
Modeling tasks: a requirements analysis based on
attention support services

Joona Laukkanen
American University of Paris

147 rue de Grenelle
75007 Paris, France
+33 1 40 62 06 82

joona.laukkanen@aup.fr

Claudia Roda
American University of Paris

147 rue de Grenelle
75007 Paris, France
+33 1 40 62 06 50
croda@ac.aup.fr

Inge Molenaar
Ontdeknet

Wibautstraat 4
1090 GE Amsterdam

+31 20 525 1339
inge@ontdeknet.nl

ABSTRACT
The task within which a resource is used is a very important
element for the definition of Contextualised Attention Metadata.
In this paper we discuss the requirements of a task model that
allows representing current and potential attention allocation of
the user. And we discuss how such model has been implemented
in the AtGentive system.

Categories and Subject Descriptors
H.3 Information storage and retrieval, H.5.2 User Interfaces,
H.1.2 User/Machine Systems, H.1.1 Systems and Information
Theory: value of information, I.6.5 Model Development,

General Terms
Design

Keywords
attention aware systems, attention metadata, contextualized
attention metadata, learning, task modeling.

1. INTRODUCTION
Task models represent a very important element in the definition
of Contextualized Attention Metadata (CAM). As CAM aims at
tracking resources usage, identifying the specific context in which
such usage takes place enables a much better understanding of the
value of each resource [10]. The task within which a resource is
used is a very important element of such contextual definition.
For example, in order to truly understand resource usage it would
be important to distinguish whether a user accesses a book review
because he is writing a research paper, or because he is preparing
a reading list for a course, or because he is selecting gifts from a
wedding list. These three types of usages correspond to access to
the resource book review in the context of different tasks. The
definition of users' tasks is therefore one of the essential elements
for the identification of the context of resource usage.

Modeling user tasks in a manner that is both complete and
operational is far from being an easy undertaking. Based on the
work done in the Atgentive project [2, 16, 17, 19], this paper
discusses how tasks may be modeled in order to support the
implementation of attention management services. In the process
we will also highlight another important relation between CAM
and task modeling, i.e. the fact that not only (as mentioned above)
tasks may be associated to resource access, but also resources
may be associated to task descriptions.
In the context of the Atgentive system a task represents the target
of an attentional focus (e.g. writing a paper, accessing some
resource, ...). Since we aim at applicability in combination with a
number of different types of applications, the key design issue
with the definition of tasks has been to make it as application
independent as possible. In particular, the questions of task
granularity, task structure, and task attributes, have been
addressed.
In section 2 we give a brief description of the Atgentive system.
We summarize the goals of the project, introduce the different
modules of the system, and explain how the Reasoning Module
provides functionalities supporting users' attention allocation. The
analysis of such functionalities has provided us with the most
critical requirements for the AtGentive task model. Whilst the
AtGentive System aims at providing many task-oriented services,
in this paper we concentrate only on those that support
interruption management and task switching. In section 3 we
discuss the requirements that these services impose on task
modeling, section 4 briefly overviews the issues commonly
encountered in task modeling, and section 5 details the AtGentive
task model.

2. THE ATGENTIVE SYSTEM
The objective of the AtGentive project is to investigate the use of
artificial agents for supporting the management of the attention of
young or adult learners in the context of individual and
collaborative learning environments.
The AtGentive system observes the user's activity and generates
interventions aimed at supporting his/her attentional choices.
Such interventions may either be designed to help users sustaining
their current focus of attention (e.g. help user to find the best way
to complete a task), or they may be designed to shift the user's
attention to a different focus (e.g. communicate important
information that has become available).
The main components of an AtGentive system include: one or
more (1) applications, and (2) user tracking components
providing information about the users activity, both these types of

mailto:croda@aup.fr
mailto:croda@aup.fr
mailto:croda@aup.fr
mailto:croda@aup.fr
mailto:croda@aup.fr
mailto:croda@aup.fr
mailto:croda@aup.fr
mailto:croda@aup.fr
mailto:croda@aup.fr
mailto:croda@aup.fr

components communicate with (3) a reasoning module – see
figure 1. Applications, users, and tracking modules inform the
reasoning module about the state of the user and the environment
by generating events. The reasoning module supports the user in
his attentional choices by generating interventions that are then
sent to the user.

