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Abstract
Automatic keyphrase extraction (AKE) is an important task
for quickly grasping the main points of the text. In this pa-
per, we regard AKE from Chinese text as a character-level
sequence labeling task to avoid segmentation errors of Chi-
nese tokenizer. And we initialize our model with pretrained
language model BERT, which is released by Google in 2018.
We collect data from Chinese Science Citation Database and
construct a large-scale dataset from medical domain, which
contains 100,000 abstracts as training set, 6,000 abstracts
∗Corresponding Author

as development set and 3,094 abstracts as test set. We use
unsupervised keyphrase extraction methods including term
frequency (TF), TF-IDF, TextRank and supervised machine
learningmethods includingConditional RandomField (CRF),
Bidirectional Long Short Term Memory Network (BiLSTM)
and BiLSTM-CRF as baselines. Experiments are designed
to compare word-level and character-level sequence label-
ing approaches on supervised machine learning models and
BERT-basedmodels. Comparedwith character-level BiLSTM-
CRF, the best baseline model with F1 score of 50.16%, our
character-level sequence labeling model based on BERT ob-
tains F1 score of 59.80%, getting 9.64% absolute improve-
ment.Wemake our character-level IOB format dataset of au-
tomatic keyphrase extraction from scientific Chinese medi-
cal abstracts (AKESCMA) publicly available for the benefits
of research community, which is available at: https://github.
com/possible1402/Dataset-For-Chinese-Medical-Keyphrase-
Extraction.

Keywords: Automatic Keyphrase Extraction, Character-Level
Sequence Labeling, Pretrained Language Model, Scientific
Chinese Medical Abstracts
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1 Introduction
Automatic keyphrase extraction (AKE) is a task to extract 
important and topical phrases from the body of a document 
[49], which is the basis of information retrieval [27], text 
summarization [58], text categorization [26], opinion min-
ing [4], and document indexing [16]. It can help us quickly 
go through large amounts of textual information to find out 
the main stating point of the text. Appropriate keyphrases 
can serve as a highly concise summarization of the text and 
are beneficial to retrieve text.

Classic keyphrase extraction algorithms usually contain 
two steps [20]. The first step is to generate candidate keyphr-
ases, in which plenty of manually designed heuristics are 
combined to select potential candidate keyphrases. And the 
second step is to determine which of these candidate keyphr-
ases are correct.

One of the shared disadvantages in above-mentioned two-
step approaches is that the model performance in second 
step is based on the quality of candidate keyphrases gener-
ated in the first step. So some researchers reformulate 
keyphr-ase extraction as a sequence labeling task and 
validate the effectiveness of this formulation.

In 2008, Zhang et al. [56] firstly reformulate keyphrase 
extraction as a sequence labeling task and construct a CRF 
model to extract keyphrases from Chinese text, which skips 
the step of candidate keyphrase generation. They use 600 
documents to train the model and design lots of features 
manually. Moreover, they use word-level sequence labeling 
instead of character-level, tagging the words rather than 
characters. In Chinese, word is the minimal unit to express 
semantics. The advantage of word-level formulation is that 
we can model the relationship among words directly while 
the disadvantage is that it still depends on the word segmen-
tation results of Chinese tokenizer.

By virtue of automatic extracting features, deep learning 
methods exceed machine learning methods and gradually 
become the mainstream in many natural language process-
ing (NLP) tasks. Transformer [50] , an emerging model archi-
tecture for handling long-term dependencies, is a substitute 
to classic neural networks such as Long Short-Term Mem-
ory network. In 2018, Google released BERT [13], which is a 
language model pretrained on large-scale unannotated text 
and used Transformer to capture deep semantic and syntac-
tic features in text. In 2019, Sahrawat et al.[44] regarded

AKE as a sequence labeling task and applied lots of pre-
trained language models including BERT to English auto-
matic keyphrase extraction task, showing the effectiveness
of pretrained language model.

Compared to English keyphrase extraction, Chinese keyp-
hrase extraction is facing with two challenges: lacking of
publicly available annotated dataset and relying on Chinese
word segmentation tool. Firstly, supervised methods need
ground-truth keyphrases of the text to train themodel, while
there are few Chinese publicly annotated keyphrase extrac-
tion datasets, which makes it difficult to do objective evalu-
ation among different researches. Secondly, English tokens
is split by white space while there is no delimiter among
Chinese words.

To address the above-mentioned challenges, in this pa-
per, we construct a high quality dataset for Chinese auto-
matic keyphrase extraction.We formulate keyphrase extrac-
tion from scientific Chinese medical abstracts as a character-
level sequence labeling task which doesn’t rely on Chinese
tokenizer. And also we design experiments to compare the
model performance under word-level and character-level se-
quence labeling formulations, which has not been explored.
In addition, for scientific Chinese medical abstracts, English
words are interspersedwith Chinesewords, which increases
the difficulty of data preprocessing. So we use Unicode Cod-
ing to distinguish English and Chinese, which regards each
English word as the elementary unit and each Chinese char-
acter as the elementary unit.

