elements are 
numbered from 1 to m and go recursively (r = r + 1) to step 2.

 Each of the characters in the sequence is replaced by the corresponding 
binary entry.

Following the changes made to the Shannon-Fano algorithm and the Huffman 
algorithm, all properties of the letter algorithms coming from the defi nitions and 
theorems related to those algorithms retain, ignoring the steps for frequency 
analysis and computation of the binary comparison tree.

Once the sequence is compressed, it can be stored or sent in a much smaller. 
Reading the compressed sequence is another major problem with the Shannon-
Fano and Huffman algorithms. In the Optimized Algorithm suggested in this 
study, this problem is solved by using a predefi ned coding tree. In Shannon-Fano 
and Huffman’s algorithms, in order to decode a properly transmitted message, 
it is necessary to have the same encoding tree generated when compressing the 
message. The transfer of message for both algorithms consists of two parts - the 
encoded message, and the coding tree so that the message can be read. These two 
parts do not always need to be transferred together. Because algorithms can also 
be used in the context of information security, where not everyone can decode the 
message, i.e. not everyone should have a coding tree. In bioinformatics, this is an 
important feature for working with sequences.

In the proposed method, only one has a coding tree. Each compressed / 
encoded sequence can only be read by the same programming apparatus with 
which it was compressed / encoded. This is because a unique hashing algorithm 
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is used to generate the coding tree in order to ensure the uniqueness of each 
coding tree. Each sequence has its own encoding tree and can only be decoded / 
decompressed by this encoding tree. This approach eliminates the shortcomings 
of both Shannon-Fano and Huffman’s algorithms for decoding and protecting 
information. In the proposed Optimized Approach, each of the characters will be 
encoded with exactly 2 bits. As before the compression, each character occupied 
8 bits, here is the fi rst place where we have a 1:4 compression. After applying the 
algorithms, a compression of up to 1:400 can be achieved.

3.2 Compressing algorithm comparative analysis

The three algorithms’ coding/decoding abilities were tested with a 20-letter, 160-
bit sample DNA sequence: AACTTTGACGGTATACGCAA. 

The Shannon-Fano and Huffman algorithms code the sample in three steps: 
1) symbol frequency analysis, 2) grouping, 3) assigning each symbol a binary 
code. Once the binary codes for each of the four symbols are assigned, a coding 
binary tree is generated, resulting in coding the sequence as 41-bit string:

00110101010111011011111110010011011111000
Decoding requires the generated binary code and the coding tree, which is 

traced from root to leaves depending on the input symbol – left path for 0 and 
right – for 1.

The Optimized Algorithm omits the frequency calculation step an assigns a 
two-digit bit code to each of the four symbols: A=00, C=01, G=11, T=10. This 
coding table is static and does not need to be generated each time. Coding is done 
by simple substitution, resulting in the following 40-bit string:

0000011010101100011111100010000111010000
Decoding the sequence requires the coded sequence and the static table, thus 

omitting the need of a coding tree.
As shown in Table 2, the Optimised Method produces 5% less bit length than 

Shanon-Fano and Huffman methods. The result code is also uniform, which may 
prevent possible bit loss, while in uneven code such errors cannot be detected due 
to different length of bits in coding sequence.
Table 2. Comparative analysis of compression algorithms

Coding method Input length Compressed length
Shannon-Fano 20 bases, 160 bits 41 bits
Huffman 20 bases, 160 bits 41 bits
Optimized method 20 bases, 160 bits 40 bits

3.3 Software realization and user interface

The application utilizes several platforms combined under Ubuntu Linux OS. 
There are three main software components:



230

 User interface

 C++ library

 Programming adaptor to connect the library to an intermediate language

The user interface is based on Vue.js, Vuetifi e, node.js, and npm version 
manager. Vue.js uses JavaScript templates to generate HTML in real time, 
which allows the interface to work on different devises and different screen 
resolutions, because each HTML is generated for the specifi c devise. Vuetifi eе 
is a programming module that upgrades Vue.js by adding predefi ned templates. 
Node.js allows JavaScript to be used as server provisioning method by dynamic 
building in executable code. It provides the possibility to call each individual 
HTML element in the user interface separately, and visualize the result when ready 
– an approach called „reactive programming“. JavaScript was chosen because of 
its compatibility with RESTful services and JSON data transfer format.

Version management of the used Vue.js, Vuetifi le and Node.js modules is 
done by npm, which allows multiple storage for the modules to be registered, and 
automatically detects and downloads them.

3.4 Choosing programming medium for the compression algorithms

C++ was chosen for the algorithms for literal and noise protection coding, for its 
execution speed and lower memory usage, compared to other languages. It also 
allows direct memory access, easy and intuitive realisation of bitwise operations 
and lower-level resource management. These advantages make algorithms 
written in C++ more optimal than C# and Java. This is one of the main reasons 
to include connections between platforms in this application, because it utilises 
both C++ and C#.

