
A new OWLAPI interface for HEX-Programs applied to
Explaining Contingencies in Production Planning

Peter Schüller1

Abstract. Description Logics (DLs) and Logic Programs are for-
malisms for describing knowledge about the world. In industrial set-
tings, DLs are often used to describe factories and inventories, and
logic programs could be useful for planning production - if they can
be integrated with DLs. We here introduce a variation of the DL Pro-
gram formalism for integrating description logics with Answer Set
Programming (ASP). We a new implementation based on OWLAPI
and a use case in Explainable AI for production planning. Our inte-
gration is based on the HEX formalism and the Hexlite solver. Differ-
ent from previous work, we extend the integration interface to permit
an arbitrary number of parallel modifications of the OWL ontology
to be considered for the computation of a single answer set. This is
useful to model changes of the planning domain over time, where
each time step is a separate modification of the ontology.

We present a case study towards the EU recommendations on
‘Human-centered, trustworthy AI systems’, concretely we present a
production planning framework that can be challenged by users with
alternative scenarios. With our case study we argue that Explainabil-
ity in the context of planning is not about the rationale behind deci-
sions (those are defined by formal semantics and by the program) but
we argue that Explainability should mainly focus on the possibility
of human operators to challenge the system and request alternative
solutions under alternative assumptions. We provide the following
examples to show that Logic Programming requires only very small
modifications to provide insights by means of the following what-
if questions: (i) which machines could be deactivated without pre-
venting to reach the production goal and (ii) which product could be
skipped to reach a reduced production goal in a shorter time limit.

1 Introduction

Description Logics (DLs) are useful tools for describing knowledge
about objects in the world, and they are in practical usage in indus-
trial settings, where they are the basis for describing factory invento-
ries and production processes. These descriptions are static and usu-
ally considered timeless.

In production planning, processes in a factory change products
and materials. For planning it is useful to consider changes in the
assertional knowledge of an ontology. One method for planning is
the usage of Answer Set Programming (ASP) [4], which is a non-
monotonic knowledge representation formalism based on rules and
solver tools based on SAT solving techniques. In ASP planning, time

1 Technische Universität Wien, Institute of Logic and Computation,
Knowledge-Based Systems Group, Austria, peter.schueller@tuwien.ac.at

Copyright c© 2020 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0).

ClosedBox v Box closed boxes are boxes
OpenBox v Box open boxes are boxes
ClosedBox uOpenBox v ⊥ no box is both open and closed
MRobot v Robot there are manipulation robots . . .
PRobot v Robot . . . and painting robots
AffordsClosing v Affordance
AffordsOpening v Affordance
AffordsPainting v Affordance
OpenBox v AffordsClosing open boxes can be closed
ClosedBox v AffordsOpening closed boxes can be opened
ClosedBox v AffordsPainting closed boxes can be painted

Figure 1. Production Planning Terminology (OWL TBox).

r1 :MRobot r2 :MRobot r2 :PRobot
b1 :OpenBox b2 :OpenBox b3 :ClosedBox

Figure 2. Production Planning Assertions (OWL ABox): we have two
boxes b1 and b2 and two robots r1 and r2.

is represented as a sequence of steps and in each step different truth
values can hold in the world.

In practice, representing planning in DLs or representing ontologi-
cal knowledge in ASP is usually impractical.2 Therefore, it is natural
to integrate DLs and ASP in a way that both formalisms are used in
parallel within one integrated reasoning method. HEX is an ASP for-
malism for integrating ASP with external computations of all kinds,
and one existing method for integrating ASP with DLs, DL-programs
[8] actually use HEX as an underlying implementation formalism.

As a running example, consider an ontology about robots that can
manipulate and paint boxes: the TBox is shown in Figure 1, the ABox
of a concrete factory is shown in Figure 2. The goal of our production
planning is to find a sequence of actions that paint all boxes where
only robots in the class PRobot can paint and only closed boxes
afford3 painting. Finally, robots in the class MRobot can open and
close boxes. Consider now the following information we would like
to gain by quering this planning domain: (I) is there a plan that fin-
ishes the production within n1 steps, using as few actions as possible,
and what is that plan; (II) if we would have n2 > n1 steps available,
which robots could we omit from the domain and still finish the job
in time; (III) if we have only n3 < n1 steps available, which product

2 It is sometimes possible due to complexity results.
3 Affordances are a popular concept in robotics regarding prototypical ac-

tions: if an object affords a certain action, it provides the possibility to be
affected by that action. An affordance is a property of an object, not an
agent, and some agents might not be capable of performing the action due
to geometric constraints or missing actuators.

could we omit from production to finish the other products in time.
DL-programs [8] are well-suited to express planning domains, in-

cluding the above explanatory queries to the planning domain. DL-
programs permit queries to ontologies based on a modification of
an ontology that depends on the answer set of the solver. There-
fore, DL-programs provide a bidirectional integration between ASP
and DLs. Unfortunately, the concrete syntactic realization of DL-
programs makes it cumbersome to encode production planning prob-
lems, because it is necessary to represent each time step using distinct
logical predicates. Moreover, there is no current working implemen-
tation of DL-programs available as the licensing and the API of the
underlying DL reasoner has changed.