Figure 1 – A simple schema of an AtGentive system

Events generated by the application either describe the user
activity (e.g. the user has started working on a certain task) or
relevant changes in the environment sensed by the application
(e.g. new information is available that the user could access).
Events generated by users may describe their preferences (e.g.
"don't interrupt me when I am working on this task”), or provide a
direct feedback on the reasoning module's interventions.
Finally, The tracking devices monitoring the user physical state
and activity may generate events describing for example the user
keyboard activity, the level of noise in the room, or the presence
(or absence) of the user from the screen.
On the basis of these events the reasoning module (which is
implemented as a multi-agent system) tracks what the users
current focus is, creates a list of possible alternative foci, and
finally, evaluates those alternative foci and, using interventions,
communicates those foci (if any) that seem to be most beneficial
to support the user attention.
While processing events, the reasoning module maintains an
optimized list of foci that have been identified as most relevant
for the user. Each focus is composed of a target, a priority, and a
state. Possible states are: current, inactive, or suspended.
Normally one of the foci is active (this is the user's current focus).
Suspended foci are inactive foci that have been previously active.
Inactive foci are those that the reasoning module has evaluated as
interesting for the user but the user has never activated (e.g. the
focus associated to an email that the user has not yet read). The
priority is an estimate of how important/urgent the task associated
to the focus is for the user. The target of the focus is either a user
task or a message. A user task is an instance of a generic task for
the specific user in the specific situation (see section 5.1). A
message is something that needs to be communicated to the user
without any concrete actions related to it, e.g. some motivational
feedback for a learner who has completed an assignment.

The reasoning module is designed as an application independent,
general purpose entity capable of generating suggestions about
attention management. Within the AtGentive project the
reasoning module is being tested in the framework of two
different applications: AtgentSchool, and AtgentNet.
AtgentSchool is an eLearning platform for elementary school
aged children, and AtgentNet is a virtual community platform
supporting knowledge exchange in knowledge communities.

3. TASK ORIENTED SERVICES IN
ATTENTION AWARE SYSTEMS
In the context of the AtGentive project we have identified several
task-oriented services aimed at supporting learners and
knowledge workers in environments characterized by frequent
interruptions and multi-tasking. These include: interruption
management, support to task switching, orienteering within
resources (e.g. searching and ranking), and self and community
awareness.
For sake of brevity, in this section we only discuss the first two
services with the aim of detecting the characteristics that a task
model should have in order to enable the implementation of such
services.

Interruption management
Interruption management services are services that may either
automatically select the time and mode of the interventions that
have been generated , or may provide notification services that
help the user making the decision on when to attend newly
available information.
With respect to interruption management, the task model should
enable reasoning about cost/benefits of interruptions and allow
determining the most appropriate time for interruption.

reasoning about cost/benefits of interruptions
In order to decide whether to interrupt a user, the system must be
able to consider the costs / benefits of the interruption.
For example, the system could decide to intervene and suggest
that the user attends some newly available resource if:

[a] the resource is relevant to the task currently in focus or
[b] the resource is relevant to an inactive or suspended task

with a high priority
Note that a resource may be relevant to a task both if it is relevant
to the task or if it is relevant for a sub-task of that task.
Further considerations may intervene if enough knowledge about
the user tasks is available. For example, in case [b] notification
may be delayed if the user is about to complete the current task.
Observatory studies report that returning to long term projects is
particularly challenging and makes such tasks potentially more
vulnerable to the harmful effects of interruptions, compared to
more common, shorter tasks, such as writing e-mails [7]. The
expected time that a task on average takes to complete, the
number of subtasks, and the number of windows and resources
that need to be available, could help determining if a task is a
long term project and hence, interrupting it is more costly than
interrupting some shorter task.
Following the above considerations, in order to reason about
costs/benefits of interruptions, a task model should allow
identifying:

[REQ 1]The user's current task
[REQ 2]The priorities of the current task and of other

(inactive or suspended) tasks
[REQ 3]The resources that may be relevant to a task
[REQ 4]The advancement state of tasks execution

Most appropriate time for interruption
Several studies have demonstrated that the exact time when an
interruption is presented may make a very significant difference
on both how easily the information presented is acquired by the
user, and on how much disruption it generates in the task being
interrupted [1, 6].
In order for the system to determine the most appropriate time for
interruption, the task model should support the