Our key contributions are summarized as follows:

1. We regard AKE from scientific Chinese medical ab-
stracts as a character-level sequence labeling task and
fine-tune the parameters of BERT[13] tomake it adapt
to our large-scale keyphrase extraction dataset. Our
approach skips the step of candidate keyphrase ex-
traction and is independent of Chinese tokenizer. And
also we transfer the pretrained language model BERT
to downstreamChineseAKE taskwithout complicated
manually-designed features.

2. We design comparative experiments againstword-level
and character-level sequence labeling formulation for
Chinese keyphrase extraction to verify the effective-
ness of character-level formulation, especially under
the general trend of pretrained language model. The
comparative experiments are conducted on machine
learning baseline models and BERT-based model. We
find that the performance of character-level formula-
tion is comparable to word-level formulation or even
higher for traditionalmachine learning algorithmswhile
has overwhelming advantages for pretrained language
model.

3. We process data from Chinese Science Citation Data-
base and construct a large-scale character-level dataset
for AKE from scientific Chinesemedical abstracts.The
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dataset is labeled using Inside–Outside–Beginning tag-
ging scheme (IOB format) [43], which is a common
tagging format in chunking tasks such as named en-
tity recognition task. Our proposed dataset contains
100,000 abstracts in training set, 6,000 abstracts in de-
velopment set and 3,094 abstracts in test set. We make
our processed large-scale dataset (AKESCMA) publicly
available for the benefits of the research community.

2 Related Work
2.1 Automatic Keyphrase Extraction
Automatic keyphrase extraction has received lots of atten-
tion for more than 20 years. Over this time, existing clas-
sic methods usually contain two steps: generating candidate
keyphrases and determiningwhich of these candidate keyph-
rases match ground-truth keyphrases.

In the first step, candidate keyphrases generation relies
on some heuristics such as extracting n-grams that appears
in external knowledge base[18][38], extracting phrases that
satisfy pre-defined lexical patterns [2][24][32][52]. The clas-
sic approaches in second step can be divided into two cate-
gories: unsupervised approaches and supervised approaches.

Unsupervised approaches can be divided into four types:
statistics-based approaches[6], graph-based approaches[39][18],
embedding-based approaches[35][34] and language model-
based approaches[47]. Graph-based methods are the most
popular ones while statistics-based methods still hold the
attention of the research community.[40]

As for Statistics-based approaches, these approaches don’t
need any training corpus and they are based on statistical
features of the given text such asword frequency [36], TF*IDF
[46], PAT-tree [9] and word co-occurrences [37]. And it’s
suitable for one single document because no prior informa-
tion is needed. In 1995, Cohen used N-gram statistical infor-
mation to automatically index the document [10]. It doesn’t
use any stop list, stemmer or domain-specific external in-
formation, allowing for easy application in any language or
domain with slight modification. In 1997, Chien used PAT-
tree and mutual information between words to extract Chi-
nese keyphrases [9]. In 2009, Carpena et al. considered word
frequency and spatial distribution features that keywords
are clustered whereas irrelevant words distribute randomly
in text [8]. These statistical approaches are usually easy to
transfer to a new domain because no prior information is
applied.

As for graph-based approaches, keyphrase extraction is a
ranking problem substantially. The model scores each can-
didate for its likelihood of being a ground-truth keyphrase
and returns top-ranked keyphrases by setting a threshold.
There are lots of popular unsupervised learning algorithms
for keyphrases extraction, such as TextRank [39], LexRank
[15], TopicRank [5], SGRank [12] and SingleRank [51].

As for supervised approaches, classic keyphrase extrac-
tion is formulated as a binary classification problem [16][48]
to determine whether the potential candidate keyphrases
match ground-truth keyphrases for the text or not. Tradi-
tionalmachine learning algorithms such asNaïve Bayes [54],
maximum entropy [61], decision trees [49], SVM [59], bag-
ging [24], boosting [25] rely heavily on complicatedmanually-
designed features which can be broadly divided into two
categories: within collection features and external resource-
bases features [20]. Within collection features use textual
features within training data and can be further divided into
statistical features such as term frequency [24], TF*IDF [45],
syntactic features such as some linguistic patterns [29] and
structural features such as location that keyphrases occur
in [52]. External resource-based features consist of lexical
knowledge bases such as Wikipedia [18][38], document ci-
tations [7], hyperlinks [28].Thesemethods have someweak-
nesses. The prediction for each candidate keyphrase is inde-
pendent to that of others, which means that the model can’t
capture the connection among keyphrases.

These two-step keyphrase extraction approaches have some
drawbacks. Firstly, error propagation. The candidate keyph-
rases generation errors occurring in the first step will be
passed to the second step and influence the performance of
the downstreammethods. Secondly, the model performance
relies heavily on some heuristic settings such as threshold,
external resources (Wikipedia, domain ontology, lexicon dic-
tionary etc.), and filtration patterns of POS tags, whichmake
it difficult to transfer to a new domain. Thirdly, it’s not able
to find an optimal N value (number of keyphrases to extract
for the text) based on article contents so it is usually set to a
fixed parameter which results in keyphrase extraction per-
formance varying with the value for N. Fourthly, the num-
ber of keyphrases is same among text, ignoring the physical
truth and bringing lots of redundant keyphrases or losing
lots of important keyphrases. Finally, in the second step, the
model just analyzes the semantic and syntactic properties of
candidate keyphrases separately while losing the meaning
of the whole text.

