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Abstract. If a Description Logic (DL) system derives a consequence,
then one can in principle explain such an entailment by presenting a
proof of the consequence in an appropriate calculus. Intuitively, good
proofs are ones that are simple enough to be comprehensible to a user of
the system. In recent work, we have introduced a general framework in
which proofs are represented as labeled, directed hypergraphs, and have
investigated the complexity of finding small proofs. However, large size is
not the only reason that can make a proof complex. In the present paper,
we introduce other measures for the complexity of a proof, and analyze
the computational complexity of deciding whether a given consequence
has a proof of complexity at most q. This problem can be NP-complete
even for EL, but we also identify measures where it can be decided in
polynomial time.

1 Introduction

The first work on explaining DL entailments is probably the PhD thesis of
McGuinness [18], where the results obtained by the structural subsumption algo-
rithm of the CLASSIC system [8] are translated into proofs in a formal calculus.
The thesis also investigates how to create shorter, better understandable proofs
by pruning away unimportant parts. In [6], proofs of subsumptions generated
by a tableau-based system are translated into sequent proofs. The authors then
investigate how to make the sequent proofs shorter. More recent work on ex-
plaining DL entailment was often focused on computing so-called justifications,
i.e., minimal subsets of the knowledge base (KB) from which the consequence in
question follows (see, e.g., [4,12,24]). The basic assumption is here that, whereas
KBs may be very large and have many consequences, a single consequence often
follows from a small subset of the KB by an easy derivation. While this is true in
certain applications [5], in general it may be quite hard for a user to see without
help why a consequence follows from a given justification [14]. On the one hand,
this has triggered research into assessing the complexity of a justification, i.e.,
how hard it is to derive the given consequence from the justification [13,19]. On
the other hand, it has rekindled the interest in generating proofs appropriate for
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human consumption. For example, the explanation plugin for the ontology editor
Protégé described in [15] cannot only produce justfications, but can also display
proofs, provided that proofs of an appropriate form are returned by the employed
reasoner, an assumption that is, e.g., satisfied by the reasoner ELK [16]. While
these proofs are represented in the formal syntax employed by Protégé, the work
reported in [19, 22, 23] uses ontology verbalization techniques to translate proofs
into natural language text.

Recently, we have investigated the complexity of deciding whether proofs of
a certain size exist, which is measured in the number of steps involved in the
proof [1]. Instead of concentrating on a specific DL and proof calculus or reasoner
for this DL, we used a general framework in which proofs are represented as
labeled, directed, acyclic hypergraphs whose vertices are labeled with axioms
and hyperedges correspond to sound derivation steps. Note that such proofs
need not be tree-shaped since a single axiom can be reused in multiple inference
steps, thereby reducing the overall size of the proof. To abstract away from
implementation details, we assume that a reasoner (called deriver to distinguish
it from an actual implemented system) generates a so-called derivation structure,
which consists of possible proof steps, from which actual proofs can be constructed.
For example, if we consider the consequence-based reasoning approaches for the
DLs EL and ELI described in [3], then we could obtain a derivation structure
for a given KB and consequence by collecting all (finitely many) instantiated
classification rules. The EL reasoner ELK actually returns such a derivation
structure, which however only contains the rule instances that have actually been
used during the reasoning process.

In this paper, we extend the results of [1] by considering more measures
of proof complexity (other than size), with the ultimate goal of finding proofs
that are easy to understand for users. In a recent user study [7], for example, it
was observed that proof understandability can be influenced by the structure
(e.g. linear vs. several independent reasoning threads), the complexity of the
individual reasoning steps (e.g. whether a combination of quantifiers is involved),
the representation of the domain (e.g. abstract concept and role names vs. long
domain-specific names), and the overall format (e.g. graphical vs. textual).

In this paper, we consider a few possible approaches to defining proof com-
plexity, where we focus on the overall structure of the proof. For this reason, we
are not interested in the complexity/weight of individual axioms or inference
steps, which has already been investigated in the literature [13, 20]. For most of
the paper, we use the size of an axiom (or group of axioms) as a proxy for their
complexity, but it is easy to substitute other measures from the literature.

We now list a few approaches for defining proof complexity, which we discuss
throughout this paper.

1. A proof is at least as hard to understand as its hardest axiom.
2. The complexity of a proof is the sum (product, average, . . . ) of all weights of

its axioms.
3. As a special case of the previous item, the number of axioms constituting

the proof defines its complexity.
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4. The hardness of a proof corresponds to its (weighted) tree size, i.e., the
number (weighted sum) of vertices in its tree unraveling [1].

5. A proof is as hard to understand as the hardest inference step.
6. The hardness of a proof is the sum (product, average, . . . ) of inference step

weights.
7. Proof complexity is determined by the number of TBox axioms that are used,

i.e., the size of a corresponding justification.
8. A proof is more complex if there are more inference steps between the TBox

axioms and the conclusion. We could compute the maximal distance (depth),
or the maximal sum of weights along such a path.

9. A linear proof is easier to follow, hence we could measure the pathwidth of a
proof (when viewing a proof as an undirected graph obtained by replacing
each directed hyperedge with several undirected edges between the conclusion
and each premise).