[REQ 5]Description of task hierarchies.
As noted by Bailey et al. [4] when tasks are organized into
hierarchies the task model can be used to infer "breakpoints" i.e.
times when interruptions are less disruptive for the user. Bailey
and his colleagues [1, 5] represent tasks as two level hierarchies
composed of coarse events further split into fine events (for
example, a coarse event would be the selection of the email
application, which would then be further decomposed in selecting
the email application, typing in the username, and typing in the
password). The authors then measure the impact of interruptions
as they occur at various points within these hierarchies and
demonstrate that the best times for interruptions correspond to
coarse breakpoints. The availability of such a hierarchical task
model enables the system to infer the best time for interruption. In
the AtGentive system, when there is a switch in the users current
task, the magnitude of the break in attention is evaluated on the
basis of the depth of the task in the task hierarchy. Further, a shift
to the next subtask can be identified as a low strength break in the
users attention whilst a jump to a task that is not a child or a
parent of the current task may be interpreted as marking a
stronger break in the users attention.
If tasks are organized so that lower level tasks divide a higher
level task into logical sub-steps, the level at which a task switch to
a next subtask happens may be used to infer the magnitude of the
break in the users attention, possibly with a more accurate value.
A switch at a lower level marks a smaller change in attention than
at a higher level. This would however need the task model to
allow specifying if a task does indeed refine the parent task or if
the parent task exists just to group subtasks, as could be in the
case of a math exercise in a learning environment authored as a
task hierarchy like [Task T1, “exercise 1”, T1.1, “exercise 1.1”,
T1.2, “exercise 1.2”, ..., Task 1.2.n, “3 + 9 / 3 = ”]. In the latter
case a task switch to a next subtasks would actually mark a
smaller break in user attention on a higher level task than when
the switch to the next subtask happens at the level of the concrete
leaf tasks with the actual cognitive work.

Support to task switching
Major motivation for services supporting task switching comes
from the observation that people can only focus on one thing at a
time and as several authors have indicated [e.g. 18], switching
from a task to another is costly. Services supporting the user with
task switching operations such as restoring task context, task
reminders, and support for task continuation require a
comprehensive task model.

Restoring task context
When task switches and interruptions are frequent, the activities
required to restore the task context of a resumed task can be
expected to result in a significant increase in cognitive load. A
diary study tracking the activity of knowledge workers to
investigate these effects, reported that: (1) participants rated
switching to tasks that were previously interrupted to be
significantly more difficult than to others, that (2) the resumed
tasks were in fact twice as long as other, more short-term projects
and that (3) they required significantly more resources than other
tasks [7]. Automatically providing access to such resources when
a task is resumed would represent a significant help to users.
Providing such service requires that:

[REQ 6]The task model associates to interrupted tasks
information describing the resources in use when the
task was interrupted.

Task reminders
Another problem related to switching tasks is one encountered
frequently when a task needs to be performed at a specific
moment (at an absolute time or in response to some event).
Prospective memory failures, which occur when something
cannot be remembered at the right time, may account for up to
70% of the memory failures in everyday life [14]. This has been
shown to have a very eminent effect on performance in work and
learning environments. Also, these memory failures intervene
differently in different age groups.
Providing services that remind users of important dates and
deadlines, or notify them of certain events could be used to
alleviate this threat of prospective memory failures daunting so
many activities planned to take place in the future. Further, task
reminders could prove particularly useful to help users remember
tasks that they have suspended earlier as a study has reported that
in fact over 40% of tasks that have been interrupted, are not
resumed again [15]. For example if a user suspends a task T1 to
work on another more urgent task T2, the system could remind
him of the interrupted task T1 once T2 has been completed.
In order to provide support with task reminders, it will be
necessary to allow:

[REQ 7]Associating to tasks information either about the
time when the task should be executed, or about the
events that should trigger the execution (or resumption)
of the task

Task continuation and prioritization
When there are several tasks that the user is working on in
parallel or there simply are several tasks to choose from, for
example when a task has been completed, it could be beneficial
for the user if there were services that could take off some of the
cognitive load that is related to choosing the next activity.
Especially so when the user might not have much knowledge
about the relevant properties of the different tasks (e.g. how long
a task is expected to last).
On the basis of the task structure it is possible to find some
potential and logical, yet arguably more or less simple,
continuation options for the user. More complex and useful
guidance can be achieved by applying some timing strategy in the
evaluation, maybe by preferring tasks that may be completed
before their deadline. If the evaluation also considers the priorities

of different tasks or gets otherwise more sophisticated, the
reasoning could be expected to have a real effect on the cognitive
effort required from the user.
When a user completes a task, enabling a smooth transition to the
next activity may entail restoring the context where the choice to
start the now completed task was made. This could amount to
reminding the user of the task that was suspended when the user
moved to the current task or, reminding him of the current task
sequence (e.g. the next subtask, the next required task or the
parent of the task in the hierarchy).
In both situations the requirement for a hierarchical task structure
([REQ. 5]) is reinforced.
Further, elements that will intervene in the evaluation of valid
continuations include prioritization (already listed as requirement
[REQ. 2]) and timing:

[REQ 8]Allow the definition of task deadlines
On a more sophisticated level also expected duration of tasks, is
required, this is listed below as [REQ 14].

