
StinkyCheese: Chat-Based Model for
Subscription Classification

Túlio Corrêa Loures[0000−0003−1321−4844],
Gustavo Lúcius Fernandes[0000−0002−1748−8976],

Fernanda G. Araújo[0000−0002−3035−2678],
Karen S. Martins[0000−0001−7949−4573], and

Pedro O. S. Vaz-de-Melo[0000−0002−9749−0151]

Universidade Federal de Minas Gerais, Belo Horizonte - MG, Brazil
{loures.tc,gustavo.lucius,fernandaguim,karensm,olmo}@dcc.ufmg.br

Abstract. In this paper, we report the process of building a binary
classifier for the Chat Analytics for Twitch challenge. The goal is to
predict the subscription status of a user in a channel based on their
comments. As a result for this task, our final submission achieves an
F1-score of 0.1422 on the dataset used to evaluate the classifiers. We
explore the results and try to understand which scenarios contribute to
this performance. We hope these analyses can be used to direct new
research and to improve classifiers designed for this or related tasks.

Keywords: Chat Analytics · Deep Learning · Classification

1 Introduction

Streaming platforms such as Twitch are extremely popular, attracting millions of
broadcasters and hundreds of millions of viewers each month2. Through them,
multimedia content creators stream a multitude of recordings or live streams
on the internet. Besides that, some platforms enable live interactions between
the broadcasters and their audience. This is the case of Twitch3, which started
mostly as a game streaming platform and has since grown to include other types
of content, such as cooking, programming, music, and tourism channels.

To encourage and attract content creators, the Twitch platform has a mon-
etization model in partnership with the owners of stream channels [11]. This
model has three ways in which partners can earn money: channel subscriptions,
Bits and advertisements. By subscribing to a channel, the viewers can monthly
pay for packages of different prices (e.g. $4.99, $9.99, or $24.99) and receive in re-
turn permission to access exclusive content. The viewers can also purchase Bits,

Copyright ©2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 https://blogs.wsj.com/digits/2015/01/29/twitchs-viewers-reach-100-million-a-
month/ - Site visited on July 23, 2020

3 https://www.twitch.tv/ - Site visited on June 23, 2020

2 T. Corrêa Loures et al.

a virtual product that serves to incentivize and financially support the channel
owner. Lastly, channel owners can broadcast advertisements on their channels.
For all cases, the collected amount is divided between Twitch and the channel
owner.

In this context, the Chat Analytics for Twitch (ChAT) challenge [6] proposes
the construction of a binary classifier to predict the subscription status of user-
channel pairs based on the comments the user made in the channel’s chat. With
that, it would be possible to identify, for instance, which users are potentially
interested in a subscription and make target advertising. In this work, we propose
a classification model that combines text representation of the messages with
conversational features.

2 The Dataset

2.1 Description

The ChAT dataset was provided by the ECML-PKDD 2020 Discovery Chal-
lenge [6], being divided into a training and a test set. The dataset includes
channel and user combinations where, for each user-channel pair, it contains all
messages posted by the user in the channel and some metadata. The metadata
contains two more keys for each message in the user-channel pair: the timestamp
of the comment and the game that was played in the channel when the comment
was posted. In addition, for each user-channel pair we have the corresponding
subscription status, that is, whether the user is subscribed to the channel or not.
In total, the training set contains more than 700, 000, 000 messages posted in
English channels in January 2020, divided across almost 30 million user-channel
pairs. For the test set, 90, 000 user-channel instances were given.

2.2 Initial Analysis

Before proposing a classification model, we made some initial exploratory anal-
ysis on the dataset. We generated a random sample containing 500, 000 user-
channel pairs, of which 85, 985 are subscribed and 414, 015 are non-subscribed.
First, we measured the number of messages per user-channel pair. On average,
users write 70 messages in channels they are subscribed to (median 20). On the
other hand, non-subscribed users only write an average of 25 messages (median
4). A similar trend can be observed for the total length of the messages. In other
words, users who are subscribed to a channel tend to post longer messages than
non-subscribed users.

We also analyzed the frequency of messages for subscribed and non-subscribed
users. Figure 1 illustrates the timestamp of consecutive comments (starting with
a timestamp 0 for the first comment) for two example instances in the same chan-
nel, one of a subscribed user and another for a non-subscribed user. Note that,
while the non-subscribed user made more comments, that user’s participation
had a lower duration than the participation of the subscribed user. While this
single example cannot be used as a generalization, it showcases the intricacies
of trying to relate frequency of comments to the subscription status.

StinkyCheese: Chat-Based Model for Subscription Classification 3

Fig. 1: Messages over time for two example instances.