In the following, we use the idea of DL-programs but we develop
and present the problem directly within the HEX-formalism. This re-
moves one layer of abstraction and simplifies presentation.

ASP is often praised for its Elaboration Tolerance [18] which is the
property to create modular programs with a separation of concerns
among program parts, and the possibility to modify each concern
separately and easily without a need to modify other parts of the pro-
gram. ASP also provides multiple answers and alternative solutions.
This makes AI systems based on ASP suitable for addressing several
concerns of the EU recommendation on ‘human-centered, trustwor-
thy AI systems’, in particular

• Human Agency, concretely to ‘self-assess and challenge the sys-
tem‘; and

• Technical Robustness, concretely to provide ‘Fallback Plans‘.

We next address above challenges and make the following contri-
butions.

• We introduce a new way of interfacing with DLs from HEX where
it is easily possible to describe multiple ontology modifications
in the extension of one predicate, which facilitates the encoding
of domains where multiple alternative worlds must be considered
and we do not know beforehand how many of such alternative
worlds exist. Planning is such a domain.

• We implement this integration using the OWLAPI interface and the
HEXLITE solver [21], which provides a free and universal API for
OWL DLs to be used together with answer set programs. HEXLITE

is based on CLINGO [12] and therefore uses the state of the art in
ASP solving. OWLAPI interfaces with many existing DL reason-
ers.

• We present a use case of production planning where action pre-
conditions are defined by the ontology, action effects are realized
as ontology modifications in the HEX program, and the initial state
of the world is taken from the ontology, including in particular all
individual names which are not known to the HEX program prior
to solving.

• We formulate our thoughts about how Explainability can be re-
alized in Logic programs and argue that the classical notion of
Explainability does not apply to Logic Programming, and that
instead the possibility to challenge the system with alternative
scenarios is an appropriate way to make a Logic Program more
human-centric.

• We discuss a possible usage of the production planning encoding
for obtaining explanations about feasible and necessary changes in
the production process to reach given production goals. Such rea-
soning can be useful for optimizing the factory and for hardening
it against equipment malfunctions.

In the following, in Section 2 we provide preliminaries of HEX-
programs and Description Logics, in Section 3 we describe the new

framework for integrating OWLAPI in HEX and comment on the im-
plementation, in Section 4 we use the framework for demonstrating
how to explain contingencies in production planning, we discuss Ex-
plainability in Section 5 and we conclude in Section 6 with a brief
discussion.

2 Preliminaries

2.1 HEX - Answer Set Programming with External
Computations

We give syntax and semantics of the HEX formalism [5] which gener-
alizes logic programs under answer set semantics [13] with external
computations. A comprehensive introduction to HEX is given in [10].
HEXLITE4,5 [21] is a solver for the HEX formalism which is based
on Clingo [12] and enables implementation of external computations
using PYTHON.

HEX Syntax

Let C, X , and G be mutually disjoint sets whose elements are called
constant names, variable names, and external predicate names, re-
spectively. Usually, elements from X and C are denoted with first
letter in upper case and lower case, respectively; while elements from
G are prefixed with ‘ & ’. Elements from C ∪ X are called terms. An
(ordinary) atom is a tuple p(Y1, . . . , Yn) where p∈C is a predicate
name and Y1, . . . , Yn are terms and n ≥ 0 is the arity of the atom.
An atom is ground if all its terms are constants. An external atom is
of the form &g[Y1, . . . , Yn](X1, . . . , Xm), where Y1, . . . , Yn and
X1, . . . , Xm are two lists of terms, called input and output lists,
respectively, and &g ∈ G is an external predicate name. We as-
sume that input and output lists have fixed lengths in(&g) = n and
out(&g) = m. With each term Yi in the input list, 1 ≤ i ≤ n, we
associate a type ti ∈ {cons} ∪ N. We call the term constant input
iff ti = cons, otherwise we call it predicate input of arity ti.

A rule r is of the form α1 ∨ · · · ∨ αk ←
β1, . . . , βn, not βn+1, . . . , not βm with m, k ≥ 0 where all
αi are atoms and all βj are either atoms or external atoms. We
let H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪ B−(r), where
B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. A
HEX-program is a finite set P of rules.

HEX Semantics

Given a rule r, the grounding grnd(r) of r is obtained by system-
atically replacing all variables with constants from C. Given a HEX-
program P , the Herbrand base HBP of P is the set of all possi-
ble ground versions of atoms and external atoms occurring in P ob-
tained by replacing variables with constants from C. The grounding
grnd(P) of P is given by grnd(P) =

⋃
r∈P grnd(r). Importantly,

the set of constants C that is used for grounding a program is only
partially given by the program itself: external computations may in-
troduce new constants, for example external computations can import
individual names from an ontology.