4.ISSUES IN TASK MODELLING
Diaper quotes Shepherd [20] as saying that “'Task' is seldom
defined satisfactorily” and continues suggesting that this might
actually never be the case [8]. Some difficulties in defining tasks,
such as the specification of application independent task
taxonomies, have been repeatedly encountered and seem
inherently difficult. Some other issues may be easier to address
but need a comprehensive approach. For example whilst it would
not be difficult to provide adequate contextual information for
tasks, this information is often missing from task models. This
section briefly overviews what we consider the main open issues
in task modeling.

Task taxonomies
One clear problem when modeling tasks is the difficulty of
defining a sufficient taxonomy. It would be useful to classify
tasks, for example, by type of operation. Finding generic actions
or operations independent of application types has however
proven very difficult [8]. One of the few generic tasks that Diaper
& Johnson [9] were able to identify in their work on TAKD (Task
Analysis for Knowledge Description) was insert. TAKD is a
method capable of modeling tasks in a wide range of applications
and within this work insert was found common for a number of
different objects in different application domains (namely
microelectonics, automated office applications, and computer
programming). Inserting could here mean either inserting text in a
word processor or a program editor or alternatively inserting
components on a Printed Circuit Board. Whilst it could be
possible to identify some actions possibly totally independent of
application domains, such as insert, the set of such actions seems
to be simply too small. Whilst Diaper [8] does not see the
development of task taxonomies as totally impossible, it is
obvious that we are far from having such a tool and probably the
definition of ontologies allowing the integration of several such
taxonomies is the most promising direction of research.

Task descriptions
Traditionally tasks have been described at the level of the
application, i.e. tasks correspond to very specific users' actions
within a specific application, e.g. create document, attach

document, submit form. In order to support the user in his
attentional choices tasks should be described at a level that
corresponds better to the user's objectives, (e.g. write a paper,
complete an exercise). This type of task description has been
suggested by some researchers [11, 13] and corresponds to the
one used in the AtGentive project. In order to achieve this
objective we require that:

[REQ 9]The task model should allow different types of
applications to define their own tasks and task structure

[REQ 10]The task model should allow describing tasks at
any level of granularity

Task attributes
Failing to provide contextual information within a task is another
pitfall of several task modeling efforts. Contextual information
such as relevant resources and users, deadlines, complexity,
priority, state of advancement, and location of the task in a task
hierarchy is something that is clearly needed for many services
supporting attention management. The inclusion of some of these
attributes is represented by several requirements already listed
above, further task attributes we have identified include:

[REQ 11]Keywords may be associated to tasks.
Keywords provide a way to relate tasks to resources (e.g. by
keyword matching)

[REQ 12]Maximum allowed idle time may be associated to
tasks

The Maximum allowed idle time specifies the time limit within
which the user is expected to act to avoid being recognized as idle
by tracking devices. This information is used both to identify
breakpoints and to provide help or solicitations to users who seem
to have difficulties continuing a task.

[REQ 13]Task difficulty levels may be associated to tasks
Indications on the difficulty of a task may help in the evaluation
of the cost/benefits of interruptions, as well in the selection of the
help to be provided to users.

[REQ 14]Expected duration of the task may be associated to
tasks.

This attribute specifies the average expected time to complete the
task. Combined to the task advancement indication ([REQ. 4]), it
enables a better evaluation of the best time for interruption.
Further, task continuation services may implement strategies in
which, under certain conditions, tasks with certain durations (e.g.
tasks that can be completed quickly) are preferred over other
tasks.

[REQ 15]Actors relevant to the task may be associated to
tasks

Relevant actors could for example include a teacher in the case of
a learning environment or the creator of a resource when the task
is simply to attend some resource. In general actors relevant to
tasks will be defined within a social network associated to the
user model. This information is both useful to evaluate the
relevance of newly available information, and to provide
community awareness services.