Zhang et al.[56] first reformulates keyphrase extraction
to a sequence labeling task, and utilizes user-defined tag-
ging scheme to annotate each word in Chinese text and in-
dicates its chunk belonging. And they use Conditional Ran-
domFieldmodel, which shows great performance in sequence
labeling task.They design lot of manually-designed features
such as POS tagging, TF*IDF, and other location features. Li
et al. [60] also uses word-level sequence labeling model to
extract keyphrases in automotive field for Chinese text.

Casting keyphrase extraction as a sequence labeling task
bypasses the step of candidate keyphrases generation and
provides a unified method for automatic keyphrase extrac-
tion. Moreover, in sequence labeling, keyphrases are corre-
lated to each other instead of being independent units.
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Supervisedmachine learningmethods require precise fea-
ture engineering and they rely heavily onmanually-designed
features, which are time-consuming. Using deep learning
method to automatically extract features has become the
mainstreamofmany natural language processing tasks.There
are some practices for English AKE. In 2016, Zhang et al.
[57] casts keyphrase extraction as a sequence labeling task
and proposes a joint-layer recurrent neural network model
to extract keyphrases from tweets, which doesn’t need com-
plicated feature engineering. In 2019, Sahrawat et al. [44]
constructs a BiLSTM-CRF model and uses contextualized
word embedding from pretrained languagemodels to initial-
ize the embedding layer. They evaluate model performance
on three English benchmark datasets: Inspec [24], SemEval-
2010 [30], SemEval-2017 [1] and their model achieves state-
of-the-art results on these three benchmark datasets.

Compared with English AKE, Chinese AKE is more com-
plicated owing to the characteristic that there is no delim-
iter among Chinese words. So there is an additional step in
most Chinese AKE models: using Chinese tokenizer to seg-
ment words. For traditional two-step keyphrase extraction
models, generating Chinese candidate keyphrases needs to
use Chinese tokenizer to segment words first. For Chinese
AKE models based on sequence labeling, existing methods
still use word-level tagging, restricted by the segmentation
results of Chinese tokenizer.

2.2 Sequence Labeling Based on BERT
With the improvement of computer hardware and the in-
crease of available data, deep learning based methods gradu-
ally occupy the dominant position in the field of natural lan-
guage processing. Although deep neural networks can learn
highly nonlinear features, they are prone to over-fittingwith-
out large amount of annotated data. And the objective func-
tions of almost all deep learning architectures are highly
non-convex function of the parameters, with the potential
formany distinct localminima in themodel parameter space[14].
Thus, how to initialize parameters has been a problem that
puzzles researchers. The breakthrough comes in 2006 with
the algorithms for deep belief networks [21] and stacked
auto-encoders[3], which are all based on a similar approach:
greedy layer-wise unsupervised pre-training followed by su-
pervised fine-tuning.

Compared with traditional supervised learning tasks that
randomly initialize parameters then learn language repre-
sentations directly from annotated text, pretraining-finetuning
mode not only capture the syntactic and semantic features
of tokens from large-scale unannotated text but also provide
a good initial point for the downstream task, improving the
generalization ability of the downstream supervised learn-
ing task.

Recently, BERT, short for Bidirectional Encoder Represen-
tations from Transformers, which is a pretrained language
model receiving widespread concern and is believed to be

a milestone in NLP. BERT is pretrained on large-scale unla-
beled data from BooksCorpus and English Wikipedia, con-
taining more than 3.3 billion tokens in total. Using BERT
to fine-tune the downstream supervised tasks breaks the
record for 11 NLP tasks including sentence classification,
named entity recognition, natural language inference etc.,
which proves the feasibility of pretraining-finetuningmode.
Using pretrained language models [11][41][42][22][13] has
become a standard component of SOTA (state-of-the-art)
model architecture inmany natural language processing tasks.

Most previous works for sequence labeling are built upon
different combinations of LSTM and CRF[17][19][53], Since
the release of BERT[13], some researchers show the effec-
tiveness of applying BERT or BERT-basedmodels to sequence
labeling task such as named entity recognition task. BERT
has a simple architecture based on bidirectional transform-
ers[50], which performs strongly on various tasks depend-
ing on its capability to capture long term frequency. Lee et
al. introduces BioBERT [33], which is pretrained on large-
scale biomedical corpora using the model architecture same
with BERT. They test BioBERT on several publicly datasets
for named entity recognition such asNCBI disease, BC5CDR.
The results show that BioBERT outperforms the state-of-
the-art models on six of nine datasets.