Extensional Semantics [9, 5] of external atoms are defined
as follows: we associate a (n+1)-ary extensional evaluation
function F&g with every external predicate name &g ∈ G.
Given an interpretation I ⊆ HBP and a ground input tuple

4 github.com/hexhex/hexlite
5 www.ai4eu.eu/resource/hexlite

2

(x1, . . . , xm), F&g(I, y1, . . . , yn) returns a set of ground output tu-
ples (x1, . . . , xm). The external computation is restricted to depend
(a) for contant inputs, i.e., ti = cons, only on the constant value of
yi; and (b) for predicate inputs, i.e., ti ∈ N, only on the extension of
predicate yi of arity ti in I .6

An interpretation I ⊆ HBP is a model of an atom a, denoted
I |= a if a is an ordinary atom and a ∈ I . I is a model of a ground
external atom a = &g [y1, . . . , yn](x1, . . . , xm) if (x1, . . . , xm) ∈
F&g(I, y1, . . . , yn). Given a ground rule r, I |= H(r) if I |= a for
some a ∈ H(r); I |= B(r) if I |= a for all a ∈ B+(r) and I 6|= a
for all a ∈ B−(r); and I |= r if I |= H(r) whenever I |= B(r).
Given a HEX-program P , I |= P if I |= r for all r ∈ grnd(P); the
FLP-reduct [11] of P with respect to I ⊆ HBP , denoted fP I , is the
set of all r ∈ grnd(P) such that I |= B(r); I ⊆ HBP is an answer
set of P if I is a minimal model of fP I , and we denote by AS(P)
the set of all answer sets of P .

An important shortcut notation that we use in this work
is the guess in the head of a rule: {α1; · · · ;αk} ←
β1, . . . , βn, not βn+1, . . . , not βm with m, k ≥ 0 is rewritten into
a set of rules such that, given the rule body is satisfied, candidate an-
swer sets are generated which contain all subsets of {α1, . . . , αk}.

2.2 Description Logics and OWLAPI

Description Logics (DLs) [1] are logics of limited expressivity with
decidable reasoning. In particular a DL usually permits only unary
and binary predicates, called concepts and roles, respectively. DL
reasoning is usually organized in a TBox (terminological axioms)
and in an ABox (assertional axioms).

For the purposes of this paper it is sufficient to introduce concept
inclusion axioms, concept intersection, the empty concept, and con-
cept assertions. Concept inclusion axioms of form C v D denote
that ∀x : C(x) → D(x), i.e., every instance in concept C is also
in concept D. Concept intersection C u D is a concept expression
that contains the intersection of two concepts, i.e., all instances that
are both in C and in D. The empty concept, ⊥, denotes an impossi-
ble class that is always empty. A concept membership axiom of form
i : C denotes that the individual/constant i is in concept C.

Example 1. In our running example TBox in Figure 1, the meaning
of each axiom is written next to the axiom, except for the affordances
which can be read as ‘AffordsClosing is an Affordance’, etc. The
ABox in Figure 2 introduces individual constants into the theory and
assigns concept memberships to them.

Answer Set Programs and DLs have been combined in Description
Logic Programs (DL-Programs) [8]. This formalism paved the way
for the development of HEX-programs. In brief, DL-programs are
Answer Set Programs with special DL-atoms of form

DL[C1 op1 p1, . . . , Cm opm pm;Q](~t)

which evaluates the DL-Query Q on an ontology modified by op-
erations of form C op p and evaluates to true for all tuples ~t in the
result of query Q. The modifications can add (op =]) or subtract
(op = ∪-) the extension of predicate p from the assertions of concept
C. Note that one DL-atom always takes the whole extension of all
predicates p1, . . . , pm to modify the ontology.

6 Formally, this is the set {yi(v1, . . . , vti) ∈ I}.

3 Parameterized Multi-Modification-Integration of
OWLAPI in HEX

Our novel integration interface has two major components: a repre-
sentation for ontology modifications in ASP atoms (Section 3.1) and
external atoms that query the ontology based on these modifications
(Section 3.2).

3.1 Ontology Modifications
Ontology modifications are represented as atoms in ASP as follows.

Definition 1. A modification atom is of the form

δ(τ, µ) (1)

with δ some predicate name, τ ∈ N and µ one of the following terms:

addc(C, I) addop(OP , I1, I2) adddp(DP , I,D) (2)

delc(C, I) delop(OP , I1, I2) deldp(DP , I,D) (3)

where C, OP , and DP are OWL Class, Object Property, and Data
Property IRIs, respectively, I , I1, and I2 are OWL Individual IRIs,
and D is either an integer or a string parseable as OWL Data value.

Intuitively the modifications in (2) add ABox assertions and those
in (3) remove ABox assertions.

3.2 External Atoms
External atoms for querying the ontology are of the following form,
where ω is a specifier for the ontology and δ/τ are as above.