[REQ 16]Support tasks may be associated to tasks (see
section 5)

Currently we assume that most of these parameters are manually
entered (e.g. by the user himself, or by a teacher setting up a
learning sequence - as is done in the AtgentSchool application), in
the future we expect that the system may be capable of generating
estimates of parameters such as maximum allowed idle time, task
difficulty, expected duration time, etc. by observing how several
users act on the task, and by inferring the possible behavior of a
specific user.

Recognizing tasks
Whilst defining tasks, their structure and resources presents, as
described above, a series of challenges, a further, possibly more
complex challenge is represented by the automatic recognition of
tasks. This requires that, on the basis of the observation of user's
actions, the system is capable of matching actions sequences to
specific tasks. The problem here is that if simple sequences of
actions are observed (such as typing some characters on the
keyboard) the system may not have enough semantic information
to associate the action sequence to a specific task. In fact a very
large number of higher-level tasks may be associated to simple
action sequences. Within AtGentive we base task recognition on
three possible inputs. First, an application, which has a much
better knowledge of the semantics associated to simple user
actions may recognize that the user is working at a specific task
and communicate this information to the reasoning module.
Second, AtGentive may use its knowledge about a small subset of
all possible user tasks that are most likely to be performed by the
user at a given time, and use this information to recognize that a
simple action sequence is actually contributing to a specific task.
Third, the user may explicitly indicate that he is performing a
certain task.

5.ATGENTIVE TASK MODEL
The task model implemented in AtGentive's Reasoning Module
distinguishes between two different categories of tasks: main
tasks and support tasks. Main tasks are in essence anything the
user may decide to do. Support tasks are aimed at helping the user
perform a given main task and manage his attention within that
task.

Generic Tasks versus User tasks
Both main tasks and help tasks represent abstract task properties.
Whenever main tasks, or help tasks are activated concrete
instances are created as user tasks. This results in creating a
hierarchy of user tasks corresponding to the hierarchy of the main
tasks and support tasks. User tasks instantiate all the properties for
the concrete execution of that task, such as a deadline,
progression etc, for one particular user. For example, one may
have a main task "prepare lecture" which has abstract properties
such a title, and an average expected duration, and is organized in
a hierarchy of sub-(main)-tasks such as "collect resources",
"create draft", etc. each having their abstract properties. For each
user, there would then be a corresponding user task structure to
actually execute the task, with for example individual deadlines
for those users.

Main tasks
Main tasks (and the related user tasks) represent actions the user
might perform, e.g. write a paper, prepare for a meeting, complete
an assignment. These tasks can be formed into hierarchies as
pleased as all main tasks could have other main tasks as subtasks.

A main task can then be described to consist of a number of finer
level tasks. Task T1, Writing a paper, could for example consist
of the more concrete tasks T1.1 (do research) T1.2 (write
abstract), ..., T1.n (discuss future work). The hierarchical
organization of main tasks allows for varied granularity when
defining tasks; nothing forces one to define tasks at a finer level
so for example writing a paper could in some environments be
modeled as a single high level task if the task is, perhaps, known
to be already well understood by the target users. In another
environment the same task could be represented as one with a
number of subtasks (possibly on several levels). Besides allowing
granular description of task execution, subtasking can be used to
distribute support more accurately where it is needed. This could
in fact be one way to author tasks; first identify how the entire
task needs to be supported (e.g. support for doing research,
support for writing the abstract, ...) and divide the task in subtasks
accordingly.
In defining task structure we have identified further requirements
for the task model these include:

[REQ 17]The task model may include a requirement level
for a task

[REQ 18]The task model may include task ordering
[REQ 19]The task model may include task visibility

These properties are tightly related to the execution of tasks at a
given moment and are useful to support task continuation (see
3.2.3), they are briefly described below.
Task requirement level
Tasks may be defined as optional or required. Required sub-tasks
are necessary (i.e. they must be executed) for the completion of
the parent task. Tasks defined as optional allow the user to skip
certain sub-tasks in the execution of a main task. In a learning
environment some exercise for example, may be marked as
optional.
Task ordering
The order in which a task's subtasks need to be performed could
either be specified as free for the user to choose, or mandated. In a
learning environment an assignment might for example consist of
reading a book and then writing a summary about it. Here it
would make sense to mark the ordering of the assignments
subtasks to be mandated.
Note that, if ordered execution is required, optional subtasks can
still be skipped.
Task visibility
Tasks may either be visible or invisible. Invisible tasks are always
inner nodes in the task hierarchy and allow describing abstract
tasks that, although not executable, are useful to conceptualize a
certain grouping in sub-tasks. A group of root tasks that are not
related to each other could for example be grouped under one
common invisible root task. Invisible tasks could also be useful if
there is a need for a more complex ordering than what otherwise
would be allowed by the task model (without adding mundane
tasks that only include selections between subtasks).
The task model does not support certain task sequencing
constraints. For example its is not currently possible to specify the
requirement that the user completes a certain number of subtasks
(say for example 2 tasks out of 3).