10. We could consider a similary adapted notion of (undirected) treewidth as a
measure for the complexity of a proof, which reflects its degree of connectivity.

11. Multiple adjacent reasoning steps using the same rule schema are easier
to understand than when these steps are interspersed with other types of
inference rules.

12. For the presentation to a user, it may also be relevant whether a proof is
planar, i.e., it can be drawn without intersecting (hyper)edges.

There are of course many more ways in which “proof complexity” could be
measured. This paper takes a few steps towards classifying the complexity of
finding “best” proofs w.r.t. any such measure. Before we can introduce this
problem formally, we recall the basic definitions from [1].

2 Preliminaries

We assume a basic familiarity with description logics [3]. Most of our theoretical
discussions apply to an arbitrary (description) logic; from now on, we fix one
such logic L, where we focus on the terminological part, i.e., the TBox. Following
the notation from [1], SL denotes all TBox axioms that can be formulated in L.
We assume that the size |α| of such an axiom α is defined in some way, e.g. by
the number of symbols in α. Given a TBox T and axiom α, a justification for α
in T is a minimal subset J ⊆ T such that J |= α. Already for EL-ontologies, for
which finding a single justification is possible in polynomial time, there may be
still exponentially many justifications, and finding a justification of size ≤ n is
NP-complete [4].

While justifications can pinpoint the reasons for an entailment in a TBox, we
are interested in more detailed proofs such as, for example, the one in Figure 1.

2.1 Hypergraphs

As in [1], we view proofs as directed hypergraphs.
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Definition 1 (Hypergraph). A (finite, directed, labeled) hypergraph [21] is
a triple H = (V,E, `), where
– V is a finite set of vertices,
– E is a set of hyperedges (S, d) with source vertices S ⊆ V and target vertex
d ∈ V , and

– ` : V → SL is a labeling function that assigns axioms to vertices.

The size of H, denoted |H|, is measured by the size of the labels of its hyperedges:

|H| :=
∑

(S,d)∈E

|(S, d)|, where |(S, d)| := |`(d)|+
∑
v∈S
|`(v)|.

A vertex v ∈ V is called a leaf if it has no incoming hyperedges, i.e., there is
no (S, v) ∈ E, and v is a sink if it has no outgoing hyperedges, i.e., there is no
(S, d) ∈ E such that v ∈ S. We denote the set of all leafs and the set of all sinks
in H as leaf (H) and sink(H), respectively.

A hypergraph H ′ = (V ′, E′, `′) is called a subgraph of H = (V,E, `) if V ′ ⊆ V ,
E′ ⊆ E and `′ = `|V ′ . In this case, we also say that H contains H ′ and write
H ′ ⊆ H. Given two hypergraphs H1 = (V1, E1, `1) and H2 = (V2, E2, `2) s.t.
`1(v) = `2(v) for every v ∈ V1 ∩ V2, their union is defined as H1 ∪ H2 :=
(V1 ∪ V2, E1 ∪ E2, `1 ∪ `2).

Definition 2 (Cycle, Tree). Given a hypergraph H = (V,E, `) and s, t ∈ V , a
path P of length q > 0 in H from s to t is a sequence of vertices and hyperedges

P = (d0, (S1, d1), d1, (S2, d2), . . . , dq−1, (Sq, dq), dq),

where d0 = s, dq = t, and dj−1 ∈ Sj for all j, 1 ≤ j ≤ q. If there is such a path
in H, we say that t is reachable from s in H. If t = s, then P is called a cycle.
The hypergraph H is acyclic if it does not contain a cycle. The hypergraph H is
connected if every vertex is connected to every other vertex by a series of paths
and reverse paths.

A tree H = (V,E, `) with root t ∈ V is a hypergraph in which t is a sink and
is reachable from every vertex v ∈ V \ {t} by exactly one path.

In particular, the root is the only sink in a tree, and all trees are acyclic and
connected.

Definition 3 (Homomorphism). Let H = (V,E, `), H ′ = (V ′, E′, `′) be two
hypergraphs. A homomorphism from H to H ′, denoted h : H → H ′, is a mapping
h : V → V ′ s.t. for all (S, d) ∈ E, one has h(S, d) := ({h(v) | v ∈ S}, h(d)) ∈ E′
and, for all v ∈ V , it holds that `′(h(v)) = `(v). Such an h is an isomorphism if
it is a bijection and, its inverse, h− : H ′ → H, is also a homomorphism.

A v B
A v B B v ∃r.A

A v ∃r.A
A v B u ∃r.A

Fig. 1. A proof in the classical representation
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B v ∃r.AA v B

A v B A v ∃r.A

A v B u ∃r.A

Fig. 2. A tree-shaped proof

B v ∃r.AA v B

A v ∃r.A

A v B u ∃r.A

Fig. 3. A proof with a reused vertex

2.2 Proofs

The following definition formalizes basic requirements for hyperedges to be
considered valid inference steps from a given TBox.