In this paper, we combine the benefits of formulating keyp-
hrase extraction fromChinesemedical abstracts as a character-
level sequence labeling task and the advantage of pretraining-
finetuning mode, which can not only avoid errors occurring
in Chinese tokenizer, but also extract features automatically
rather than using complicated manually-designed features.

3 Methodology
3.1 Task Definition
Wecast keyphrase extraction fromChinesemedical abstracts
as a character-level sequence labeling task and use IOB for-
mat as the input format of the model. This task can be for-
mally stated as:

Let 𝑑 = {𝜔1, 𝜔2, ..., 𝜔𝑛} be an input text, where 𝜔 rep-
resents the 𝑡𝑡ℎ element. If the input text is mixed up with
Chinese and English, the element is a character for Chinese
and a word for English. Assign each 𝜔𝑡 in the text one of
the three class labels 𝑌 = {𝐾𝐵, 𝐾𝐼 , 𝐾𝑂 }, where 𝐾𝐵 denotes
that 𝜔𝑡 locates in the beginning of a keyphrase, 𝐾𝐼 denotes
that 𝜔𝑡 locates in the inside or end of a keyphrase, and 𝐾𝑂
denotes that 𝜔𝑡 is not a part of all keyphrases. For example,
there is a sentence ’X连锁先天性肾上腺发育不良患儿的
临床及 NR0B1基因突变分析’ and the keyphrases in this
sentence are ’X连锁先天性肾上腺发育不良’ and ’NR0B1
基因’.

After IOB format transformation, the character-level tag-
ging result of this sentence is shown in Table 1. As we can
see, we split the sentence according to the language which
regards each English word as the elementary unit and each
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Figure 1. An Example of IOB Format Generation

Table 1. An Example of Character-Level Sequence Labeling

X 连 锁 先 天 性 肾 上 腺 发 育 不 良 患 儿 的 临 床 及 nr0b1 基 因 突 变 分 析

B I I I I I I I I I I I I O O O O O O B I I O O O O

Chinese character as the elementary unit. This character-
level formulation avoids errors of Chinese tokenizer, which
has been a troublesome problem in Chinese keyphrase ex-
traction.

3.2 Keyphrase Extraction Evaluation Measures
Although there is a suit of evaluationmeasures for sequence
labeling task, in automatic keyphrase extraction, what we
really care about iswhetherwe can extract correct keyphrases
of the provided text. So we use precision, recall and F1-score
based on actual matching keyphrases against the ground-
truth keyphrases for evaluation as used by previous studies
[30].

Traditionally, automatic keyphrase extraction systemhave
been accessed using the proportion of top-N candidates that
exactlymatch the ground-truth keyphrases[13]. For keyphrase
extraction based on sequence labeling, there is no need for N
value andwe just use the keyphrases predicted by themodel
to evaluate the AKE performance. But we need to firstly rec-
ognize the keyphrases from IOB format before evaluation.
We concatenate characters between label ’B’ and the last ad-
jacent label ’I’ behind label ’B’ as predicted keyphrase.

We denote the total number of predicted keyphrases as
r, number of predicted keyphrases matching with ground-
truth keyphrases as c, number of ground-truth keyphrases
as s. The evaluation measures are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 : 𝑃 =
𝑐

𝑟

𝑅𝑒𝑐𝑎𝑙𝑙 : 𝑅 =
𝑐

𝑠

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 : 𝐹 =
2 × 𝑃 × 𝑅
𝑃 + 𝑅

3.3 Dataset Construction
Wecollect data fromChinese Science CitationDatabase, which
is a database contains more than 1000 kinds of excellent
journals published in mathematics, physics, chemistry, bi-
ology, medicine and health etc. We set some constraints to
restrict data to Chinese medical data as well as no incom-
plete and duplicated records included to ensure the quality
of data. The constraints are listed as follows:

1. According to Chinese Library Classification (CLC), the
CLC code of medical data starts with the capital letter
’R’. So we restrict data to records that the metadata
field of CLC code starts with the capital letter ’R’.

2. The metadata field of language is set to Chinese.
3. The metadata fields of title, abstract and keyphrases

are not null. Here, keyphrases refer to author-assigned
keyphrases.

Statistics shows that there are 757,277 records meeting
the above-mentioned constraints in total. The title and the
abstract of each article are concatenated as the source in-
put text. Furthermore, there are two types of keyphrases:
extractive keyphrases and abstractive keyphrases. Extrac-
tive keyphrases refer to keyphrases that are present in the
source input text while abstractive keyphrases refer to keyp-
hrases that are absent in the source input text. Because we
formulate keyphrase extraction as a character-level sequence
labeling task and can only extract keyphrases that are present
in the source input text, we just consider the extractive keyph-
rases.

For a given text, we expect that all author-assigned keyph-
rases are extractive keyphrases, so we can annotate as many
extractive keyphrases as possible. To achieve that, we firstly
match each author-assigned keyphrase with the given text
and see if all author-assigned keyphrases can be found in
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Table 2. An Example of Word-Level Sequence Labeling

X 连锁 先天性 肾上腺 发育不良 患儿 的 临床 及 nr0b1 基因突变 分析

B I I I I O O O O B I O

the text. Then we limit our dataset to records that all author-
assigned keyphrases are extractive keyphrases. After filtra-
tion, there are 169,094 records in total. We aim to construct
a large-scale dataset for our deep neural network model be-
cause although deep neural networks can learn highly non-
linear features, they are prone to over-fitting comparedwith
traditional machine learning methods.