Support tasks
Support tasks help the user in performing various types of
activities that the user might attend at different stages of a tasks
execution. For example, a support task might help a confused user
gaining a better understanding of the task at hand, another support
task could provide some motivational feedback such as statistical
information about the users time usage after a task is already
completed.
Support tasks differ from main tasks mainly in two ways. First,
they cannot be organized into hierarchies and they do not have
further support tasks themselves. Although hierarchies of support
tasks might be a valid concept, we didn't identify a pressing need
for them and therefore we didn't include the concept in the model.
This helps us avoiding introducing unnecessary complexity in the
model. Essentially for the same reason we don't consider the
concept of support tasks for support tasks. The other key
difference to main tasks is the classification of support tasks.
Support tasks are classified in two ways. First they are classified
based on when they will be relevant to the task that they support.
This could either be before (pre-task support), during (on-task
support) or after the task (post-task support). In addition, support
tasks are classified by the type of support they provide.
Based on scaffolding models [3, 12, 21, 22] we have divided
support tasks into four categories: behavior, cognitive,
metacognitive and motivational support tasks. Cognitive support
task have a focus on mental activities of the user. Metacognitive
support task are directed at orienting, monitoring and evaluating
activities. Behavioral support task are focused on physical
activities of the user. Motivational support tasks are directed
towards feelings of the user [12]. The term scaffolding was
introduced by Wood, Bruner, and Ross [22] and it is defined as
providing assistance to a student on as-needed basis, fading the
assistance as the competence increases. The general idea behind
scaffolding is that some of the control within the learning
environment is temporally transferred from the learner to another
more experienced actor to support the learner to acquire all
abilities to fully self sustain his learning. The scaffold help
supporting the execution of a task that the student could not have
done on its own and it is removed when it is no longer necessary.
Especially in innovative learning arrangement where student are
provided with more control of both learning content and learning
procedures scaffolds can support them to deal with this increased
responsibility. The task support model allows specifying and
selecting the support tasks that assists the learning process of
specific learners based on an assessment of their attentional states.

6.CONCLUSIONS AND FUTURE WORK
In this paper we have identified the major requirements for a
flexible and operational task model supporting the
implementation of attention management services. We have also
indicated how most of these requirements have been implemented
within the AtGentive system. We consider the work presented in
this paper only a starting point for attention oriented task
modeling and the definitions provided will need to be both
extended and further detailed. We are currently in the process of
evaluating the performance of the AtGentive system in the two
pilot environments and we trust that such evaluation will
significantly contribute to the further development of the
reasoning module as a whole and of the task model in particular.
While the task model we have presented does not have the same

objectives of many of the task models presented in the field of
human-computer interaction, some of them may be used to guide
future development of our model.

7.ACKNOWLEDGMENTS
The work described in this paper was partially sponsored by the
EC under the FP6 framework project Atgentive IST-4-027529-
STP. We would like to acknowledge the contribution of all
project partners.

8.REFERENCES
[1] Adamczyk, P. D. and B. P. Bailey, 2004. If not now, when?

The effects of interruption at different moments within task
execution. Human Factors in Computing Systems: CHI'04,
New York, ACM Press.

[2] AtGentive (2005-2007). ist-4-027529-stp.
[3] Azevado, R., Hadwin, A.F. (2005) Scaffolding self-regulated

learning and metacognition – Implications for the design of
computer-based scaffolds. Instructional Science33: 367–379

[4] Bailey, B. P., P. Adamczyk, et al. (2006). "A Framework for
Specifying and Monitoring User Tasks." Computers in
Human Behavior 22(4): 709-732.

[5] Bailey, B. P. and J. A. Konstan (2006). "On the Need for
Attention Aware Systems: Measuring the Effects of
Interruption on Task - Performance, Error Rate, and
Affective State." Computers in Human Behavior 22(4): 685-
708.