Definition 4 (Derivation Structure). A derivation structure D = (V,E, `)
over a TBox T is a hypergraph that is

– grounded, i.e., every leaf v in D is labeled by `(v) ∈ T ; and
– sound, i.e., for every (S, d) ∈ E, the entailment {`(s) | s ∈ S} |= `(d) holds.

We now define proofs as special derivation structures that derive a goal axiom.

Definition 5 (Proof). Given an axiom η and a TBox T , a proof for T |= η is
a derivation structure P = (V,E, `) over T that

– contains exactly one sink vη ∈ V , which is labeled by η, and
– is acyclic.

A tree proof is a proof that is a tree. A subproof of a hypergraph H is a subgraph
of H that is a proof.

Figures 2 and 3 both prove A v B u ∃r.A from T = {A v B, B v ∃r.A}. The
first proof is presented in hypergraph notation (cf. Figure 1) as a tree and the
second one as a hypergraph without axiom label repetition, where the TBox
axioms are marked with a thick border. Both of them can be seen as proofs in
the sense of Definition 5 and they use the same inference steps, but have different
numbers of vertices.

Two useful operations are the following of removal and replacement of sub-
proofs above a vertex. Given a proof P = (V,E, `) and a vertex v ∈ V , the
subproof of P with sink v is the largest subgraph Pv = (Vv, Ev, `v) ⊆ P, where
Vv contains all vertices in V that have a path to v in P. Dually, we denote by
P−v = (V −v, E−v, `−v) the largest subgraph of P such that

– leaf (P−v) = leaf (P) ∪ {v} and
– sink(P−v) = sink(P).

Intuitively, we obtain P−v by removing every vertex from P from which every
path to the sink goes through v. P−v need not be a proof since v is now a leaf,
but `(v) may not be an axiom from T . Finally, for a proof P ′ = (V ′, E′, `′) with
sink v such that V ∩V ′ = {v} and `(v) = `′(v), we define the proof P [v 7→ P ′] as
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P−v ∪ P ′. The intuitive idea here is that v, as every vertex in V , is labeled with
an axiom that has its own proof above it. And P−v is obtained by removing the
proof above v; vertices are kept only if they are used to prove other vertices in P .
Then, P[v 7→ P ′] is the result of “replacing” the proof above v by P ′. Moreover,
since P and P ′ have only one vertex in common, it is guaranteed that the resulted
hypergraph P[v 7→ P ′] is acyclic. Additionally, unravelling P into a tree can be
seen as the result of recursively applying P[v 7→ Pv] to every vertex v in P.

2.3 Derivers

As in [1], we rely on a deriver (imagine a DL reasoner) that, given a TBox T
and a goal axiom η, produces a derivation structure D that contains “all possible
proofs”. This structure describes all instances of inference rules that are relevant
for constructing proofs for η, without us having to know how inferences are
performed. The quest for a good proof thus becomes a search for a good proof
expressible by the inference steps in D. Since reasoners may not be complete for
proving arbitrary axioms of L, we restrict η to a subset CL ⊆ SL of supported
consequences.

Definition 6 (Deriver). A deriver D is given by a set CL ⊆ SL and a func-
tion that assigns derivation structures to pairs (T , η) of TBoxes T ⊆ SL and
axioms η ∈ CL, such that T |= η iff D(T , η) contains a proof for T |= η. A
proof P for T |= η is called admissible w.r.t. D(T , η) if there is a homomorphism
h : P → D(T , η). We call D a polynomial deriver if there exists a polynomial p(x)
such that the size of D(T , η) is bounded by p(|T |+ |η|).

We assume w.l.o.g. that D(T , η) does not contain two vertices with the same
label; this does not affect our results.

Elk [16] can be seen as a polynomial deriver for EL in this sense, because it
allows to instantiate the inference rules with only a polynomial number of EL-
concepts, namely the subconcepts appearing in T or η. The derivation structure
Elk(T , η) contains all allowed instances of these rules, where each axiom is
represented by a unique vertex. Since the number of premises in each rule is
bounded by 2, the size of this structure is polynomial. Elk is complete only
for goal axioms of the form C v D, where D is a concept name and C is a
subconcept from T . To prove other kinds of entailments T |= η, one first has to
adapt T and η, thus leading to a different derivation structure Elk(T , η).

There are consequence-based derivers for other DLs, but they may not be
polynomial [9]. In [1], we described a polynomial deriver for expressive description
logics that is based on forgetting [17] and may take double-exponential time to
compute the polynomial derivation structure D(T , η). In [1], we also investigated
exponential derivers, but here we focus on the case of polynomial derivers.
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3 Measuring Proof Complexity

Taking into consideration the variety of examples in the introduction, we define
a general class of complexity measures for proofs. Our goal is to find proofs that
minimize these measures, i.e., lower numbers are better.

Definition 7. A (complexity) measure is a function m : PL → Q≥0, where PL is
the set of all proofs over L and Q≥0 is the set of non-negative rational numbers.

We call m a Ψ-measure if, for every P ∈ PL,

[P] m(P) is computable in polynomial time in the size of P,
[SI] every subproof of a homomorphic image of P weighs no more than P, i.e.,

m(P ′′) ≤ m(P) for any homomorphism h : P → P ′ and P ′′ ⊆ h(P) such
that P ′′ ∈ PL.