We choose 100,000 records as our training set, 6,000 records
as our development set and 3,094 records as our test set.
Training set is used for training the keyphrase extraction
model. Development set is used in the training process to
monitor the generalization error of the model and to tune
hyper-parameters. Test set is used to test the performance
of the model. Note that there is no overlap among data sets.
Next, we process these three data sets using IOB format to
make them suitable for modeling sequence labeling task.

In this paper, we are going to compare word-level and
character-level formulation for Chinese keyphrase extrac-
tion. So we construct datasets for character-level and word-
level sequence labeling separately.

Before generating character-level IOB format for each char-
acter, we do some preprocessing steps:

1. UsingUnicode Coding to distinguish Chinese and Eng-
lish. To address the problem that English words and
Chinese words are mixed together in Chinese medical
abstracts, we use Unicode Coding to distinguish Eng-
lish and Chinese. Our proposed data sets can greatly
deal with the split of English words and Chinese char-
acters, in which English word and Chinese character
is the minimal unit respectively.

2. Converting from all half width to full half width. Punc-
tuations in Chinese medical text include two format:
full width and half width. Authorsmay neglect the for-
mat of punctuations, which causes the problem that
keyphrases can’t match with the abstract. For exam-
ple, the authors might provide the keyphrase ’er:yag
激光’, but they use ’er：yag激光’ in the abstract in
which the colon is in full width format. So we trans-
form all half width punctuations to full width punctu-
ations except full stop.

3. Dealing with special characters. There are lots of spe-
cial characters in scientific Chinese medical abstracts
and sometimes there are space characters next to these
special characters while sometimes not. To unify the
format, we drop all space characters next to special
characters.

4. Lowercase. We transform all English words to their
lowercase format.

After preprocessing, we do the tagging process, in which
we match keyphrases with the source input text to find the
locations of keyphrases present in the text and tag the char-
acters within the locations with either label ’B’ or label ’I’
and characters not within the locations with label ’O’. For
the first character in the keyphrase, tag it with label ’B’
and for the characters other than the first character in the
keyphrase, tag them with label ’I’.

Figure 1 is an example of character-level IOB format gen-
eration. In this example, the keyphrase is ’X连锁先天性肾
上腺发育不良’. We match the keyphrase and return the lo-
cation between 2 and 14. So we tag the character in location
2 with label ’B’ and the characters located between 3 and 14
with label ’I’. Other characters not within the location are
tagged with label ’O’.

Note that there are two special occasions in our tagging
process and we apply some tricks on it.

1. Given two author-assigned keyphrases of the input
text, if there is a containment relationship between
the location span of two keyphrases, we use Maxi-
mumMatching Rule to tag the longest keyphrase. For
example:
Text:’ 穴位注射罗哌卡因分娩镇痛对产妇产程的
影响’
This text has two author-assigned keyphrases:’分娩’
and ’ 分娩镇痛’. The location span of ’ 分娩’ is be-
tween 8 and 9 while the location span of ’分娩镇痛’
is between 8 and 11. So we tag the characters within
the longest keyphrase ’分娩镇痛’ with label ’B’ or ’I’.

2. If the first few characters of a keyphrase is equal to
the last few characters of the other keyphrase and
this keyphrase appears after the other keyphrase in a
given text, we will concatenate these two keyphrases
by their common characters. For example:
Text:’ 术中经食管超声心动图对心脏瓣膜置换术
后即刻人工瓣膜功能异常的诊断价值’
This text has two author-assigned keyphrases: ’人工
瓣膜’ and ’ 瓣膜功能异常’. These two keyphrases
share common characters ’瓣膜’ and appear next to
each other in the text. Then we will tag the keyphrase
’人工瓣膜功能异常’ instead of ’人工瓣膜’ or ’瓣
膜功能异常’. This step determines that our dataset
is suitable for flat keyphrase extraction rather than
nested keyphrase extraction, which means that each
character will be assigned only one label.
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For word-level sequence labeling, we use Chinese tok-
enizer Jieba to segment words. And the tagging process is al-
most the same with that of character-level dataset construc-
tion except that we tag the words rather than characters.

To examine the quality of our data sets, we count the num-
ber of recognized keyphrases, the number of correct recog-
nized keyphrases and the number of ground-truth keyphrases
in our generated data sets. And we use evaluation measures
mentioned in section 3.2 to see the IOB generation perfor-
mance. The IOB generation results for character-level and
word-level are summarized in Table 3 and Table 4 separately.