3 The StinkyCheese Model

Deep learning architectures have become the state of the art solution for several
tasks, including text classification [2, 5]. Long Short-Term Memory (LSTM) [4]
is a deep learning model that has achieved great successes in this task due to
its ability to learn long-term dependencies and extract high-level text informa-
tion. [13]. Our proposed model4, represented in Figure 2, is in essence a combi-
nation of the text representations of comments learned by a LSTM architecture
concatenated with additional descriptive features.

Embedding

Text Input

Features

LSTM Concatenation Dense Output

Fig. 2: Structure of the StinkyCheese model

The LSTM architecture receives as input the word embeddings of the mes-
sages and has 100 units. It is responsible for learning the text representation of

4 Implementation available at https://github.com/lourestc/chatpkdd

4 T. Corrêa Loures et al.

the messages in the user-channel pair. The word embeddings were randomly ini-
tialized, with a size of 100, and then learned during the training process together
with the remainder of the network. We avoided using pre-trained embeddings,
given that they are usually built on more formal texts (such as Google News [8]
or Wikipedia [12]), while Twitch chat tends to have highly irregular, noisy and
informal text (especially with the use of unique tokens for emotes5). Thus, we
decided to train the embeddings for our text model completely based on the
Twitch chat messages. Finally, we applied a dropout of 0.5 for regularization,
both for the embedding layer and the LSTM architecture.

The text representation learned by the LSTM is concatenated with additional
features, which are described in the following subsection. These combined tensors
are then run through a simple dense layer, and the output is predicted with a
sigmoid activation function. The loss of the model is calculated with the Binary
Cross Entropy function.

3.1 Conversational Features

Considering the subject of the challenge, the data presents other relevant infor-
mation that could be useful apart from the text of the messages themselves, such
as the user-channel relationships and the structure of the users’ participation in
the chat system. Thus, besides the text model previously described, we defined
features that could help the classification model based on these conversational
traits. For each instance, features were calculated based on these characteristics,
taking into account the other users and channels in the dataset.

These features can be divided in groups related with three different aspects:
verbosity, which is derived from traits of the user’s messages in the given chan-
nel; attendance, which is related to the frequency in which the user post mes-
sages in the channel; participation, which indicates how much the given user
and channel participate in the dataset as a whole.

Verbosity. These features measure how much content is generated by the user in
the channel. Both the amount and the length of the comments are considered.
As a reference point to these numbers, average values for the user and for the
channel are used as additional features.

– NumMsg UC: The number of messages sent by the user in the channel.

– LenMsgs UC: The text size (term count) of the user’s concatenated mes-
sages in the channel.

– AvgLenMsgs U: The average text size (term count) of the user’s concate-
nated messages, considering all the channels that they participate.

– AvgLenMsgs C: The average concatenated messages text size (term count)
of users participating in the channel.

5 For examples, see https://twitchemotes.com/

StinkyCheese: Chat-Based Model for Subscription Classification 5

Attendance. These features aim to capture the assiduity and permanence of the
user in the channel. They measure both the length of time over which the user
participated in the channel, as well as the intervals between messages.

– AttendanceTime UC: The total time of user’s activities in the channel.
In other words, the time between the user’s last and first messages in the
channel.

– AvgInterval UC: The average interval time between messages sent by a
user in the channel.

– StdInterval UC: The standard deviation of the interval time between mes-
sages sent by a user in the channel.

– MinInterval UC: The shortest interval time between messages sent by a
user in the channel.

– MaxInterval UC: The longest interval time between messages sent by a
user in the channel.

Participation. These features inform the general involvement of the user and of
the channel in the dataset. In a way, they measure the dedication between the
user-channel pair.

– NumChannels U: The number of channels in which the user participates.
– NumUsers C: The number of users participating in the channel.

4 Experimental Setup

To run our training process, we used a computer with an Intel(R) Core(TM) i7-
9700KF CPU @ 3.60GHz processor, 56 GiB of memory, and a NVIDIA GeForce
RTX 2080 Ti GPU. The implementation was done in Python, using the Keras
package.

4.1 Dataset Division

For the training process performed in this project, we divided the training
dataset into files of 100, 000 (one hundred thousand) instances (channel-user
pairs) each. All preprocessing and dataset manipulation steps were performed
on a single subfile at a time. So, for example, when counting the number of chan-
nels a user participated in, our experimentation only considered events in the
same subfile of the instance for which the feature was being calculated. Although
this does reduce the overall quality of the training process, this was done so that
the preprocessing steps needed for the model described in Section 3 would more
easily be performed.

In this paper, only one such file was used for the training step of the model,
and a second one for the validation of the model. Using the remaining instances
would potentially provide a more robust result in future works.