[6] Czerwinski, M., E. Cutrell, and E. Horvitz. Instant
messaging: Effects of relevance and time. in HCI 2000 -
14th British HCI group Annual Conference. 2000. University
of Sunderland: British Computer Society.

[7] Czerwinski, M., E. Horvitz, et al. (2004). A diary study of
task switching and interruptions. Proceedings of the SIGCHI
conference on Human factors in computing systems, Vienna,
Austria, ACM Press.

[8] Diaper, D. (2002). "Scenarios and task analysis." Interacting
with Computers 14(4): 379-395.

[9] Diaper, D. and Johnson, P., 1989. Task analysis and systems
analysis for knowledge descriptions: theory and application
in training. In : Long, J., Whitfield, A. (Eds.). Cognitive
Ergonomics and Human-Computer Interaction. Cambridge
University Press, Cambridge, pp. 191-224.

[10] Duval, E. (2005). LearnRank: the Real Quality Measure for
Learning Materials (Tematic Dossier 06 December 2005),
Insight - Oservatory for New Technologies and Education.]

[11] Gonzalez, V. M. and G. Mark (2004). "Constant, constant,
multi-tasking craziness": managing multiple working
spheres. Proceedings of the SIGCHI conference on Human
factors in computing systems, Vienna, Austria, ACM Press.

[12] Hadwin, A., L. Wozney, et al. (2005). "Scaffolding the
Appropriation of Self-regulatory Activity: A Socio-cultural
Analysis of Changes in Teacher–student Discourse about a
Graduate Research Portfolio." Instructional Science 33(5-6):
413-450.

[13] Heath, T., M. Dzbor, et al. (2005). Supporting User Tasks
and Context: Challenges for Semantic Web Research.
Workshop on End-user Aspects of the Semantic Web

(UserSWeb), European Semantic Web Conference
(ESWC2005), Heraklion, Crete.

[14] Kvavilashvili, L., D. J. Messer, et al. (2001). "Prospective
memory in children: The effects of age and task
interruption." Developmental Psychology 37(3): 418-430.

[15] O'Conaill, B. and D. Frohlich (1995). Timespace in the
Workplace: Dealing with Interruptions. CHI ‘95 Conference
Companion, Denver, Colorado, United States, ACM press.

[16] Roda, C., Ed. (2006). AtGentive (IST-4-027529-STP)
Deliverable D1.3 - AtGentive conceptual framework and
application scenarios.

[17] Roda, C. and T. Nabeth (2006). The AtGentive project:
Attentive Agents for Collaborative Learners. First European
Conference on Technology Enhanced Learning EC-TEL'06,
Crete, Greece, Springer.

[18] Rubinstein, J. S., D. E. Meyer, et al. (2001). "Executive
Control of Cognitive Processes in Task Switching." Journal
of Experimental Psychology: Human Perception and
Performance 27(4): 763-797.

[19] Rudman, P. and M. Zajicek (2006). Autonomous agent as
helper – Helpful or Annoying? IAT 2006 - IEEE/WIC/ACM
International Conference on Intelligent Agent Technology,
Hong Kong.

[20] Shepherd, A., 1998. HTA as a framework for task analysis.
Ergonomics 41 (11), 1537-1552.

[21] Zimmerman, B., Schunk, D. (2001). Theories of self-
regulated learning and academic achievement: an overview
and analysis. In self-regulated learning and academic
achievement (2nd ed.) (pp. 1-37). Mahwah, NJ; Erlbaum.

[22] Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring
in problem solving. Journal of Child Psychology and
Psychiatry 17, 89-100.

	1. INTRODUCTION
	2. THE ATGENTIVE SYSTEM
	3. TASK ORIENTED SERVICES IN ATTENTION AWARE SYSTEMS
	Interruption management
	reasoning about cost/benefits of interruptions
	Most appropriate time for interruption

	Support to task switching
	Restoring task context
	Task reminders
	Task continuation and prioritization

	4.ISSUES IN TASK MODELLING
	Task taxonomies
	Task descriptions
	Task attributes
	Recognizing tasks

	5.ATGENTIVE TASK MODEL
	Generic Tasks versus User tasks
	Main tasks
	Support tasks

	6.CONCLUSIONS AND FUTURE WORK
	7.ACKNOWLEDGMENTS
	8.REFERENCES