As we can see, the F1-score of each character-level gen-
erated data set is higher than the corresponding word-level
generated data set for more than 5 percent. For character-
level data sets, owing to the above-mentioned tricks that
we apply to IOB generation, the evaluation measures don’t
reach to 100%. But the character-level IOB generation re-
sults on all three data sets still show that our data sets are
of good quality. For word-level sequence labeling data sets,
the segmentation error of the Chinese tokenizer is a criti-
cal reason that the evaluation measures are lower than that
of character-level. Take the example mentioned in section
3.1 as an example, the word-level tagging result is shown
in Table 2. There is one incorrect keyphrase ’nr0b1基因突
变’ which is supposed to be ’nr0b1基因’. Except for tagged
incorrect keyphrases, theremight bemissing keyphrases be-
cause of segmentation error for word-level sequence label-
ing.

3.4 Model Architecture
We initialize our sequence labeling keyphrase extractionmodel
with pretrained BERT model. The architecture of BERT is
based on a multi-layer bidirectional Transformers[50]. In-
stead of the traditional left-to-right language modeling ob-
jective, BERT is pretrained on two tasks: predicting randomly
masked tokens and predicting whether two sentences fol-
low each other. Our sequence labeling keyphrase extraction
model follows the same architecture as BERT and is opti-
mized on scientific Chinesemedical abstracts.We use a feed-
forward neural networkwhich acts as a linear classifier layer
on top of the representations from the last layer of BERT to
compute character level IOB probabilities. Our model archi-
tecture is shown in Figure 2.

For a given token, its input representation is constructed
by summing the Wordpiece embedding [55], segment em-
bedding and position embedding. The first token of each
sequence is always the special token [CLS]. The segment
embedding is useful in sentence pairs task such as question
answering to differentiate sentence. Sentence pairs are sep-
arated by a special token [SEP] and a sentence A embed-
ding is added to each token in the first sentence while a
sentence B embedding is added to each token in the second
sentence. Our task is a single sentence task, so we only use
sentence A embeddings. The position embedding is used to

Figure 2.Character-Level Sequence Labeling Keyphrase Ex-
traction Model Architecture

indicate the location of the token in the text and can only
take the length lower than 512. A visual representation of
our character-level input representations is given in Figure
3.

In addition, BERT can only take the input with the max-
imum length of 512. Owing to this limitation, some source
input text will be truncated, causing the problem that the
model might predict some single character as keyphrases.
In most cases, single Chinese character makes no sense. We
find that some single Chinese characters are meaningful in-
cluding chemical elements in The Periodic Table such as ’
氢’,’氦’, organs such as ’胃’,’脾’ and animals such as ’鼠’,’
鸡’. So we design a user-defined lexicon to store meaningful
Chinese characters for further filtration.

Figure 3. Input Representations of Character-Level Se-
quence Labeling Keyphrase Extraction Model

4 Experiments & Results
4.1 Experimental Design
In this paper, we firstly conduct unsupervised baseline ex-
periments to demonstrate that traditional unsupervised two-
step keyphrase extraction methods are sensitive to N value
and the lexicon scale, which depends on precise manual set-
tings. Then before we use sequence labeling formulation to
Chinese keyphrase extraction task, we design comparative
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Table 3. Character-Level IOB Generation Results on Data Sets

Data Set P R F number of recognized
keyphrases

number of correct rec-
ognized keyphrases

number of ground-
truth keyphrases

Training Set 99.18% 99.42% 99.30% 416,013 409,371 408,373
Development Set 99.13% 99.54% 99.34% 25,942 26,169 26,061
Test Set 99.15% 99.56% 99.36% 13,344 13,458 13,403

Table 4. Word-Level IOB Generation Results on Data Sets

Data Set P R F number of recognized
keyphrases

number of correct rec-
ognized keyphrases

number of ground-
truth keyphrases

Training Set 91.15% 96.93% 93.96% 395,852 434,266 408,373
Development Set 91.35% 97.03% 94.11% 25,287 27,680 26,061
Test Set 90.99% 97.11% 93.95% 13,016 14,305 13,403

experiments using word-level and character-level formula-
tion on supervised machine learning baseline methods and
BERT-basedmethods to verify the effectiveness of character-
level. Finally, we compare the best unsupervised baseline
model, the best character-level machine learning baseline
model and our character-level BERT-based sequence label-
ing keyphrase extraction model to prove the strength of se-
quence labeling formulation and per-trained languagemodel.

Regarding to unsupervised baselines, We use some tradi-
tional approaches including term frequency, TF*IDF based
on single document, TF*IDF based onmulti-documents, Tex-
tRank. Here, TF*IDF based on single document means that
we just consider candidate keyphrases’ term frequency and
inverse document frequency based on one single document.
TF*IDF based on multi-documents means that we calculate
the statistics based on the whole data set. As we know, the
performance of traditional unsupervised approaches varies
with the value for N (number of top ranked keyphrases),
which is a parameter set manually. And traditional unsuper-
vised Chinese keyphrase extraction relies on Chinese tok-
enizer to generate candidate keyphrases. Usually, user-defined
lexicon will make a great difference to the results of Chinese
word segmentation.