Intuitively, a Ψ-measure m does not increase when the proof gets smaller, either
when parts of the proof are removed (i.e., for a subproof) or when parts are
merged (i.e., for a homomorphic image). We cannot replace the property [SI]
by two separate properties for each of these cases since the image of a proof P
may not be acyclic, but has relevant acyclic subgraphs that should also not have
larger weight than P. Due to [SI], there always exists a proof P for T |= η that
is minimal w.r.t. m as well as non-redundant, i.e., there is no subproof P ′ ⊂ P
for T |= η. Moreover, two isomorphic proofs have the same weight w.r.t. m.

In Table 1, we provide examples of how the complexity measures from the
introduction can be defined formally, where by P ∈ P we denote that P is a
path in P , and by |P | the length of P . Since P is acyclic, there is always at least
one such path. In this table, we use the size of an axiom or edge as a proxy for
its complexity; other values from Q≥0 could be used instead. The table covers all
measures from the introduction except for Items 4 and 9–12. Tree size (Item 4)
is defined recursively; we discuss this measure in the context of a more general
family of “local” measures later in Section 4.

Lemma 8. Tree size and all measures in Table 1 except for depth and worst
path are Ψ-measures. Indeed, depth, worst path and treewidth do not satisfy
[SI].

The remaining items (9–12) are not Ψ-measures: the problems behind Items 9
and 10, i.e., to determine the pathwidth or treewidth for proofs which are graphs
are NP-hard [2]. Moreover, note that treewidth is not interesting in our context,
since we can always obtain a tree-shaped proof (with minimal treewidth 1) by
unraveling. A similar argument applies to Item 12 (planarity) since every tree is
planar. We will discuss Item 11 separately in Section 5.

We now formally define our main problem: finding optimal admissible proofs
w.r.t. a measure m and D(T , η).

Definition 9 (Optimal Proof). Let D be a deriver and m be a measure. Given
a TBox T and an axiom η ∈ CL, an admissible proof P w.r.t. D(T , η) is called
optimal w.r.t. m if m(P) is minimal among all such proofs. The associated
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Table 1. Formal definitions of some measures m for proofs P = (V,E, `).

Name m(P)

Hardest axiom maxv∈V |`(v)|
Hardest inference step max(S,d)∈E |(S, d)|

Sum of axiom complexities
∑

v∈V |`(v)|
Sum of edge complexities

∑
(S,d)∈E |(S, d)|

Vertex size |V |
Justification size |{v ∈ V | `(v) ∈ T }|

Depth maxP∈P |P |
Worst Path maxP∈P

∑
(S,d)∈P |(S, d)|

decision problem, denoted OP(D,m), is to decide, given T and η as above and
q ∈ Q, whether there is an admissible proof P w.r.t. D(T , η) with m(P) ≤ q.

If D is a polynomial deriver, we add the superscript poly to OP. If m is a
Ψ-measure, we add a subscript Ψ, e.g. OPpoly

Ψ (D,m).

For the complexity analysis, we assume the deriver to be given in the form of a
method that allows to access elements of D(T , η). The complexity of this method
is not our concern here, we simply assume in the following that elements of
D(T , η) can be accessed in constant time. Since all of our complexity bounds
are at least P, our results remain the same for the derivers whose derivation
structure can be constructed in polynomial time even if we take the complexity
of computing the derivation structure into account.

We can show that if P is optimal w.r.t. a Ψ-measure m and D(T , η), then the
homomorphic image of P in D(T , η) is also a proof. Thus, to decide OPΨ(D,m)
we can focus on proofs that are subgraphs of D(T , η). This is shown by the
following lemma, which generalizes a result from [1]. The full proof can be found
in the appendix.

Lemma 10. For any Ψ-measure m, if there is an admissible proof P w.r.t.
D(T , η) with m(P) ≤ q for some q ∈ Q, then there exists a subproof Q of D(T , η)
for T |= η with m(Q) ≤ q.

Proof (Sketch). Let P be any such proof. Then there is a homomorphism
h : P → D(T , η). If h(P) is a proof, then the claim immediately follows from [SI].
Otherwise, h(P) contains cycles, which must be due to different vertices in P
with the same label that are connected by a path. We can iteratively remove
such paths to obtain another proof P∗ that can be homomorphically mapped to
a subproof Q of h(P) ⊆ D(T , η), and therefore m(Q) ≤ m(P) ≤ q by [SI]. ut

In particular, this shows that an optimal proof always exists (recall that derivation
structures are always finite).

Corollary 11. If T |= η, then, for every deriver D and Ψ-measure m, there is
an optimal proof for T |= η w.r.t. D and m.
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We can now show the following generic upper bound for our decision problem.

Theorem 12. OPpoly
Ψ (D,m) is in NP.

