
UI-FAME: A Deductive Forgetting System for
Creating Views of ALC-TBoxes?

Xuan Wu1,2, Chang Lu1,3, Yizheng Zhao1,2,5, Hao Feng4, Renate A. Schmidt5,
Yiwei Dai1

1 National Key Laboratory for Novel Software Technology, Nanjing Univeristy, China
2 School of Artificial Intelligence, Nanjing University, China

3 School of Physics, Nanjing University, China
4 North China University of Science and Technology, China

5 Department of Computer Science, The University of Manchester, UK

Abstract. UI-FAME is a Java-based forgetting system for creating views
of ALC-TBoxes. The system implements the method developed in our
previous work for forgetting concept and role names from ALC-TBoxes.
In this paper, we introduce UI-FAME and compare it with LETHE, a
peer forgetting system for ALC-ontologies and many its extensions, over
the ALC-TBox fragment of 494 realistic ontologies taken from the Ox-
ford Ontology Repository. The comparison considers success rates, speed,
memory consumption as the principal indicators to assess the perfor-
mance of the two systems. For validation purpose, we also explore the
semantic relationships between the views computed by the two systems.
The experimental results showed that UI-FAME attained in general bet-
ter success rates and performance results than LETHE. We found that
in 97.08% cases UI-FAME and LETHE computed logically equivalent
views, in 2.06% cases LETHE’s solution entailed UI-FAME’s solution
but not the other way round, in 0.79% cases UI-FAME’s solution en-
tailed LETHE’s solution but not the other way round, and in 0.07%
cases they had no mutual entailment relationship. This was somewhat
undesirable and thus needs further investigation.

1 Introduction

In Computer Science and Artificial Intelligence, ontology is a technical term de-
noting an artifact that is designed for a specific purpose to enable the modeling
of knowledge about a domain of discourse. More specifically, an ontology is a for-
mal representation of the knowledge within a domain of discourse using a set of
representational primitives. These representational primitives are classes (con-
cepts), class members (individuals), and properties (attributes of class members
or relationships among class members).

Ontologies model domain knowledge of applications rooted in numerous in-
dustry sectors, including energy, laws, biology, medical, and healthcare sectors.

? Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Modern ontologies are specified in the Web Ontology Language (OWL) that has
a formal semantics based on description logics (DLs) [2]; OWL is presently the
most prevalent textual language for developing ontologies. Using a logic-based,
well-structured language such as DLs has two notable advantages: (i) they have
unambiguous formal semantics — the meaning of terms is specified in an un-
ambiguous way, thereby enabling shared understanding of domain knowledge,
and (ii) one can make use of the reasoning services of DL reasoners for ontology
engineering and related tasks.

1.1 Computing Views of Ontologies

With the growing usage of ontologies in real-world applications, not only has the
number of available ontologies increased considerably, but also they are becoming
large in size, complex in structure, and thus more difficult to manage. Moreover,
capturing domain knowledge in the form of ontologies is labor-intensive work
from the engineering perspective. There is therefore a strong demand for tech-
niques and automated tools for re-engineering with ontologies, so that existing
ontologies can be reused to their full potential — new ontologies can be gener-
ated from existing ones and are not necessarily developed from scratch, which
is costly and error-prone. Computing views of ontologies is one of such ontology
re-engineering operations that seeks to generate new ontologies from existing
ones. A view V of an ontology O is a new ontology obtained from O using only
part of O’s signature, namely the target signature, while preserving the original
meanings of the terms in the target signature. Computing ontology views is use-
ful for many ontology re-engineering and related tasks. These include, but are
not limited to the following ones.

i. Ontology Reuse: Knowledge modelled in ontologies is often rich, heteroge-
neous, and multi-topic related, while applications are interested in or focused
on specific parts. Compared to exploiting existing ontologies or building new
ontologies from scratch, extracting fragments w.r.t. specific topics from exist-
ing ontologies and reusing them in a specialized context is simpler, cheaper,
and thus more interesting to the ontology engineers.

