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Abstract. Live artistic performance, like music, dance or acting,
provides an excellent domain to observe and analyze the mechanisms
of human-human collaboration. In this note, we use this domain to
study human-AI collaboration. We propose a model for collaborative
artistic performance, in which an AI system mediates the interac-
tion between a human and an artificial performer. We then instantiate
this model in three case studies involving different combinations of
human musicians, human dancers, robot dancers, and a virtual drum-
mer. All case studies have been demonstrated in public live perfor-
mances involving improvised artistic creation, with audiences of up
to 250 people. We speculate that our model can be used to enable
human-AI collaboration beyond the domain of artistic performance.

1 Introduction

Should AI systems augment humans, replace humans, or collaborate
with humans? This question is being regularly asked by both citizens
and policy makers, often boosted by the media, and researchers in all
fields are increasingly faced with the many facets of this question.

For the purpose of our discussion, we define the above three mod-
els as follows. Consider a task T , traditionally performed by a hu-
man. In the augmentation model, T is still performed by the hu-
man, and this is empowered with new tools and functionalities built
through AI. In the replacement model, T is instead performed by an
artificial agent built using AI technology. In both these models, the
task is performed by a single agent. In the collaboration model, by
contrast, T is performed jointly by two independent but collaborating
agents: a human agent, and an AI-based artificial agent.

The topic of collaborative AI, or how to make AI systems that col-
laborate with humans in performing a joint task, is the subject of in-
creasing interest in the AI community. The emphasis on the collabo-
ration model as opposed to the replacement model is also in line with
the Ethics Guidelines produced by the European High Level Expert
Group [14], and later adopted by the European Commission [10], that
insists that humans should maintain agency and oversight with re-
spect to AI systems. Aspects of collaborative AI have been studied in
several areas, including human-robot teams [18], shared agency [5],
hybrid human-AI intelligence [42], mixed-initiative systems [11] and
symbiotic systems [8]. In this note, we contribute to the study of
human-AI collaboration in a particularly telling domain: collabora-
tive artistic performance.
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Artistic performance, like music, dance or acting, provides an ex-
cellent setting to observe and analyze the mechanisms of human-
human collaboration, especially in live or improvised performance. It
seems natural, thus, to study human-AI collaboration in this setting.
Artistic creativity in general, and in music in particular, has been a
topic of interest for computer researchers since the early days of com-
puter science [15] and AI [27]. Ada Lovelace already noted in 1843
that computers “could potentially process not only numbers but any
symbolic notations, including musical and artistic ones” [19]. Today,
there is a rich literature of computational approaches to music [7, 29],
including many AI systems for music composition and improvisa-
tion [26]. As pointed out by Thom [38], however, most of these sys-
tems focus on the offline creation of music, and not on the online
collaborative performance between the human and the AI musicians:
the latter is what is usually referred to as co-creativity [21, 22]. No-
table exceptions in computational music are the early work on jazz
improvisation by Walker [41], and the work on a marimba playing
robot by Hoffman and Weinberg [17]. Co-creativity has also been
studied in other artistic areas, like theater [32], as well as in the more
general field of human-computer interaction [25].

In this paper, we study AI systems capable of on-line, collabora-
tive interaction with humans in the context of artistic performance,
with a specific focus on live music improvisation. The main contri-
bution of this paper is a general model for collaborative artistic per-
formance, in which an AI system mediates the interaction between
a human and an artificial performer. We show how this model has
been instantiated in three concrete case studies involving different
combinations of human musicians, human dancers, robot dancers,
and a virtual drummer. We also briefly discuss the complex problem
of how to evaluate human-AI collaborative interaction, especially in
an artistic context. We hope that our model can contribute to a bet-
ter understanding of the general mechanisms that enable successful
collaboration between AI systems and humans.

2 A model for Human-AI collaborative artistic
performance

The model that we propose for Human-AI collaboration in artistic
performance is illustrated in Figure 1. In this model, an AI system is
used as a mediator to coordinate the performance of two autonomous
agents: a human performer, and an artificial performer. This model
therefore comprises three elements: two performers and a mediator.