Proof. We start by guessing a subgraph P of D(T , η). This can be done in
non-deterministic polynomial time in the size of D(T , η), which is polynomial
in the size of T and η. This subgraph P is necessarily sound, and checking the
remaining properties of Definitions 4 and 5 and that m(P) ≤ q can be done in
polynomial time in the size of P, in particular due to [P] in Definition 7. ut

Note that, one can similarly show an upper bound of NP for pathwidth, since
checking m(P) ≤ q is in NP [2]. (First guessing P and then verifying m(P) ≤ q
can be performed by a polynomially bounded sequence of non-deterministic
steps.)

Matching lower bounds hold for OPpoly
Ψ (D,m) with a fixed D and m being

vertex size [1] or justification size [4]. As we already noted, all the complexity
measures from Table 1, including vertex size and justification size, are Ψ-measures.

Theorem 13 ([1, 4]). For m being vertex size or justification size, there is a
polynomial deriver D such that OPpoly

Ψ (D,m) is NP-complete.

4 Local Measures

In this section, we consider a property that allows us to reduce the upper bound
from NP to P. This also generalizes a result from [1]. Recall that intuitively,
P[v 7→ P ′] denotes the result of replacing in P the proof above v by P ′.

Definition 14. Let P = (V,E, `) be a proof and v ∈ V . We say that a Ψ-measure
m is local for v in P if for every proof P ′v = (V ′, E′, `′) with sink v such that
V ∩ V ′ = {v}, `(v) = `′(v) and m(P ′v) ./ m(Pv), we have m(P [v 7→ P ′v]) ./ m(P),
for any choice of relation ./ ∈ {<,≤,=,≥, >}.

A Ψ-measure m is local if it is local for every vertex in every proof.

Intuitively, if the measure is local, then we can replace subproofs by easier or
harder alternative proofs, and the weight of the full proof will change accordingly.
Measures that can be defined in a monotone, recursive way on the graph structure
usually have this property:

– the measures hardest axiom, hardest inference step, from Table 1;
– tree size defined for an ayclic H = (V,E, `) by m(H) :=

∑
v∈sink(H) m(H, v),

where m(H, v) := 1 +
∑

(S,v)∈E
∑
w∈S m(H,w);

– weighted tree size, defined similarly by m(H) :=
∑
v∈sink(H) m(H, v) with

m(H, v) := |`(v)|+
∑

(S,v)∈E
∑
w∈S m(H,w).

As the names of the last two measures indicate, local measures cannot distinguish
between hypergraphs and their unravelings into trees, since unraveling of a proof
P can be seen as recursively computing P [v 7→ Pv] for all vertices v in P . That is
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Algorithm 1: A Dijkstra-like algorithm
Input: A derivation structure D(T , η) = (V,E, `), a local Ψ-measure m
Output: An optimal proof of T |= η w.r.t. D(T , η) and m

1 Q := ∅
2 foreach v ∈ V do
3 if `(v) ∈ T then
4 P(v) := ({v}, ∅, `|{v}); Q := Q ∪ {v} // `(v) is a TBox axiom
5 else if (∅, v) ∈ E then
6 P(v) := ({v}, {(∅, v)}, `|{v}); Q := Q ∪ {v} // `(v) is a tautology
7 foreach e ∈ E do k(e) := 0
8 while Q 6= ∅ do
9 choose v ∈ Q with minimal m(P(v)) // P(v) is optimal for `(v)

10 Q := Q \ {v}
11 foreach e = (S, d) ∈ E with v ∈ S do
12 k(e) := k(e) + 1
13 if k(e) = |S| then // all source vertices have been reached
14 P := (S ∪ {d}, e, `S∪{d}) ∪

⋃
s∈S P(s) // construct new proof

15 if P is acyclic then
16 if P(d) is undefined or m(P(d)) > m(P) then
17 P(d) := P; Q := Q ∪ {d} // P is better for `(d)

18 return P(vη), where `(vη) = η

the reason why they are especially well-suited for cases where proofs are presented
to users in the form of trees. This is for example the case for the Elk-proof
plugin for Protégé [15].

Algorithm 1 describes a Dijkstra-like approach that is inspired by the algorithm
in [10] for finding minimal hyperpaths w.r.t. so-called additive weighting functions,
which represent a subclass of local Ψ-measures. It progressively defines proofs
P(v) for `(v) that are contained in D(T , η). If it reaches a new vertex v in this
process, this vertex is added to the set Q. In each step, a vertex with minimal
weight m(P(v)) is chosen and removed from Q. Whenever all source vertices
of a hyperedge (S, d) have been processed in this way, a new proof for `(d) is
constructed by joining the proofs for the source vertices using the new hyperedge,
and this is compared to the best previously known proof for `(d). All proofs
constructed in this way are tree proofs, but this restriction does not matter since
m is local. For Line 18, recall that we assumed D(T , η) to contain no two vertices
with the same label, and hence it contains a unique vertex vη with label η.

Lemma 15. For any local Ψ-measure m and polynomial deriver D, Algorithm 1
computes an optimal proof in time polynomial in the size of T and η.