ii. Information Hiding Medical and military ontologies may contain sensitive
information that must be kept confidential to the public and the correspon-
dences when the ontologies are published, shared, or disseminated. The con-
fidentiality and protection can be achieved through the removal of concept
and role name relative to sensitive information.

iii. Ontology-Based Query Answering: Taking ontological knowledge into
account when retrieving data from relational databases has been widely ac-
knowledged. It has been found in many cases [5] however that querying a
large knowledge base often involves massive reasoning, which, due to high
computational complexity of reasoning in DLs, can be very expensive both
in terms of time and space. Instead, querying a view of the knowledge base
which contains full information about the query seems a good solution.

Computing ontology views is also useful for many other tasks such as on-
tology alignment and merging [17,22,12], versioning [6,7,18,20], debugging and
repair [19,21], and logical difference computation [9,10,13,24].

1.2 Basics of Forgetting

Forgetting is a form of non-standard reasoning concerned with eliminating from
an ontology a set of concept and role names in its signature, namely the forgetting
signature, in such a way that, after the elimination, all logical consequences are
preserved up to the remaining signature. Forgetting in this sense can be used as
a means of computing views of ontologies: the ontology obtained from forgetting,
namely the forgetting solution, is the view of the original ontology for the target
signature, which corresponds to the remaining signature in forgetting.

Related notions of forgetting are inseparability and conservative extensions [4].
All these notions can be formalized deductively or model-theoretically. In par-
ticular, forgetting can be formalized as deductive forgetting (weak forgetting [23],
consequence-based forgetting), and formalized as model-theoretic forgetting [10,25].
As their names indicate, deductive notion has the property that deductive solu-
tions retain all logical consequences up to the terms in the remaining signature,
while model-theoretic notion has the property that model-theoretic solutions re-
quire equivalence to be preserved on the model level — the terms in the remain-
ing signature must be interpreted in the same way as in the original ontology.
Hence, the model-theoretic notion is a stronger notion of forgetting than the
deductive one, and model-theoretic solutions are in general stronger than de-
ductive ones — the former always entails the latter, but the converse does not
hold. Computing model-theoretic solutions often requires the target language to
be extended with extra expressivity. For example, for ALC, the model-theoretic
solutions often involve nominals, inverse roles and the universal role, while the
deductive ones are expressed in ALC [26].

Forgetting is an inherently difficult problem; it is much harder than standard
reasoning (satisfiability testing), and very few logics are known to be complete
for forgetting. Previous studies have shown that: (i) deductive or model-theoretic
solutions of forgetting do not always exist for EL and ALC [9,15,8], (ii) deciding
the existence of deductive solutions is ExpTime-complete for EL [14] and 2Ex-
pTime-complete for ALC [15], (iii) the existence of model-theoretic solutions of
forgetting is undecidable for EL and ALC [8,4], and (iv) deductive solutions of
forgetting can be triple exponential in size w.r.t. the input ontologies for EL and
ALC [15,16].

Although forgetting is a challenging problem, there is however general con-
sensus on its potential for ontology-based knowledge processing, and there has
been continuous efforts dedicated into the development and automation of prac-
tical methods for forgetting. A few such methods have thus been developed and
automated for various description logics. These methods include LETHE [11],
the method developed by [13], and the method by [24]. In particular, LETHE
uses a resolution-based approach [3], and can eliminate concept and role names
from ALCH-TBoxes and eliminate concept names from SHQ-TBoxes. The one

of [13] is based on resolution as well; it can eliminate concept names from ALC-
TBoxes. UI-FAME is a hybrid approach using both resolution and a monotonic-
ity property called Ackermann’s Lemma [1]; it can eliminate concept and role
names from ALC-TBoxes. All these methods have prototypical implementations,
among which, only an early version of LETHE is currently publicly accessible.6