So we design two groups of experiments using control
variable method for unsupervised baselines according to N
value and lexicon scale. Group 1 keeps the same lexicon
scale and compares the performance of baseline approaches
at different N value of 3 and 5 to ensure the stability of the
baseline approaches. Group 2 keeps the same N value and
compares the performance of baseline approaches when the
lexicon scale for the Chinese tokenizer is different to test
the transferability of baseline approaches. We set two kinds
of lexicon scales, one using all ground-truth keyphrases in
training set, development set and test set as lexicon, the
other just using ground-truth keyphrases in training set.

Regarding to supervised machine learning baselines, we
cast keyphrase extraction as a sequence labeling task in-
stead of a binary classification task and use CRF, BiLSTM,
BiLSTM-CRF algorithms as machine learning baselines.
4.2 Experimental Settings
As for unsupervised baseline approaches, we use Jieba for
Chinese word segmentation. Before generating candidate
keyphrases, we do some preprocessing steps, such as remov-
ing stop words and some special characters. We restrict can-
didate keyphrases within our user-defined lexicon and noun
phrases.

Of the threemachine learning baseline approaches, CRF[31]
is trained by regularized maximum likelihood estimation
and uses Viterbi algorithm to find the optimal sequence of
labels. BiLSTM and BiLSTM-CRF[23] are trained with Sto-
chastic Gradient Descent (SGD). The learning rate is set to
5e-4 and the model is trained for 15 epochs with early stop-
ping. The hidden layers are set to 512 units and the embed-
ding size is 768 in both models. In addition, the batch size is
set to 64.

For our BERT-based keyphrase extraction model, due to
systemmemory constraints, the batch size is set to 7 and we
use SGD to optimize Cross Entropy Loss. The initial learn-
ing rate is set to 5e-5 and gradually decreases to 5e-8 as the
training progresses and the model is trained for 3 epochs.

In this paper, we use F1-score to evaluate model perfor-
mance, which is the weighted average of precision and re-
call, taking both precision and recall into account.

4.3 Unsupervised Baseline Experiments
As for traditional unsupervised baseline experiments, we
conduct two groups of baseline approaches comparative ex-
periments according to N value and lexicon scale as what
we have mentioned in section 4.1.
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Table 5. N-value Comparative Experiments of Unsupervised Baseline Approaches

Method Top 3 Candidate Keyphrases Top 5 Candidate Keyphrases
P R F P R F

Term Frequency 47.66% 33.36% 39.24% 37.53% 43.78% 40.42%
TF*IDF Based on Single Document 50.56% 35.39% 41.61% 38.85% 45.33% 41.84%
TF*IDF Based on Multi Documents 54.14% 37.90% 44.59% 40.37% 47.11% 43.48%

TextRank 43.13% 30.19% 35.52% 33.29% 38.84% 35.85%

Table 6. Lexicon Scale Comparative Experiments of Unsupervised Approaches

Method P R F
Term Frequency(whole lexicon) 47.66% 33.36% 39.24%

Term Frequency(training set lexicon) 37.31% 26.11% 30.72%
TF*IDF Based on Single Document(whole lexicon) 50.56% 35.39% 41.64%

TF*IDF Based on Single Document(training set lexicon) 40.03% 28.03% 32.97%
TF*IDF Based on Multi Documents(whole lexicon) 54.14% 37.90% 44.59%

TF*IDF Based on Multi Documents(training set lexicon) 42.18% 29.53% 34.74%
TextRank(whole lexicon) 43.13% 30.19% 35.52%

TextRank(training set lexicon) 34.37% 24.06% 28.30%

For the group of N value experiments, we restrict the lexi-
con scale to whole lexicon, which contains author-assigned
keyphrases in all the training set, development set and test
set as user-defined lexicon for Jieba word segmentation. Ta-
ble 5 provides the results of N value comparison experiments
of baseline approaches. Increasing the N value will improve
the recall but lower the precision. We find that the F1-score
of baseline approaches varies with the N value, but TF*IDF
based onmulti-documents achieves best performance among
all baseline models no matter the N value. And when the N
value is 3, the F1-score of TF*IDF based on multi-documents
is 44.59%, which is higher than that when N value is 5.

For the group of lexicon scale experiments, we restrict N
value to 3 to compare baseline approaches at different lexi-
con scales. Table 6 presents the results of lexicon scale com-
parative experiments of baseline approaches. As we can see,
for all unsupervised baseline approaches, the performance
of using lexicon that only contains keyphrase in training
set for Jieba word segmentation drops at least 7% compared
to that of using whole lexicon. The results show that tradi-
tional keyphrases extraction approaches for Chinese medi-
cal abstracts have poor transferability so when transferring
traditional models to a new domain and no lexicon can be
used, the keyphrase extraction performance would be poor.

4.4 Word-Level and Character-Level Sequence
Labeling Comparative Experiments

Weuseword-level and character-level sequence labeling dataset
separately to train and evaluate supervised machine learn-
ing baseline models and BERT-based models.