For illustration purposes, Figure 1 shows a guitar player as human
performer and a dancing robot as artificial performer. We emphasize,
however, that we use the term “artificial performer” in a broad sense,
to mean any agent that generates physical outcomes: this could be a
physical robot producing movements, a virtual instrument producing
sounds, or a projector producing artistic visualizations. In the case
studies reported below, we use an off-the-shelf commercial virtual
drummer and a off-the-shelf humanoid robot as artificial performers.



Figure 1. Black box view of our model for Human-AI collaboration. The
parameters of the artificial performer are adjusted to adapt to the human
performer, and the human performer naturally adapts to the artificial one.

Our model has the following distinctive features.

• Supervisory. The AI system does not directly generate the artistic
output. Instead, we assume that the artificial performer is capable
of autonomous artistic performance, whose modalities are con-
trolled by a fixed number of parameters. The parameters of interest
here are expressive parameters, that modulate the behavior of the
artificial performer to produce different artistic expressions. For
example, a robot may be able to autonomously perform a number
of dancing patterns, and parameters may make its motions more
aggressive or more subtle.

• Reactive. The goal of the AI system is to analyze the artistic ex-
pression in the live human performance, and to dynamically adapt
the parameters of the artificial performer to match this expression.
Thus, the behavior of the artificial performer is influenced by the
human performer, but it is not fully determined by this.

• Proactive. The AI system may be creative and proactive in set-
ting the performance parameters. The human performer hears or
sees what the artificial performer does, and may adjust to it (the
right-to-left arrow in Figure 1). Our hypothesis, which we aim to
verify trough empirical studies, is that this feedback loop will re-
sult in an harmonious joint performance between the human and
the autonomous agent.

By combining reactive and proactive behavior, our model imple-
ments the two directions in human-AI co-creativity described by Li-
apis and colleagues [24]: the human guides artificial creativity (re-
activity), and the AI system triggers human creativity (proactivity).
This also resonates with the idea of “directed improvisation” intro-
duced in the area of multi-agent human-computer interaction [13].

From the three features above, it should be clear that the key
move to achieve collaborative artistic performance in our model is to
align the artistic expressions of the two performers, each one realized
through its specific expressive means. The role of the collaborative
AI system is to realize this alignment. This alignment can be seen
as an artistic counterpart of inter-modal mapping, that is, the ability
of people to associate stimuli received in one modality, e.g., shapes,
to stimuli in another modality, e.g., sound [33]. In terms of musical
semiology [31], we can also see the function of the collaborative AI
system as a mapping from aesthetics (perception) to poietics (pro-
duction) that preserves artistic meaning.

3 System architecture
We have implemented the above model in a concrete system for col-
laborative artistic performance, which has been tested in a number of

Figure 2. White box view of our model, as implemented in the case studies
reported in this paper. The figure refers specifically to the first case study.

case studies, three of which are reported below. Figure 2 shows the
high-level architecture of this system, in the case where the human
performer is a jazz pianist and the artificial performer is a parametric
virtual drummer (first case study below).

The features extraction module analyzes input from the human
performer, in this case in the form of MIDI signals, and estimates the
value of a set of variables that represent the musical expression of
the performance, like the keypress velocity and the rhythmic density.
This module computes an expressive state represented by variables
that depend on the past and current input values, as well as variables
that predict future states. Examples of the former are the instanta-
neous velocity v(t), the average velocity v̄(t) over the last bar, and
the velocity slope ∆v(t); an example of the latter is a predicted cli-
max ĉ(t+ 1) at the end of an ongoing crescendo. Variables referring
to past, current and predicted states are represented in the figure by
xt−1, xt and xt+1, respectively.

The parameter generation module uses the above variables to de-
cide the values of the execution parameters of the artificial agent, so
as to continuously adapt its performance to match the current musical
expression of the human performer. In the case of a virtual drummer
shown in the picture, these parameters include the intensity I(t) and
complexity C(t) of the drumming, the drumming pattern P (t), and
the selective muting M(t) of some of the drums.

The above architecture can be interpreted in terms of the semantic
perception-production mapping mentioned above: in this view, fea-
ture extraction would correspond to aesthetics, parameter generation
to poietics, and expressive state variables represent artistic meaning.
The architecture also reminds of the listener-player schema for in-
teractive music systems originally proposed by Rowe [35], and later
used in several works [28]. However, the crucial difference is that
what are generated in our case are not performance contents (music
or movements) but performance parameters.