6 T. Corrêa Loures et al.

4.2 Data Preprocessing

As a first step, we preprocessed the dataset into a format that could be more
easily used in our model. The messages from each user-channel pair are initially
concatenated in order of occurrence, with no separation tokens between mes-
sages. Then stop words are removed from the text. We split the text by terms,
considering each sequence of punctuation characters as a single token (in order
to capture the use of simple emoticons, such as ;-/). Finally, we calculated the
features defined in Section 3.1.

This preprocessing step took 11 minutes to be performed for the file we used
in the experiments.

4.3 Ablation Study

In this section, we describe an ablation study performed over a number of aspects
that may influence the performance of our model. The hyperparameters were
selected using a second 100.000-instance file as the validation (dev) set, and the
scores are also reported in this set.

We train a number of models with differing hyperparameters, exploring the
impact of the optimizer, the learning rate and the maximum number of words
on the F1-score. We follow practical recommendations for some of the most
commonly used hyperparameters: it is often the case that a few of them make a
big difference [1].

We first start experimenting on the learning rate, perhaps the most important
hyperparameter [3, p. 424]. It is typical to pick the learning rate using a grid
search with values approximately following a logarithmic scale [3, p. 428], so we
take values within the set {0.1, 0.01, 10−3, 10−4}.

Regarding the optimization process, there is no consensus on the optimal
algorithm to use [10]. So, we choose three of the most popular optimizers: RM-
Sprop, Adam, and Adagrad.

Lastly, we change the number of words per sequence used for the text rep-
resentation, with 200, 300 and 400 as values. These values were chosen based
on the computational resources available at the time. Note that even with a
400 value, this limit is not enough to cover all instances of test set and training
set, which have 865 and 9120 instances, respectively, that can not be completely
covered with 400 tokens. Moreover, cutting out the last words of each sequence
can have a different effect than cutting the first or at random, although we have
not evaluated these different approaches in this work.

The best overall result was obtained with the Adagrad optimizer, learning
rate of 10−4 and 200-word representation; the most promising experiments are
shown in Table 1. Once the best hyperparameter selection was defined, we per-
formed a final training run on the model over 10 epochs. This execution took 83
minutes and 13 seconds to complete.

StinkyCheese: Chat-Based Model for Subscription Classification 7

Hyperparams Dev set F1

OPT LR MW

Adagrad 0.0001 200 0.309
Adagrad 0.001 200 0.303

Adam 0.0001 300 0.255
Adam 0.0001 300 0.244

RMSprop 0.0001 300 0.238

Table 1: Ablation over the hyperparameters. OPT = optimizers; LR = learning
rate; MW = maximum number of words.

5 Results

5.1 General Evaluation

For the ChAT challenge, participants were asked to submit their code to run on
the TIRA platform [9]. Each submitted model would then be run on a hidden
test set, and the results would be shared6.

Our final submission achieves an F1-score of 0.1422 on the test set, ranking in
fourth place in the challenge. As a baseline, a random sampler classifier achieves
an F1-score of 0.0741 on the same set.

5.2 Qualitative Analysis

In this section, we analyze how our model behaves based on the activity level
of the user, provided in the ground truth file of the test set. This activity is
classified into low, normal or high, according to the number of messages written
or received.

As shown in Figure 3a, the model predicts with 0.72 accuracy the subscribed
users with high activity level. On the other hand, it makes wrong predictions
for subscribed users with low activity, achieving only 0.232 accuracy for this
subset. This tendency, however, is not seen among non-subscribed users. While
the model has high accuracy (0.787) for the prediction of low-activity users in
this scenario, it often fails (0.38 accuracy) for the highly active ones, as seen in
Figure 3b.

This analysis indicates that our model tends to correlate activity level with
the probability of the user being subscribed, as we often correctly predict high-
activity users that are subscribed and low-activity users that are non-subscribed.
Considering the features we employed, as described in Section 3.1, this matches
the expected capabilities and bias of the model.

We also observed how the model performs with known and unknown channels
and users. While the model performed better with channels from the test set
that were already seen in the sampled training set, with an F1 score of 0.1964,

6 See results in: https://events.professor-x.de/dc-ecmlpkdd-2020/results.html - Site
visited on July 20, 2020

8 T. Corrêa Loures et al.

(a) Subscribed users (b) Non-subscribed users

Fig. 3: Accuracy according to user activity

it performed worse with seen users, having an F1 score of 0.0962. It is worth
noting that, as known users and channels consist of a small portion of the dataset
(1, 474 known channels and 2, 255 known users, out of the 90, 000 test instances),
inferences based on this data can be unreliable.

In order to better visualize the different instances in which the StinkyCheese
model was able to correctly predict the subscription status or not, we present a
few examples of messages from user-channel pairs. From these examples, we can
see that the task of identifying if a user is subscribed or not based on the chat is
a complex one. Subscribed users can have interactions in chat as short as those
of non-subscribed users, while non-subscribed can have conversations that seem
as intimate as a dedicated subscriber.