Proof (Sketch). The main argument is that the algorithm is monotone in the
sense that the smallest weight min{m(P(w)) | w ∈ Q} can never decrease. Hence,
easier proofs (according to m) will be constructed before harder ones. This shows
that each vertex v will be removed at most once from Q in Line 17, and hence
the algorithm terminates in polynomial time. Moreover, one can use the above
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fact to show that whenever v is chosen in Line 9, then P(v) is a minimal proof
for `(v) in D(T , η). This step uses an inductive argument that is based on the
locality property of the measure m. Finally, by Lemma 10 we do not need to
consider proofs that are not contained in D(T , η). ut

Since we can actually compute an optimal proof in polynomial time, the following
complexity result follows.

Theorem 16. For any local Ψ-measure m, OPpoly
Ψ (D,m) is in P.

A matching lower bound was shown in [1] for the problem of finding an admissible
tree proof of minimal vertex size. This is equivalent to finding an arbitrary proof
of minimal tree size, since a tree proof (with the same tree size) can always be
obtained by unravelling, and for tree proofs the measures tree size and vertex
size coincide. Since tree size is a local Ψ-measure, we obtain the following.

Theorem 17 ([1]). For m being tree size, there is a polynomial deriver D such
that OPpoly

Ψ (D,m) is P-complete.

5 Chunks

In this section, we discuss Item 11 from the introduction, which is part of ongoing
work. To define such a measure, we need to extend the definition of hypergraphs
by a function ρ that assigns to each hyperedge (S, d) a label, the idea being
that ρ(S, d) is the name of the inference rule that was instantiated to obtain the
inference step {`(s)|s∈S}`(d) . Based on this, we define the notion of chunks.

Definition 18. Given a proof P, a chunk of P is a maximal connected subgraph
H ⊆ P such that ρ(e) = ρ(e′) for all hyperedges e, e′ in H ′.

Every proof has a unique decomposition into chunks that do not share hyperedges.
A proof can thus be measured by the chunk count, which is the number of its
chunks. This measure follows the idea that proofs with less alternations between
inference rules are easier to understand. Consider for example proofs P1 and P2
depicted in Figure 4. Both are proofs for the same entailment A v ∃r.F , and P1
has three chunks, while P2 has only one (all inference steps follow the same rule
schema), hence P2 is easier to understand. Of course one can consider also more
complicated measures that also take the size of the chunks into account.

Clearly, the measure satsifies [P]. However, we need extend the notion of
homomorphism to take into account the edge labeling function ρ. Nevertheless,
we conjecture that we can extend the NP upper bound in Section 3 to cover this
measure by carefully adapting Condition [SI]. Unfortunately, the chunk count is
not local, because it is not invariant under unraveling (which may copy a single
chunk into multiple ones).



12 Alrabbaa, Baader, Borgwardt, Koopmann, Kovtunova

A v F1 u F2

F1 v ∃r.F2A v F1

A v ∃r.F2 F2 v F

A v ∃r.F

A v B B v C

A v C C v D

A v D D v E

A v E E v ∃r.F

A v ∃r.F

Fig. 4. Two proofs P1 (on the left) and P2 of the same entailment A v ∃r.F .

6 Conclusion

We have investigated the complexity of finding optimal proofs for description logic
entailments w.r.t. a variety of measures. Obviously, size is not enough to evaluate
the difficulties users face when trying to understand proofs, and existing measures
for justification complexity (e.g. [13]) cannot capture the structural aspects of
this problem. We identified two classes of structural measures, Ψ-measures and
local Ψ-measures, and showed that finding optimal proofs w.r.t. such measures
is in NP and in P, respectively, for polynomial derivers. In the future, we will
investigate more measures, try to find more tractable subclasses, and identify
properties of measures that make them P-hard or NP-hard. Most importantly,
we will evaluate which measures are most relevant for practical purposes, to
actually help users understand description logic proofs.
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A Proofs

Lemma 8. Tree size and all measures in Table 1 except for depth and worst
path are Ψ-measures. Indeed, depth, worst path and treewidth do not satisfy
[SI].

Proof. It should be easy to see that, given a proof P , all the measures in Table 1
can be computed according to the formulas in polynomial time in the size of P.
Tree size also satisfies the property [P], see [1].

Since a homomorphism preserves edges and vertex labels, weights correspond-
ing to the hardest, sum and size measures of subproofs of a homomorphic image
is no greater than the weight of the proof.

In order to see why [SI] does not hold for depth and worst path, we use
the following example in Figure 5. For simplicity we omit vertex labeling; we
assume only `(v) = `(v′). Clearly, the graph on the left has depth 4, while its
homomorphic image and a subproof obtained by omitting the cycle on the right
have 5. A similar argument can be applied to worst path since depth is its special
case (when the weight of an edge is always equal to 1).

The intuition behind why [SI] does not hold for treewidth is as follows. A
connected graph G has treewidth 1 if and only if it is a tree. However, its
homomorphic image of a tree is not necessary a tree. One can construct a tree
proof and a homomorphism s.t. there is a subproof in the homomorphic image
which is not a tree and, thus, has a treewidth greater than 1.