4 Results and Discussion

Our web-based application for sequence data compression is adapted for various 
device screen resolutions – from mobile phone (375x812) and tablet (768z1024) 
to 8k (7680x4320). The user interface is shown on Figure 1 (mobile devise). 
Filed (B) allows the selection of fi le(s) to be compressed. The application accepts 
FASTA and MULTIFASTA fi le formats, and one or multiple fi les can be selected, 
thus allowing parallel compression. The selected fi les are listed as labels (A) in 
fi eld (B), and can be deleted by pressing the “clear” symbol (C). 
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Fig. 1. User interface – File input fi eld (B) with one fi le uploaded (A) and confi rmation button (D)

Button (D) confi rms the query and shows how many fi les are selected for 
compression. Then, the fi les are parsed to extract metadata such as sequence IDs, 
fi le size (in bytes), and sequence length (in number of nucleotides). 

For test compression, four sequences with different length from the Ensembl 
database were saved as a single, multifasta fi le:
• ENST00000288602.11 - BRAF-201, B-Raf proto-oncogene serin/threonine kinase
• ENSE00001025715.1 chromosome:GRCh38:X:38317316:38317465:-1
• ENSE00001025717.1 chromosome:GRCh38:X:38321027:38321089:-1
• ENSG00000157764.13 chromosome: GRCh38:7:140719327:140924928:-1

Each sequence is compressed with the three algorithms, and the time needed 
for compression is calculated. Figure 2 shows the result for each sequence in the 
fi le as a separate, auto-expandable fi eld (Б). Each fi eld shows information about 
the sequence:

Fig. 2. Visualization of compressed sequences

• Sequence name (A) – this is obtained from the FASTA format, and if 
it matches a naming pattern from an entry in one of the public sequence 
databases, a hyperlink to that entry is created
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• Current sequence size [in bytes] (B) – this is the sum of the byte size of the 
ASCII characters corresponding to the letters coding each nucleotide. Then, 
depending on the sequence length, it is converted to the closest B, KB, MB, 
GB of TB value by following the International Electrotechnical Commission 
(IEC) standard where 1 KB = 1024 B.

• Drop-down arrow (Г) shows/hides detailed information about the compressed 
sequence

• In the detailed fi eld, (Д) is the sequence name and size label, and by clicking 
on it the original, uncompressed sequence is shown. (Ж) shows the sequence 
after compression (E) by each of the three algorithms. Additionally, for each 
algorithm, a summary of the size [bytes] and time [seconds] of compression 
is shown.
In the current example, there is practically no difference in the compressed 

sequence size between the three algorithms; considerable difference is seen when 
compressing sequences of several GB in size.

Different access points on the server are used for each of the three sequence 
compression algorithms. The calling for each algorithm is also parallelized for 
each sequence, as seen in Figure 3:

Fig. 3. Parallel execution of queries for each compression algorithm

Another part of the server provides remote access to compression algorithms, 
developed as libraries. The library is accessed either through the server or by 
downloading and compiling it, thus making it usable by applications without 
Internet access. The library can be used as a DLL from several high-level 
programming languages, such as C# and Java.

During development, several compression algorithms were tested, and the 
performance of each is summarized on Figure 4:
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Fig. 4. Compression methods comparison: left vertical scale shows size in bits, right scale shows 
time in milliseconds. Bars indicate the sequence size after compression, and line shows the time.

The illustrated above is based on the compression of a 9,219,726 byte 
sequence, obtained from the public database Genome, part of NCBI. This is the 
entire genome sequence of the bacteria Bradyrhizobium japonicum, which can be 
accessed from Genome’s own FTP servers, or through the RefSeq database under 
the ID NC_017249.1.

Six compression methods were applied to the sequence, including the already 
discussed in this paper Shannon-Fano, Huffman, Optimized Algorithm. They were 
compared to: 1) Zip algorithm, developed for compressing and archiving one or 
multiple fi les; 2) Tar.xz – UNIX and Windows-based compression software that 
allows no-loss compression; and 3) 7zip – open-source fi le archiving software.

The results clearly show the advantage of the fi rst three algorithms that utilize 
bitwise coding, which result in a very similar performance, producing smaller 
compressed fi le and are generally faster than the others (with the exception of 
Zip).

Huffman and Shannon-Fano give similar results when working with DNA 
sequences. This is due to the fact that DNA uses only 4-letter alphabet, thus 
creating similar frequency analyses and overlapping trees with each of those 
algorithms. The other three methods perform poorly due to them being versatile 
for various data types and not having been optimized to work with sequences.

The main advantage of our Optimized Algorithm is the speed, because it 
omits the multiple frequency calculations and tree generation of the other two. 
It also performs better with sequence decompression, not needing to send or 
store the compressed sequence tree. This results in faster and safer data transfer, 
because a sequence-coding tree is also sensitive information in terms of software 
security. All datasets, samples and the software realization itself, are available:
https://github.com/BroyanaPulova/DNA_compression_web 
https://github.com/BroyanaPulova/DNA_compression 
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5 Conclusion

The Optimised Algorithm proposed here has been developed for sequence 
data compression. It performs better in terms of speed, noise-reduction, and 
compression size than similar methods such as Shannon-Fano and Huffman. 
A library with these bitwise coding algorithms was created, with compression/
decompression methods for each. The library utilises low-level primitives so that 
it can be re-used on various platforms.

The Optimised sequence compression algorithm was implemented in a 
number of software products with web-based user interface that allows easy, 
multi-device and multi-resolution access to the server. All components work in a 
container-based environment, which allows fast and easy regulation. 

Future work on this project is going to expand its abilities by adding more 
compression algorithms, the ability to choose which one(s) to use, and updating 
the library to work with more programming 
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