To implement both feature extraction and parameter generation,
we relied on a knowledge-based approach where knowledge from
the music experts was manually encoded into the system (the top
arrows in Figure 2). Our team includes both computer scientists and
musicians: discussions among these revealed that musicians possess
heuristic knowledge of how the drummer’s parameters depend on the
pianist’s play, and that this knowledge can be expressed in terms of
approximate rules using vague linguistic terms, like:

If rhythmic complexity on the lower register is high,
Then rhythmic complexity of drums should increase strongly.

This type of knowledge is suitably encoded in fuzzy logic [23], and
consequently we implemented both feature extraction and parame-



Case Input device Extracted expressive features Output device Generated expressive parameters

4.1 MIDI piano velocity, rhythmic density, velocity slope,
density slope, step change

Strike drummer intensity, complexity, pattern, fill, selective
drum mute

4.2 Motion tracker count, distance Strike drummer pattern, selective drum mute
4.3 MIDI piano velocity, rhythmic density, velocity slope,

density slope, step change
Pepper robot motion type, selective joint mute

Table 1. Configurations used in the three case studies

ter generation using multiple-input multiple-output Fuzzy Inference
Systems (FIS). Each FIS is based on the usual fuzzify-inference-
defuzzify pipeline found in classical fuzzy controllers [9]. To take
the temporal aspect into account in the feature extraction FIS, we use
a recurrent fuzzy system [1] that takes the current estimated state and
predictions as input. This solution allows us to capture the knowledge
of the musician about temporal patterns, e.g., about what counts as a
“sudden drop in intensity”, in a way that is both explicit and easy to
modify.

The same implementation has been used in all the case studies
reported below, with only minor changes to the fuzzy rules and the
membership functions. Further details of this implementation can be
found in [39]. For the purpose of this paper, we shall not discuss the
technical realization of our model in any depth; rather, we want to
demonstrate its applicability in breadth across different types of artis-
tic collaboration, and different types of human and artificial players.

4 Case studies
We now give concrete examples of how the above model was used
in three different case studies involving human-robot collaborative
artistic performance. Each case was implemented using fuzzy rule-
based systems as discussed in the previous section. In each case, the
features extracted from the input characterize the detected musical
expression of the human performer; and the parameters sent as output
represent the desired artistic expression of the artificial performer.
The input device, the output device, the extracted features and the
generated parameters are different for each case study, and they are
summarized in Table 1.

4.1 A human pianist and a virtual drummer
The first case study involves collaboration in live jazz performance.
The human performer was a pianist performing improvised jazz mu-
sic, while the robot performer was the commercial virtual drummer
Strike 2.0.7 [2]. The tempo and style were agreed before the per-
formance starts, as is commonly done among musicians, and manu-
ally set into the virtual drummer. The other parameters of the virtual
drummer were decided in real time by the AI system based on the
musical expressive features of the piano performance using the ar-
chitecture in Figure 2, as described in the previous section.

The architecture was implemented in Python 3.6.8 with the MIDO
library (1.2.9). The input comes from a MIDI piano, or from a MIDI
file for debugging purposes. The output was a MIDI signal, encoding
the parameters to be sent to the Strike drummer.

The resulting system was tested in two public concerts given at
the Music School of Örebro University, Sweden, in Spring 2019, at-
tended by about 60 and about 100 people, respectively. Video record-
ings from these concerts are available online at [3]. Figure 3 is a
snapshot from video of the second concert: the background screen

shows a visualization of the Strike drummer; the monitor on the
right shows the output membership functions generated by our sys-
tem, from which the system extracts the control parameters sent to
Strike. Although we did not collect structural feedback (e.g., ques-
tionnaires), informal comments by the audience were very positive,
with many people remarking that the drummer appeared to follow
(and sometime anticipate) the pianist in a natural way.

In addition to feedback from the audience, we also collected infor-
mal feedback from the artists. The pianist at the concerts commented
that the AI-controlled drummer was perceived as collaborative and
“human like”. He also remarked that it was often “surprising” in a
way that he did not expect a machine to be, and sometimes more
“proactive” than a human drummer might be, leading him to follow
what the drummer seemed to suggest, as per the feedback arrow in
Figure 1.