Despite the strong connection between treewidth and pathwidth, i.e., for any
graph, its pathwidth is no smaller than its treewidth, we cannot conjecture a
similar result for pathwidth. Cycles (if any) created by a homomorphism which
also could increase pathwidth are not part of subrpoofs for [SI]. ut

Lemma 10. For any Ψ-measure m, if there is an admissible proof P w.r.t.
D(T , η) with m(P) ≤ q for some q ∈ Q, then there exists a subproof Q of D(T , η)
for T |= η with m(Q) ≤ q.

Proof. Let P be such a proof with associated homomorphism h : P → D(T , η). If
h(P) is acyclic, then by [SI] in Definition 7 we have m(h(P)) ≤ m(P) ≤ q. Since

v

v′

h(v)
h(v′)

Fig. 5. A homomorphism that increases depth and worst path of the graph
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P has a unique sink vη, it must be mapped to a unique sink h(vη) in h(P), and
thus h(P) is the desired subproof of D(T , η).

If h(P) is not acyclic, our goal is to find another admissible proof P∗ w.r.t.
D(T , η) that uses a subset of the vertices of P such that h(P∗) ⊆ h(P) is acyclic,
and therefore satisfies the requirements of the lemma by [SI] in Definition 7.
For this purpose, consider an arbitrary cycle in h(P), which must be due to two
vertices v, v′ in P such that h(v) = h(v′) and there is a path between v and v′
(or due to multiple such pairs of vertices). Since P is acyclic, we can assume that
there is a path from v to v′, but no path from v′ to v. We now consider the two
subproofs Pv and Pv′ . As there is a path from v to v′, we have Pv ⊂ Pv′ . Since
h(v) = h(v′), both vertices are labeled with the same axiom. The idea of the
following construction is to remove Pv′ from P and replace it with Pv, which
effectively removes all paths from v to v′.

More formally, we first consider the hypergraph H = P−v′ ∪ Pv and then, in
the hyperedges (S, d) in H that still contain v′ ∈ S, we replace v′ by v, effectively
merging the two vertices, remove v′ from the set of vertices, and thus obtain a
hypergraph P ′. If there was no such hyperedge, then v′ was the sink of P, i.e.,
`(v′) = η, and v will now be the new sink in P ′ with `(v) = `(v′) = η. We now
show that P ′ is also an admissible proof w.r.t. D(T , η). Our construction does not
produce new leafs, and hence P ′ is still grounded. Clearly, all remaining edges are
sound since they were already sound in P . Moreover, P ′ is acyclic since all cycles
in P ′ can be traced back to paths in P that involve both v and v′; but we have
assumed that there are no paths from v′ to v, and have destroyed all paths from v
to v′. As argued above, we have also kept the property that there is exactly one
sink, which is labeled with η. Observe that h is also a homomorphism from P ′
to D(T , η) (when restricted to the vertex set of P ′), because h(v) = h(v′), and
moreover h(P ′) ⊆ h(P).

The resulting proof P ′ has less vertices than P since we have removed
at least v′. This means that, after finitely many such operations, we can ob-
tain from P the desired proof P∗ such that h(P∗) ⊆ h(P) is acyclic. Since
h(P∗) also has a unique sink labeled by η, it is a subproof of D(T , η) and
m(h(P∗)) ≤ m(P) ≤ q by [SI] in Definition 7. ut

Corollary 11. If T |= η, then, for every deriver D and Ψ-measure m, there is
an optimal proof for T |= η w.r.t. D and m.

Proof. By Definition 6, the derivation structure D(T , η) contains at least one
proof for T |= η. Since D(T , η) is finite, there are finitely many proofs for T |= η
contained in D(T , η). The finite set of all weights of these proofs always has
a minimum. Finally, if there were an admissible proof weighing less than this
minimum, it would contradict Lemma 10. ut

Lemma 15. For any local Ψ-measure m and polynomial deriver D, Algorithm 1
computes an optimal proof in time polynomial in the size of T and η.

Proof. We can show the following facts about this algorithm.
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(I) Whenever P(v) is defined, then it is a proof for `(v) contained in D(T , η).
We prove this by induction on the order in which the hypergraphs P(v)
are constructed by Algorithm 1. The ones in Line 4 consist of a single
leaf v, which is labeled by a TBox axiom, and hence are sound, grounded,
acyclic, and have the single sink v. Similarly, P(v) in Line 6 is always a
proof since it consists of a single edge from D(T , η), has no leafs, and
has v as the only sink.
Consider now the hypergraph P constructed in Line 14 as a possible
candidate for P(v) (where v = d). At this point, all P(s), s ∈ S, are
already defined since the counter k(e) can only reach |S| if each s ∈ S
has already been chosen in Line 9, and thus P(s) must have been defined.
Hence, by induction, each P(s) is a proof for `(s) contained in D(T , η),
and, because we assume that D(T , η) contains no two vertices with the
same label, must have s as sink. This shows that the hypergraph P
constructed in Line 14 is sound, grounded, and has a single sink, namely v.
Finally, P(v) is only updated to P in Line 17 if P is acyclic and therefore
it is a proof.