1.3 Contribution

In this paper, we introduce UI-FAME, a Java implementation of the forgetting
method developed in our previous work [24]. We compared UI-FAME with the
peer LETHE system on theALC-TBox fragment of 494 ontologies taken from the
Oxford Ontology Repository. The comparison considered success rates, speed,
memory consumption as the principal indicators to assess the performance of the
systems. The experimental results showed that UI-FAME had in general better
success rates and performance results than LETHE. We found that in 97.08%
cases UI-FAME and LETHE computed logically equivalent forgetting solutions,
in 2.06% cases LETHE’s solution entailed UI-FAME’s solution but not the other
way round, in 0.79% cases UI-FAME’s solution entailed LETHE’s solution but
not the other way round, and in 0.07% cases they had no mutual entailment
relationship. This is somewhat undesirable and thus needs further investigation.

2 Preliminaries

Let NC and NR be pairwise disjoint and countably infinite sets of concept names
and role names, respectively. Concepts in ALC (or concepts for short) have one
of the following forms:

> | ⊥ | A | ¬C | C uD | C tD | ∃R.C | ∀R.C,

where A ∈ NC, r ∈ NR, and C and D are arbitrary concepts.
AnALC-TBox is a finite set of axioms of the form C v D (concept inclusions)

and the form C ≡ D (concept equivalences), where C and D are concepts. In the
remainder of this paper, the terms TBox and ontology are used interchangeably.

The semantics of ALC-TBox is defined using an interpretation I = 〈∆I , ·I〉,
where ∆I denotes the domain of the interpretation (a non-empty set), and ·I
denotes the interpretation function, which assigns to every concept name A ∈ NC
a set AI ⊆ ∆I , and to every role name r ∈ NR a binary relation rI ⊆ ∆I ×∆I .
The interpretation function ·I is inductively extended to concepts as follows:

>I = ∆I ⊥I = ∅ (¬C)I = ∆I\CI

(C uD)I = CI ∩DI (C tD)I = CI ∪DI

(∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
(∀R.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ RI → y ∈ CI}

6 http://www.cs.man.ac.uk/ koopmanp/lethe/index.html

Let I be an interpretation. A concept equivalence C ≡ D is true in I (or
I satisfies C ≡ D) iff CI ≡ DI . A concept inclusion C v D is true in I (or I
satisfies C v D) iff CI ⊆ DI . I is a model of an ontology O iff every axiom in
O is true in I. In this case, we write I |= O.

By sigC(X) and sigR(X) we denote respectively the sets of the concept names
and role names occurring in X, where X ranges over concepts, axioms, and a
set of axioms (ontologies). We define sig(X) = sigC(X) ∪ sigR(X).

Definition 1 (Deductive Forgetting). Let O be an ALC-TBox and let F ⊆
sig(O) be a set of concept and role names. An ALC-TBox V is a solution of
deductively forgetting F from O iff the following conditions hold: (i) sig(V) ⊆
sig(O)\F , and (ii) for any axiom α with sig(α) ⊆ sig(O)\F , V |= α iff O |= α.

Definition 1 means that V (the forgetting solution) has the same logical con-
sequences with O (the original ontology) in the remaining signature sig(O)\F .
F is called the forgetting signature, i.e., the set of concept and role names to
be eliminated. V can be regarded as a view of O w.r.t. the remaining signature
sig(O)\F in the sense that it gives the same answers as O to the queries formu-
lated using the names in sig(O)\F . In traditional databases, a view is a subset of
the database, whereas in ontologies, a view is more than a subset; it contains not
only axioms that are contained in the original ontology, but also newly derived
axioms that are entailed by the original ontology (implicitly contained in the
original ontology). Such new axioms can be derived during the forgetting pro-
cess. The remaining signature in forgetting corresponds to the target signature
in the problem of computing views of ontologies.

A view V of an ontology O is the strongest entailment of O in the target
signature. By definition, V is a strongest entailment of O in sig(O)\F , if O |= V
and for any ontology V ′ such that O |= V ′ and sig(V ′) ⊆ sig(O)\F , then V |= V ′.
In general it can be shown that: V is a view of an ontology O for a specific
target signature iff V is the strongest entailment of O in this signature. Views
are unique up to logical equivalence, i.e., if both V and V ′ are views of O for a
target signature, then they are logically equivalent, though their representations
may not be identical.