&dlConsistent [ω, δ, τ]() for consistency of the ontology (4)

&dlC [ω, δ, τ,C](I) for querying class instances (5)

&dlDP [ω, δ, τ,DP](I1 , I2) for querying data properties (6)

&dlOP [ω, δ, τ,OP](I1 ,D) for querying object properties (7)

Intuitively, these external atoms query the ontology ω after it has
been modified using all modifications in the extension of δ in the
current answer set candidate I , selected by τ . Formally, the above
external atoms perform reasoning on the ontology modified by

{µ | δ(τ, µ) ∈ I}.

Example 2. In our running example, the external atom

&dlC[onto,delta,T,"ex:AffordsOpening"](B)

with T=0 and an empty extension of delta is false for B=b1
and true for B=b2, because the ontology contains assertions b1 :
ClosedBox and b2 : OpenBox from which the reasoner infers that
b1 affords opening (via Axiom ClosedBox v AffordsOpening) but
b2 does not.

The HEX-program defines in each time step T that the modification
of the ontology corresponds with the planning state which is repre-
sented in predicate s(Box,State,T). Therefore, if at T=2 some
action has caused a change in the state such that s(b1,open,2)
and s(b2,open,2) are true, then the above external atom, with
T=2, is false for both B=b1 and B=b2.

The format of the ontology specifier ω is a string pointing to a
JSON file that holds the location of the OWL ontology file and pro-
vides namespaces for usage in ASP.

3

Example 3. In our running example, the file meta.json has the
following content.

{

"load-uri": "sample.owl",

"namespaces": {

"owl": "http://www.w3.org/2002/07/owl#",

"ex": "http://www.kr.tuwien.ac.at/hexlite/example#"

}
}

3.3 Implementation
The external atoms (4)–(7) have been implemented in the OWLAPI

Plugin7,8 for the HEXLITE [21] solver. The plugin uses JPYPE9 to
access OWLAPI10 [17] and as reasoner currently uses HERMIT11 [16].

To facilitate value invention from the ontology, i.e., to allow for
importing all individual names from the ontology instead of speci-
fying them in the HEX program, the OWLAPI plugin contains ‘read-
only’ external atoms of the form

&dlCro[ω,C](I)

&dlDPro[ω,DP](I1 , I2)

&dlOPro[ω,OP](I1 ,D)

which correspond to (5)–(7) but operate on the unmodified ontology.

4 Use Case: Explaining Contingencies in
Production Planning

Here we concretely develop the use case described in the Introduc-
tion as a HEX-program.

Figure 3 shows a HEX-program that integrates action planning
with reasoning over the ontologies in Figures 1 and 2.

The following predicates are particularly important in this encod-
ing:
• the state of the world is represented in a fluent predicate of the

form s(<item>,<state>,<timestep>) which represents which item is
in which state at a given time step;

• actions in the world are represented in a predicate of the form
do(<action>,<timestep>) which represents what is done at which
time step.

Conceptually, actions are applied to a state at time step T and their
effect is realized in time step T + 1.

4.1 Encoding
From top to bottom, the encoding contains the following sections
(see also the comments in the figure).
• The constant onto is defined that points to the JSON file describing

ontology location and namespaces;
• a sequence of time steps, starting from 0 until finaltimestep is de-

fined, and all but the last time step are steps where actions can
happen (actStep);

• the set of known robot and box constants is imported read-only
from the ontology into domain predicates box and robot;

7 github.com/hexhex/hexlite-owlapi-plugin/
8 www.ai4eu.eu/resource/hexlite-owlapi-plugin/
9 github.com/jpype-project/jpype/
10 github.com/owlcs/owlapi
11 www.hermit-reasoner.com/

c o n s t on to =” meta . j s o n ” .

% t i m e s t e p s
s t e p (0 . . f i n a l t i m e s t e p) .
n e x t (T , T+1) :− s t e p (T) , s t e p (T + 1) .
a c t S t e p (T) :− n e x t (T ,) .

% r o b o t s and boxes are t a k e n from t h e o n t o l o g y
r o b o t (Robot) :− &dlCro [onto , ” ex : Robot ”] (Robot) .
box (Box) :− &dlCro [onto , ” ex : Box”] (Box) .

% d e r i v e i n i t i a l s from t h e o n t o l o g y
s (Box , open , 0) :− &dlCro [onto , ” ex : OpenBox”] (Box) .
s (Box , c l o s e d , 0) :− &dlCro [onto , ” ex : ClosedBox ”] (Box) .

% f l u e n t i n e r t i a , mutua l e x c l u s i v i t y o f open and c l o s e d
s (A, B , T ’) :− s (A, B , T) , n e x t (T , T ’) , not −s (A, B , T ’) .
−s (Box , c l o s e d , T) :− s (Box , open , T) .
−s (Box , open , T) :− s (Box , c l o s e d , T) .

% t h e s t a t e o f open / c l o s e d i s p r o p a g a t e d t o t h e o n t o l o g y
d e l t a (T , addc (” ex : ClosedBox ” , Box)) :− s (Box , c l o s e d , T) .
d e l t a (T , d e l c (” ex : OpenBox ” , Box)) :− s (Box , c l o s e d , T) .
d e l t a (T , addc (” ex : OpenBox ” , Box)) :− s (Box , open , T) .
d e l t a (T , d e l c (” ex : ClosedBox ” , Box)) :− s (Box , open , T) .