It is worth speculating a bit on the last point. We believe that this
feeling of proactivity is partly due to the use of expectations (xt+1)
in parameter generation, leading to an anticipatory behavior in the
drummer [34]. For example, when a step change is predicted, e.g.,
expecting to go from a forte to a piano, the system first mutes the
kick, and if the change is confirmed it then also mutes the snare.
The pianist may perceive the absence of the kick as a suggestion
for a change in mood, and either follow the suggestion and go to a
piano, or not follow it and persist with the forte. In the first case, the
drummer will also mute the snare; in the second case, it will unmute
the kick. An example of this proactive interaction can be observed in
the video recording at [3] around time 22:34.

Figure 3. A snapshot from a public concert given on June 12, 2019, during
the international symposium “Humans Meet Artificial Intelligence”.



Figure 4. The variation of our system used for the second case study. The
variables xt depend on the current position and distance of the dancers.

4.2 Two human dancers and a virtual drummer

Our second case study happened by serendipity. In October 2019,
the Music Tech Fest (MTF) art festival [30] was hosted at Örebro
University. There, our team met the Accents in Motion team, who had
previously researched the use of body movements to control sound.
We decided to join forces and explore if and how the performance
of the virtual drummer could follow two human dancer improvisers,
using our model.

To do this, we used the simplified version of our architecture
shown in Figure 4. The input to the system was taken from a Vicon
tracking system mounted in a large laboratory space. Together with
the artists, we decided the features to extract and how the drummer
should react to those. We drew an area on the floor to act as a “black
box” where dancers would be invisible to the tracking system. We
decided to extract two single features from the tracking system data:
the number of dancers that are visible (i.e., outside the “black box”),
and their mutual distance. For the parameter control part, we used
two simple principles. The distance among dancers would influence
the pattern of the drummer: the closer the dancers, the more complex
the pattern. The number of visible dancers would influence which
instruments are played: none with no dancer, only cymbals with one
dancer, all cymbals and drums with two dancers.

The above system was realized in collaboration with the Accents
in Motion team within an MTF lab, during two hectic days of work.
A performance was recorded on October 19, 2019, and shown at the
MTF closing night. A clip from that recording is available at [3].
Figure 5 shows a snapshot from the clip. The plot at the bottom shows
the temporal evolution of the ‘number’ and ‘distance’ variables: at

Figure 5. A snapshot from the “Music Tech Fest” lab on October 19, 2019

Figure 6. The system used for the third case study. The robot has been
enriched with control software to perform classical ballet movements.

the time of the snapshot, both dancers have just jumped out of the
“black box” and became visible to the system.

4.3 A human pianist and a robot dancer
In our last case study, we used our model to realize a collaborative
live performance of a jazz pianist and a robot dancer. Like in the first
case study the jazz pianist improvises, but this time the AI system
controls the execution parameters of a humanoid robot.

For this experiment, we have used the commercial robot Pepper,
produced by Softbank Robotics, as artificial performer. We used the
system shown in Figure 6. The collaborative AI system is the same
one used in the first case study, but now the performance parameters
are sent both to the virtual drummer and to the robot.

The robot has been enriched with a control software to continu-
ously perform dancing motions, synchronized with the pre-defined
beat, and generated from a library of basic motions inspired by clas-
sical ballet [12]. Movements may involve one or both arms, the head,
or the base, in any combination. The dancing motions are selected,
modified and chained depending on the parameters received from the
collaborative AI system. Some parameter values are mapped to dif-
ferent combinations of motions, which are decided randomly in or-
der to produce a more lively performance. Selective muting disables
some of the degrees of freedom, like the head or the base, and is typ-
ically used in response to more quiet passages by the piano. Further
details on the implementation of this test case are given in [40].

The above case study was demonstrated in a public performance at
the official yearly celebration of Örebro University, attended by about
250 people. A video recording is available at [3], Figure 7 shows

Figure 7. A snapshot from the public concert on January 31, 2020



Figure 8. Results from the online user study. Error bars represent ±1
standard error of the mean.

a snapshot from that video. The reaction from the audience to the
performance was overwhelmingly positive.