True Positive (subscribed, predicted as such):

– “so —you getting a new monitor”

– “Your welcome. I finally get to catch your stream —Ok. Haven’t played d2
in 3 weeks. Content wasn’t keeping interested —I hope season is good. This
season was lackluster”

False Positive (non-subscribed, predicted subscribed):

– “Hey —Dude —Wassaup —Wanna play”

– “bots —cya and happy new year —the beer was perfect”

True Negative (non-subscribed, predicted as such):

– “just stopping by for a minute to whish max and everyone a happy new
year”

– “!giveaway —What do u play on —Pc nvm”

False Negative (subscribed, predicted non-subscribed):

– “whiskey time —what?? —good night :) —ye ? —always”

– “!delcom !giveaway”

StinkyCheese: Chat-Based Model for Subscription Classification 9

6 Discussion and Conclusions

This work seeks to identify the subscription status of a user in a Twitch channel
with word vectors fed into a LSTM and then concatenated with conversational
features. Using chat messages for machine learning tasks is a complex endeavor.
Not only is the textual content of the messages an important factor, but the
structure of the conversation and the connection between agents also feature
into the picture. Studies in the field have several possible angles to look into,
and there’s still too much to improve.

Analyzing our results, it is possible to observe that the prediction of our
classifier is attached with the user activity, so it tends to predict as subscribed a
user that has high activity in channel, and to predict as non-subscribed an use
that has low activity in channel. In order to make the model better at dealing
with other cases, increasing the complexity of later steps of the network could
help the model to extract more complex relations between features and make
more accurate predictions.

We also have other limitations, such as the fact that we use features that
heavily summarize complex information regarding the structure of the conver-
sation and user-channel relationships. A more complex network structure could
be used with the extra metadata provided in the dataset, for example, using the
timestamp sequence as a whole instead of simply taking measures over them as
features.

As future work, we also intend to train our model again using pre-trained
word embeddings created with Twitch reviews, as proposed by [7]. As we said,
Twitch chat tends to have highly irregular, noisy and informal text. Therefore,
formal texts would not perform well. It is important to use pre-trained embed-
dings with the same language.

In addition, some features have a larger range of values in comparison to
others, such as those based on timestamps in comparison to those based on
message length. This can disrupt the classifier and affect the results. To avoid
this problem, the feature values could be normalized, potentially improving the
learning process.

One final point that could greatly improve the quality of the model would
be a heavier training process. This includes both the use of the entire training
dataset and the improvement of the hyperparameter search.

References

1. Bengio, Y.: Practical recommendations for gradient-based training of deep archi-
tectures. CoRR abs/1206.5533 (2012), http://arxiv.org/abs/1206.5533

2. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR abs/1810.04805 (2018),
http://arxiv.org/abs/1810.04805

3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

10 T. Corrêa Loures et al.

4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9,
1735–80 (12 1997). https://doi.org/10.1162/neco.1997.9.8.1735

5. Howard, J., Ruder, S.: Fine-tuned language models for text classification. CoRR
abs/1801.06146 (2018), http://arxiv.org/abs/1801.06146

6. Kobs, K., Potthast, M., Wiegmann, M., Zehe, A., Stein, B., Hotho, A.: Towards
predicting the subscription status of twitch.tv users — ecml-pkdd chat discov-
ery challenge 2020. Proceedings of ECML-PKDD 2020 ChAT Discovery Challenge
(2020)

7. Kobs, K., Zehe, A., Bernstetter, A., Chibane, J., Pfister, J., Tritscher,
J., Hotho, A.: Emote-controlled: Obtaining implicit viewer feedback through
emote-based sentiment analysis on comments of popular twitch.tv chan-
nels. Trans. Soc. Comput. 3(2) (Apr 2020). https://doi.org/10.1145/3365523,
https://doi.org/10.1145/3365523

8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013)

9. Potthast, M., Gollub, T., Wiegmann, M., Stein, B.: TIRA Integrated Research
Architecture. In: Ferro, N., Peters, C. (eds.) Information Retrieval Evaluation
in a Changing World. The Information Retrieval Series, Springer (Sep 2019).
https://doi.org/10.1007/978-3-030-22948-1 5

10. Schaul, T., Antonoglou, I., Silver, D.: Unit tests for stochastic optimization (2013)
11. TWITCH: Twitch partner program (2020), https://www.twitch.tv/p/partners/,

last accessed 23 June 2020
12. Yamada, I., Asai, A., Sakuma, J., Shindo, H., Takeda, H., Takefuji, Y., Matsumoto,

Y.: Wikipedia2vec: An efficient toolkit for learning and visualizing the embeddings
of words and entities from wikipedia. arXiv preprint 1812.06280v3 (2020)

13. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: A survey. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8(4), e1253
(2018)