(II) If vertex v is chosen before vertex w in Line 9, then m(P(v)) ≤ m(P(w)).
We show that after choosing v in Line 9 the algorithm cannot produce a
new proof P in Line 14 with m(P) < m(P(v)), and thus the smallest weight
min{m(P(w)) | w ∈ Q} can never decrease. Consider the proof P from
Line 15. Since v ∈ S, we have P(v) ⊂ P, and therefore m(P(v)) ≤ m(P)
by [SI].

(III) Algorithm 1 terminates in polynomial time.
Item (II) implies that each vertex v ∈ V can be removed from Q at most
once: in order for v to be added again to Q in Line 17, there would need to
exist a proof other than P(v) with the same sink v but a smaller weight,
but according to (II), after choosing v in Line 9, the algorithm does not
construct any proofs with a weight smaller than m(P(v)) (for any sink).
Therefore, in Line 14, during the complete run of the algorithm, each edge
(S, d) ∈ E will be used at most once. Moreover, all primitive operations in
the algorithm can be done in polynomial time, such as checking acyclicity
of hypergraphs in Line 15 or finding the minimal value m(P(v)) in Line 9.
It follows that Algorithm 1 terminates in time polynomial in the size
of D(T , η), which is polynomial in the size of T and η.

(IV) Every vertex v ∈ V that is the sink of a proof P contained in D(T , η) is
added to Q at some point.
We prove this by induction on the structure of P. If P contains only v,
then either `(v) ∈ T , and hence v is added to Q in Line 4, or otherwise
there is an edge (∅, v) in P (and hence in E), in which case v is added
to Q in Line 6.
If P has more than one vertex, then it must contain at least one edge
e = (S, v) ∈ E, where each s ∈ S is the sink of a subproof of P in D(T , η).
By induction we know that each s ∈ S is added to Q at some point during
the algorithm. By Item (III), they must also be removed from Q at some
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point afterwards, and hence eventually k(e) reaches |S| in Line 13. If P(v)
was already defined at this point, then v had already been added to Q
earlier. Otherwise, v is now added to Q in Line 17.

(V) When the algorithm terminates and P(v) is defined, then m(P(v)) is
minimal among all proofs for `(v) contained in D(T , η).
By (I), P(v) is a proof of this form. Assume to the contrary that there
is a proof P for `(v) contained in D(T , η) such that m(P) < m(P(v)).
Then P and P(v) must both have the sink v, because we assume that
D(T , η) contains no two vertices with the same label. Assume moreover
that
i) P is an optimal proof for `(v), that is, m(P) ≤ m(P ′) for every other

proof P ′ for `(v) in D(T , η) (cf. Corollary 11), and
ii) among all other vertices v′ ∈ V for which there exists a proof P ′

for `(v′) in D(T , η) such that m(P ′) < m(P(v′)), we also have
m(P) ≤ m(P ′) and whenever m(P) = m(P ′), then |P| ≤ |P ′|.

Since P is optimal, we know that it has a unique last inference step (S, v).
We show that, for every vertex w ∈ S, an optimal proof was assigned to
P(w) before v was chosen in Line 9. We first show that for every w ∈ S,
the subproof Pw must be similarly minimal.
If this were not the case, then there would be a proof P ′w for `(w)
in D(T , η) such that m(P ′w) < m(Pw). But then, by locality, we have
m(P[w 7→ P ′′w]) < m(P), where P ′′w is constructed from P ′w by renaming
all vertices except w. Since P[w 7→ P ′′w] is an admissible proof for `(v)
w.r.t. D(T , η), by Lemma 10 we know that D(T , η) contains a proof P ′
for `(v) with m(P ′) ≤ m(P[w 7→ P ′′w]) < m(P), contradicting the opti-
mality of P. Hence, Pw must be optimal among all proofs for `(w) in
D(T , η).
Moreover, by [SI], we have m(Pw) ≤ m(P) and |Pw| < |P|. By Assump-
tion ii) and (IV), this means that P(w) is also optimal w.r.t. m among all
proofs for `(w) in D(T , η).
Since both Pw and P(w) are optimal in this sense, we obtain that

m(P(w)) = m(Pw) ≤ m(P) < m(P(v)),

which by (II) means that w must have been chosen (in Line 9) before v.
To summarize, for every vertex w ∈ S, we know that an optimal proof
for `(w) with weight m(Pw) has already been assigned to P(w) before v is
chosen in Line 9, and moreover each w ∈ S was chosen before v. But then,
for one of these vertices w (the last one to be processed), a proof P ′ is
constructed from the subproofs P(w) and the edge (S, v) in Line 14. If we
consider the variant P ′′ of P ′ where each of the subproofs P(w) is renamed
such that it shares only the vertex w with the rest of the proof, then
by locality we have m(P ′′) = m(P ′). Moreover, since m(P(w)) = m(Pw)
holds for all w ∈ S, locality also yields that m(P ′′) = m(P). Since P ′
was constructed as a candidate for P(v) by the algorithm, we know
that m(P(v)) ≤ m(P ′) = m(P), which contradicts our assumption that
m(P) < m(P(v)). We obtain that P(v) must be optimal.
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Since by Lemma 10 the derivation structure D(T , η) contains an optimal
proof for T |= η, Items (III)–(V) show that Algorithm 1 returns such a proof in
Line 18. ut
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