5 Evaluating collaborative performance

An open question for a human-AI collaborative system is how to
evaluate the effectiveness and added value of the collaboration. This
question is even more complex in the case of artistic collaboration,
where we are faced with the double problem of evaluating the collab-
orative aspect and the artistic aspect. Recently, some works have been
reported on the evaluation of collaborative human-robot systems [16]
and of artificial artistic creations [6, 20], but much still needs to be
understood in both domains and in their combination.

Bown [4] has suggested that the evaluation of artificial creative
systems should look at the subjective experiences of humans. In
the case of our model, the informal feedback received at the live
events indicated that both the audience and the musicians experi-
enced a feeling of harmonious collaboration between the performers.
We then decided to evaluate this feeling in quantitative terms, and we
run an online user study aimed at measuring the subject’s perception
of collaborative artistic performance in the third case study above.

The experimental setup was designed to highlight the collabora-
tion aspect rather than the quality of the robot’s performance. We
created two versions of the system based on Figure 6, a test one and
a control one. Both versions used the same artificial performers: the
Strike 2 virtual drummer, and the Pepper robot performing dancing
movements synchronized with the music beats. However, while the
test case used our collaborative AI system to decide the parameters
of the robot’s performance, in the control case those parameters were
selected randomly. (The parameters for the virtual drummer were
generated by our system in both cases.)

We recruited 90 subjects using the Amazon Mechanical Turk. Sub-
jects were randomly assigned to a test group (58), that were shown
videos of performances using the test version of the system; and
to a control group (32), that were shown videos of performances
using the control version. These videos can be seen at https:
//tinyurl.com/yyg67eco. Subjects were asked to rate a few
statements about the performance, using a 6-step Likert scale. The
survey was created and run using PsyToolkit [37].

The results of the experiment are visualized in Figure 8. Subjects
in test group consistently rated the statement “The robot follows the
music nicely” higher than those in the control group, showing that
our system successfully aligns the artistic performance of the robot
to the one of the pianist. The test group also gave higher rates to the

statement “The pianist and the robot perform in good harmony”, sup-
porting our hypothesis that the loop in Figure 1 leads to a perceived
sense of collaborative performance. Finally, the test group consis-
tently rated the statement “I enjoyed the overall performance” higher
than the control group, suggesting that our system may result in in-
creased perceived artistic value. Full details of this user study are
reported in [40].

6 Conclusions

We have proposed a model for collaboration between human agents
and artificial agents in artistic performance. Our model does not fo-
cus on the production of behavior in the artificial agent. Instead, we
assume that the artificial agent is already capable of autonomous per-
formance, and we focus on how an AI system can be used to modu-
late this performance through the manipulation of its parameters, to
harmoniously adapt to the performance of the human.

Co-existence, co-operation and co-creation between humans and
AI systems are today extremely important areas of investigation. Col-
laborative artistic performance among humans is one of the domains
where these phenomena are most visible, and it is therefore an ideal
domain where to study the foundations of human-AI collaboration.
We hope that the model, the case studies and the evaluation presented
in this note contribute to this study.

The implementation of the model used in our test cases is purely
knowledge-based. In this initial stage, this approach was chosen be-
cause it afforded us a quick bootstrap using existing music knowl-
edge. The knowledge-based approach also allowed us to go through
an open, modular and incremental development loop. Interestingly,
the music experts found that the process of eliciting knowledge was
rewarding for them. For example, they found that the need to describe
music performance in logical terms led them to develop a new ana-
lytical perspective on how, when and why different styles are being
chosen and used. Notwithstanding the advantages of the knowledge-
based approach, we plan in the near future to integrate this approach
with a data-driven approach for the feature extraction part, the param-
eter generation part, or both. This might help to complete the hand-
written rules, or to adapt them to the artistic taste of a given musician.
It might also allow us to use sub-symbolic input, like sound, rather
than symbolic one, like MIDI [36].

ACKNOWLEDGEMENTS

We are grateful to the Accents in Motion team (Andreas Bergsland,
Lilian Jap, Kirsis Mustalahti, Joseph Wilk) and to MD Furkanul Is-
lam for their collaboration in the second case study. Madelene Joels-
son kindly acted as pianist in the third case study, and Vipul Vijayan
Nair helped us with the survey. Work by A. Saffiotti and L. de Mi-
randa was supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreement 825619 (AI4EU).
The cross-disciplinary perspective was made possible thanks to the
CREA initiative (crea.oru.se) of Örebro University.
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