% r e q u i r e c o n s i s t e n t o n t o l o g y a t each t ime s t e p
:− n o t &d l C o n s i s t e n t [onto , d e l t a , T] , s t e p (T) .

% a c t i o n s a r e l i c e n s e d t h r o u g h t h e o n t o l o g y
{ do (a c t (open , Robot , Box) , T) } :− a c t S t e p (T) ,

&dlC [onto , d e l t a , T , ” ex : Af fo rdsOpen ing ”] (Box) , box (Box) ,
&dlC [onto , d e l t a , T , ” ex : MRobot ”] (Robot) , r o b o t (Robot) .
{ do (a c t (c l o s e , Robot , Box) , T) } :− a c t S t e p (T) ,

&dlC [onto , d e l t a , T , ” ex : A f f o r d s C l o s i n g ”] (Box) , box (Box) ,
&dlC [onto , d e l t a , T , ” ex : MRobot ”] (Robot) , r o b o t (Robot) .
{ do (a c t (p a i n t , Robot , Box) , T) } :− a c t S t e p (T) ,

&dlC [onto , d e l t a , T , ” ex : A f f o r d s P a i n t i n g ”] (Box) , box (Box) ,
&dlC [onto , d e l t a , T , ” ex : PRobot ”] (Robot) , r o b o t (Robot) .

% on ly one a c t i o n p e r r o b o t p e r t ime p o i n t
:− s t e p (T) , r o b o t (R) , 2<=#c o u n t{ A, B : do (a c t (A, R , B) , T) } .
% on ly one a c t p e r box p e r t ime p o i n t
:− s t e p (T) , box (B) , 2<=#c o u n t{ A, R : do (a c t (A, R , B) , T) } .

% a c t i o n e f f e c t s
s (Box , open , T ’) :− do (a c t (open , , Box) , T) , n e x t (T , T ’) .
s (Box , c l o s e d , T ’) :− do (a c t (c l o s e , , Box) , T) , n e x t (T , T ’) .
s (Box , p a i n t e d , T ’) :− do (a c t (p a i n t , , Box) , T) , n e x t (T , T ’) .

Figure 3. Production Planning Domain (HEX-program).

• the initial state of the planning domain is obtained from the ontol-
ogy;

• all fluents are inertial, i.e., the fluent state it is maintained unless
otherwise specified, moreover a box cannot be open and closed at
the same time;

• the fluents are represented in delta predicates so that the OWLAPI

integration can represent the fluent values not only in ASP but also
in the ontology;12

• we require consistency of the ontology for all time steps, using the
&dlConsistent external atom;

• we guess which action is applied, where actions are licensed by
certain affordances on boxes and can be performed by certain
robot types;

• we constrain actions so that each robot can only perform one ac-
tion at each step, and each box can be affected by only one action
at each step; finally

• we define the effect of actions on the fluents.
12 Note, that we remove the OWL assertions that correspond with non-true

fluent values, and we add assertions for true fluent values. This ensures that
the initial state (which is represented in the ontology in form of OpenBox
and ClosedBox assertions does not interfere with reasoning in time steps
T > 0. We could get rid of all ‘del’ operations by using a separate ontol-
ogy for specifying the initial state. This is possible using the plugin but it
would complicate the example.

4

(c) % make a c t i o n s as e a r l y as p o s s i b l e
% and as few as p o s s i b l e
:∼ do (A, T) . [T+1@1,A]

(i) % aim t o f i n i s h i n t i m e s t e p 3
c o n s t f i n a l t i m e s t e p =3 .

% r e q u i r e boxes t o be p a i n t e d i n t h e f i n a l s t e p
:− box (B) , not s t a t e (B , p a i n t e d , f i n a l t i m e s t e p) .

(ii)
% aim t o f i n i s h i n t i m e s t e p 5
c o n s t f i n a l t i m e s t e p =5 .

% d e a c t i v a t e as many r o b o t s as p o s s i b l e
{ e x p l a n a t i o n (d e a c t i v a t e (R)) } :− r o b o t (R) .
:∼ not e x p l a n a t i o n (d e a c t i v a t e (R)) , r o b o t (R) . [1@2, R]

% d e a c t i v a t e d r o b o t s ca nn o t do a c t i o n s
:− e x p l a n a t i o n (d e a c t i v a t e (R)) ,

a c t S t e p (S) , do (a c t i o n (, R ,) , T) .

% r e q u i r e boxes t o be p a i n t e d i n t h e f i n a l s t e p
:− box (B) , not s t a t e (B , p a i n t e d , f i n a l t i m e s t e p) .

(iii)
% aim t o f i n i s h i n t i m e s t e p 2
c o n s t f i n a l t i m e s t e p =2 .