4.4.1 SupervisedMachine Learning BaselineModels.

TheF1-score evaluationmetrics ofword-level and character-
level comparative experiments on machine learning base-
line models are listed in Table 7. As we can see, word-level
sequence labeling formulation is better than character-level
sequence labeling formulation for CRF and BiLSTM algo-
rithms while a little bit lower than character-level sequence
labeling formulation for BiLSTM-CRF algorithms. The rea-
son might be that BiLSTM-CRF is a more powerful model
to capture the contextual relationship among characters to
make up for the disadvantage that character-level formula-
tion doesn’t model the relationship among words directly.

4.4.2 BERT-based Models.

The precision, recall and F1-score evaluation metrics of
word-level and character-level sequence labeling compar-
ative experiments on BERT-based models are listed in Ta-
ble 8. For word-level sequence labeling formulation, we just
use the hidden state corresponding to the first character
of the word as input to the linear classifier, which is the
same approach used in [13] for named entity recognition
task. We find that the precision for word-level is extremely
lower than character-level and the F1-score of word-level
sequence labeling formulation is more than 20% lower than
character-level formulation. Detailed analysis are conducted
for this result. We assume that Chinese BERT uses Word-
piece tokenizer which will tokenize each Chinese word into
characters in the pretraining process. So Chinese BERT is
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Table 7. Word-Level and Character-Level Comparative Ex-
periments of Supervised Machine Learning Baselines

Method Word-Level Character-Level
CRF 47.90% 46.37%

BiLSTM 44.35% 38.38%
BiLSTM-CRF 49.86% 50.16%

Table 8. Word-Level and Character-Level Comparative Ex-
periments of BERT-based Models

Metrics Word-Level Character-Level
P 26.88% 60.33%
R 54.93% 59.28%
F 36.10% 59.80%

Table 9. Performance Evaluation of Keyphrase Extraction

Method P R F
TF*IDF(Baseline) 54.14% 37.90% 44.59%
BiLSTM-CRF(Baseline) 42.55% 61.09% 50.16%
BERT-based Model(our
model)

60.33% 59.28% 59.80%

Adjusted Model(our model) 61.95% 59.22% 60.56%

character-level and has learned good semantic representa-
tion of Chinese characters through pretraining, which can
maximize the advantages of the character-level sequence la-
beling formulation and avoid its shortcomings.

4.5 BERT-based Character-Level Experiments
From the results of the above word-level and character-level
comparative experiments, we decide to apply character-level
formulation to our BERT-based Chinese keyphrase extrac-
tion model and the best character-level machine learning
baseline model is BiLSTM-CRF. We compare the best unsu-
pervised method TF*IDF with our character-level sequence
labeling BiLSTM-CRF model and find that sequence label-
ing formulation is beneficial for Chinese keyphrase extrac-
tion task. And We use character-level BiLSTM-CRF to com-
pare with our character-level BERT-based model. The per-
formance results are summarized in Table 9. Compared with
BiLSTM-CRF, our BERT-based model achieves F1-score of
59.80%, exceeding that of baseline approach by 9.64%, which
shows that the pretrained language model captures rich fea-
tures that are useful for downstream keyphrase extraction
task. And we remove single Chinese characters that are not
in the user-defined lexicon. After removal, the keyphrase
extraction performance of our adjusted model reaches to
60.56%.

And we compare the predicted keyphrases with author-
assigned ground-truth keyphrases and find that some pre-
dicted phrases are concatenation of author-assigned keyphrases.
For example, there are two author-assigned keyphrases ’卒
中’ and ’抑郁’, while our model extracts keyphrases ’卒中
后抑郁’. Another example, there are two author-assigned
keyphrases ’ 急性肠胃炎’ and ’ 食源性疾病’, while our
model extracts keyphrases ’ 食源性胃肠炎’. These exam-
ples indicate that as though our model get the F1-score of
59.80%, our model can achieve good practical application
performance. In addition, it also indicates that the calcu-
lation of evaluation measure is an issue we need to con-
sider further. Using the proportion of predicted phrases that
exactly match the ground-truth keyphrases to assess the
model is actually not appropriate because there are some
biases for author-assigned keyphrases and sometimes the
phrases predicted by ourmodel are also concise descriptions
for the text.

5 Conclusions
In this paper,we formulate automatic keyphrase extraction
as a character-level rather than word-level sequence label-
ing task and use pretrained language model BERT to fine-
tune our keyphrase extraction model on scientific Chinese
medical abstracts.Through our experimental work, we prove
the benefits of this formulationwith this architecture, which
bypasses the step of Chinese tokenizer and leverages the
power of pretrained languagemodel. In addition,We also de-
sign comparative experiments to verify that character-level
formulation is more suitable for Chinese keyphrase extrac-
tion task under the trend of pretrained language model.

Our approach only dealswith keyphrase extraction rather
than keyphrase generation, so it can just handle extractive
keyphrases. In the future, we plan to build keyphrase gener-
ation model to extract keyphrases. And also we will explore
the solutions to solve the limitation of BERT’s maximum
sentence length to avoid being truncated.We expect some of
the findings in this paper will provide valuable experiences
for automatic keyphrase extraction and other NLP problems
like document summarization, term extraction etc.
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