% g u e s s which boxes t o s k i p f o r p a i n t i n g
{ e x p l a n a t i o n (sk ip (B)) } :− box (B) .
% s k i p as few as p o s s i b l e
:∼ e x p l a n a t i o n (sk ip (B)) , box (B) . [1@2, B]

% r e q u i r e non−s k i p p e d boxes t o be p a i n t e d
:− box (B) , not e x p l a n a t i o n (sk ip (B)) ,

not s t a t e (B , p a i n t e d , f i n a l t i m e s t e p) .

Figure 4. Production Planning Queries (HEX-program fragments): (c)
common optimization constraint, (i) planning query “paint all boxes within 3

time steps”, (ii) explanation query “which robots could be omitted when
achieving (i) within 5 time steps”, (iii) explanation query “which boxes need

to remain unpainted when attempting (i) within 2 time steps”.

Given a value for finaltimestep this encoding does not contain a plan-
ning goal, that means it will produce all possible plans and all re-
sulting states without a restriction on the final state. For example,
resulting plans include the plan without actions, and the plan that
repeatedly opens and closes a single box.

4.2 Queries and Results

Figure 4 contains HEX-program fragments (C) and (I)–(III) that can
be added to the encoding in Figure 3 to query the domain for certain
planning goals.
(C) The weak constraint in (C) incurs a cost of T for each action at

time step T at priority level @1, that means the solution will aim
to use as few actions as possible and they will be done as early as
possible.

(I) Fragment (I) defines a query for plans that end at time step 3. The
constraint requires that all boxes must be painted at the final time
step.

(II) Fragment (III) queries for plans with final time step 5 and
guesses for each robot whether it shall be deactivated or not. A
maximum of robots will be deactivated at priority level @2. More-
over, for a deactivated robot all actions are forbidden and we again
require all boxes to be painted in the final step.

(III) Fragment (III) defines a query for plans that end at time step 2.
A guess is done for skipping certain boxes. The weak constraint
incurs a cost for each box skipped at priority level @2. Finally we
require all non-skipped boxes to be painted at the final time step.

When we compute answer sets using the above program fragments
integrated with the above ontology, we obtain the following results.

(C)+(I) Painting all boxes until time step 3: Table 1 shows two
optimal answer sets for this query. We observe that the integration
successfully permitted only those actions that are licensed by affor-
dances in the ontology. Multiple plans of the same quality exist, they
differ in the order of closed and painted boxes. Table 2 provides the
ontology modifications that are used in each time step of the planning
to obtain the first plan in Table 1.

(C)+(II) Explaining how to reduce the number of robots by
achieving the goal only at time step 5: Table 3 shows one of the
optimal answer sets: an explanation together with a witnessing plan.
We observe that the robot r2, which can both paint and manipulate
boxes, was chosen to do the whole work, and r1, which can only
manipulate boxes, was deactivated. As in the previous example, mul-
tiple plans of same quality exist. However, all plans deactivate r1
because without r2 the goal can not be reached.

Table 1. Two optimal plans (states + actions) for query (C)+(I): painting
all boxes until step 3.

Step b1 b2 b3 Actions

0 open open closed r1 closes b1
r2 paints b3

1 closed open closed r1 closes b2
painted r2 paints b1

2 closed closed closed r2 paints b2
painted painted

3 closed closed closed
painted painted painted

Step b1 b2 b3 Actions

0 open open closed r1 closes b2
r2 paints b3

1 open closed closed r1 closes b1
painted r2 paints b2

2 closed closed closed r2 paints b1
painted painted

3 closed closed closed
painted painted painted

Table 2. Ontology states corresponding to time steps for the first plan in
Table 1.

Step Effective Ontology Modifications

0 delc (”ex:ClosedBox”,b1) addc(”ex:OpenBox”,b1)
delc (”ex:ClosedBox”,b2) addc(”ex:OpenBox”,b2)
delc (”ex:OpenBox”,b3) addc(”ex:ClosedBox”,b3)

1 delc (”ex:OpenBox”,b1) addc(”ex:ClosedBox”,b1)
delc (”ex:ClosedBox”,b2) addc(”ex:OpenBox”,b2)
delc (”ex:OpenBox”,b3) addc(”ex:ClosedBox”,b3)

2 delc (”ex:OpenBox”,b1) addc(”ex:ClosedBox”,b1)
delc (”ex:OpenBox”,b2) addc(”ex:ClosedBox”,b2)
delc (”ex:OpenBox”,b3) addc(”ex:ClosedBox”,b3)

3 Ontology is not evaluated (step 3 is not an actStep)

(C)+(III) Explaining how to finish the work until time step 2 by
skipping a product: Table 4 displays one of the optimal explana-
tions together with its witnessing plan. Note that b2 is not touched
by the robots, although r1 is idle in Step 1 and could close it. This

5

Table 3. Optimal plan for (C)+(II): explaining how to reduce the number
of robots by postponing the goal to time step 5.

Explanation: ‘deactivate r1’

Step b1 b2 b3 Actions

0 open open closed r2 closes b1

1 closed open closed r2 closes b2

2 closed closed closed r2 paints b2

3 closed closed closed r2 paints b3
painted

4 closed closed closed r2 paints b1
painted painted

5 closed closed closed
painted painted painted

can be explained by constraint (C) which requires robots to perform
only the minimally required actions for reaching the goal.

Table 4. Optimal plan for (C)+(II): explaining how to reduce the number
of robots by postponing the goal to time step 5.

Explanation: ‘skip b1’

Step b1 b2 b3 Actions

0 open open closed r1 closes b1
r2 paints b3

1 closed open closed r2 paints b1
painted

2 closed open closed
painted painted

5 Explainability
In this section, we argue that Explainability as it is usually under-
stood is not applicable to Answer Set Programming and propose an
alternative.

The classical notion of Explanation in AI aims to provide to the
user of a system at least some parts of the rationale, assumptions,
data, and reasoning process that leads to a decision. In the case of
Logic Programming, decisions are made on (i) the basis of a math-
ematical framework, i.e., based on the mathematical definition of
Logic Programming, (ii) based on the program given by the program-
mer, and (iii) based on the query we pose to the program, again in the
shape of program rules that have clearly defined syntax and seman-
tics. Therefore, explanations of the classical form would amount to
teaching formal semantics and presenting the program that is rea-
soned upon by the solver software, which is neither feasible for an
end-user nor does it serve the intention of Explainability. Classical
explanations apply mostly to Machine Learning systems where the
system makes a decision based on input data and a model learned
from training data, and where usually a big amount of input data
(such as audio or video data) is fed to an algorithm that makes a
decision that is based on a small part of that input data.

Classical Logic Programming makes no decisions in the presence
of uncertainty, it produces multiple solutions that are equally viable.
In case of optimization criteria, it is also clearly determined which
solution(s) are preferred.

Teaching end-users the formal semantics of ASP so that they can
understand the reasoning process and programs requires to make

end-users experts in order to use explanations. This approach would
be too fine-grained to have any practical value. Therefore, a more
macroscopic approach for Explainability is necessary.

We therefore argue that the best way to gain Explainability in
Logic Programming is an interaction possibility where users can
(i) challenge the system with alternative scenarios, (ii) explore dif-
ferences between alternative solutions to a single scenario, and
(iii) change optimization criteria to explore their effect on solutions.
The short query snippets we presented in the previous section (Fig-
ure 4) provide such a way of challenging the system using concise
program additions or modifications.

The ASP literature contains several studies about such types of
Explainability under the names Diagnosis [3], Debugging [20], and
Explaining Inconsistency [22].

6 Discussion, Related and Future Work

We have described a new interface for integrating Description Log-
ics, in particular every DL reasoner that is compatible with OWLAPI,
with logic programming under Answer Set Semantics, concretely us-
ing the HEX formalism. The benefit of such an integration is, that the
ontology is used in its original form, and that the ASP planning do-
main permits all freedoms that ASP provides for planning, as demon-
strated by our example use cases with explanatory queries. An alter-
native solution for integrating ontologies with logic programs would
be to convert the ontology into a logic program, but this creates the
need for a conversion process and for maintenance of not only the
ontology but also the conversion process.

Using logic programming for planning is only one possibility
among many others. The benefit of using Answer Set Program-
ming is the power and freedom that comes with a guess-and-check
paradigm where guesses and constraints and optimizations can be
combined freely. In particular, Answer Set Programming permits
expressive representations such as indirect effects/ramifications and
domain-global constraints and optimization criteria that are difficult
or impossible to model in STRIPS and PDDL.

Related Work

DL-Programs [8] permit the integration of DL reasoning into an ASP
planning domain similar to our domain above, however for each time
step a separate DL atom with a separate delta predicate would be
required (i.e., for n time steps we would need to define delta1, . . . ,
deltan and create n instances of all rules in Figure 3 where δ is used).
Therefore, our new integration interface does not increase expressiv-
ity but it greatly improves conciseness, readability, and maintainabil-
ity of the encoding, because ASP variables can be used to express
selection of a certain sub-extension of delta to be used as ontology
modification.

Action Languages, e.g., PDDL [19] or AR [14] are custom
languages for representing planning domains. While basic PDDL
does not provide support for non-deterministic effects, its extension
PPDDL supports representation of probabilistic effects andAR (and
several other planning languages) support representation of possi-
bilistic effects (i.e., effects that can happen without providing a prob-
ability). These action languages usually come with specific reasoning
methods and do not support what-if scenarios out of the box, unless
they can be represented directly in the respective planning input lan-
guage. ASP planning has the advantage that everything is represented
as an ASP rule and the programmer is free to modify rules in order

6

to represent additional what-if scenarios just by replacing a deter-
ministic rule by a rule with a guessing construction in the head, or
by weakening or strengthening the rule in other ways. However, the
advantages of dedicated action languages and the freedom of repre-
sentation in ASP can be combined by rewriting a planning domain
to ASP rules for evaluating it in a generic ASP solver. This has been
done, e.g., for the K [6, 7] and C+ [2, 15] planning languages.

Future Work

As future work on the API side of the integration, we see an exten-
sion of the interface to permit arbitrary DL queries using the OWLAPI

DL Query Parser, and additional ontology modifications that permit
adding and removing axioms. As future work on the implementa-
tion side, it will be necessary to generate on-demand constraints that
speed up the reasoning. Due to time constraints it was not possible
to implement this technique so far, therefore we here do not report
timing results.

ACKNOWLEDGEMENTS

We would like to acknowledge fruitful discussions about Description
Logics and Production Planning with Magdalena Ortiz, Ivan Gocev,
Raoul Blankertz, Sonja Zillner, and Stephan Grimm. We would also
like to thank the referees and chairs for their feedback. This work has
received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement 825619 (AI4EU).

REFERENCES
[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,

and Peter Patel-Schneider, volume 32, Cambridge University Press,
2003.

[2] Joseph Babb and Joohyung Lee, ‘cplus2asp: Computing action lan-
guage C+ in answer set programming’, in International Conference
on Logic Programming and Nonmonotonic Reasoning, pp. 122–134.
Springer, (2013).

[3] Marcello Balduccini and Michael Gelfond, ‘Diagnostic reasoning with
a-prolog’, Theory and Practice of Logic Programming, 3(4-5), 425–
461, (2003).

[4] Gerd Brewka, Thomas Eiter, and Miroslaw Truszczynski, AI Magazine:
Special Issue on Answer Set Programming, vol. 37(3), AAAI Press,
2016.

[5] T. Eiter, M. Fink, G. Ianni, T. Krennwallner, C. Redl, and P. Schüller,
‘A model building framework for Answer Set Programming with exter-
nal computations’, Theory and Practice of Logic Programming, 16(4),
(2016).

[6] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and
Axel Polleres, ‘Planning under incomplete knowledge’, in Interna-
tional Conference on Computational Logic, pp. 807–821. Springer,
(2000).

[7] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel
Polleres, ‘The dlv k planning system: Progress report’, in European
Workshop on Logics in Artificial Intelligence, pp. 541–544. Springer,
(2002).

[8] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman
Schindlauer, and Hans Tompits, ‘Combining Answer Set Programming
with Description Logics for the Semantic Web’, Artificial Intelligence,
172(12-13), 1495–1539, (2008).

[9] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans
Tompits, ‘Effective integration of declarative rules with external evalu-
ations for Semantic-Web reasoning’, in European Semantic Web Con-
ference (ESWC), pp. 273–287, (2006).

[10] Thomas Eiter, Tobias Kaminski, Christoph Redl, Peter Schüller, and
Antonius Weinzierl, ‘Answer Set Programming with external source
access’, in Reasoning Web International Summer School, pp. 204–275,
(2017).

[11] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone, ‘Semantics and
complexity of recursive aggregates in Answer Set Programming’, Arti-
ficial Intelligence, 175(1), 278–298, (2011).

[12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub, ‘Multi-shot ASP solving with clingo’, Theory and Practice of
Logic Programming, 1–56, (2018).

[13] Michael Gelfond and Vladimir Lifschitz, ‘Classical negation in logic
programs and deductive databases’, New Generation Computing, 9,
365–385, (1991).

[14] Enrico Giunchiglia, G Neelakantan Kartha, and Vladimir Lifschitz,
‘Representing action: Indeterminacy and ramifications’, Artificial In-
telligence, 95(2), 409–438, (1997).

[15] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman Mc-
Cain, and Hudson Turner, ‘Nonmonotonic causal theories’, Artificial
Intelligence, 153(1-2), 49–104, (2004).

[16] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe
Wang, ‘HermiT: an OWL 2 reasoner’, Journal of Automated Reason-
ing, 53(3), 245–269, (2014).

[17] Matthew Horridge and Sean Bechhofer, ‘The OWL API: a Java API for
OWL ontologies’, Semantic web, 2(1), 11–21, (2011).

[18] John McCarthy, ‘Elaboration tolerance’, in Common Sense, volume 98,
(1998).

[19] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ash-
win Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL –
The planning domain definition language, 1998. Technical Report CVC
TR-98-003/DCS TR-1165.

[20] Johannes Oetsch, Jörg Pührer, and Hans Tompits, ‘Catching the
ouroboros: On debugging non-ground answer-set programs’, Theory
Pract. Log. Program., 10(4-6), 513–529, (2010).

[21] Peter Schüller, ‘The Hexlite solver’, in European Conference on Logics
in Artificial Intelligence (JELIA), pp. 593–607. Springer, (2019).

[22] Claudia Schulz, Ken Satoh, and Francesca Toni, ‘Characterising and ex-
plaining inconsistency in logic programs’, in International Conference
on Logic Programming and Nonmonotonic Reasoning, pp. 467–479.
Springer, (2015).

7