3 Implementation of UI-FAME

UI-FAME is implemented in Java using the OWL API,7 a Java API for creating,
parsing, manipulating, and serializing OWL ontologies, and is released under the
open source licenses LGPL8 and Apache9. UI-FAME uses the OWL API Version
3.4.7 for the aforementioned tasks.

Figure 1 depicts the general design of UI-FAME. Given as input to UI-FAME
are an ALC-TBox O, a set FC ⊆ sigC(O) of concept names to be forgotten, and

7 http://owlcs.github.io/owlapi/
8 https://www.gnu.org/licenses/lgpl-3.0.html
9 https://www.apache.org/licenses/LICENSE-2.0

Fig. 1. General Design of UI-FAME

a set of FR ⊆ sigR(O) of role names to be forgotten. Together, FC and FR make
up the forgetting signature F . The input ontology must be given as a text file in
XML, OWL, RDF, or TURTLE format, or a URL pointing to the file. UI-FAME
takes only ALC-axioms; axioms not expressible in ALC are removed. Figures 2
lists the types of axioms handled by UI-FAME, which, via simple reformulations,
can be represented as SubClassOf axioms.

Types of Axioms SubClassOf Representation

SubClassOf(C1 C2) SubClassOf(C1 C2)

EquivalentClasses(C1 C2) SubClassOf(C1 C2), SubClassOf(C2 C1)

DisjointClasses(C1 C2) SubClassOf(C1 ObjectComplementOf(C2))

ObjectPropertyDomain(R C) SubClassOf(ObjectSomeValuesFrom(R owl:Thing), C)

ObjectPropertyRange(R C) SubClassOf(owl:Thing ObjectAllValuesFrom(R C))

Fig. 2. Types of axioms handled by UI-FAME

UI-FAME computes a solution of forgetting F from O by eliminating single
concept and role names in F . Concept and role names are eliminated using two
mutually independent calculi for respectively concept and role name elimination
for ALC-TBoxes [24]. The resulting ontology is returned in OWL/XML format.
The source code and an executable .jar file of UI-FAME can be found at https:
//github.com/anonymous-ai-researcher/uifame. Another access to
try out UI-FAME is via the online platform http://www.forgettingshow.
info/.

https://github.com/anonymous-ai-researcher/uifame
https://github.com/anonymous-ai-researcher/uifame
http://www.forgettingshow.info/
http://www.forgettingshow.info/

4 Comparison of UI-FAME and LETHE

We compared UI-FAME with LETHE to gain an insight into the overall per-
formance of the two systems considering success rate, speed, size of resulting
ontology and memory consumption.10

4.1 Comparison Framework

Fig. 3. Comparison Framework of UI-FAME and LETHE

Figure 3 depicts the comparison framework. Given O as the input ontology,
an ALC-TBox fragment O′ is obtained via the preprocessing step by removing
all axioms not expressible as ALC-TBox axioms. Based on sig(O′), forgetting
signatures, which are randomly generated in the Forgetting Signature Generator
module, are delivered into UI-FAME and LETHE together with O′. Here, we
didn’t pick symbols by their frequency of occurrence. On account of forgetting
frequent symbols is not friendly to the case study, which is very important in this
phase. But randomly symbol generation is not enough, for further investigations,
we may use more sampling strategies.
VLETHE and VUI-FAME are the ontologies obtained from forgetting (not nec-

essarily forgetting solutions) using respectively LETHE and UI-FAME. We used

10 We did not bring the implementation of the forgetting method of [13] into the com-
parison because the method can only eliminate concept names, and moreover, is not
currently publicly accessible.

TestNG11, one of the most powerful testing frameworks, for performance eval-
uation, and HermiT12, one of the most reliable DL reasoners, for entailment
relationship checking of the forgetting solutions computed by UI-FAME and
LETHE. The experiments were run on a laptop with an Intel Core i7-9750H
processor, 6 cores running at up to 2.60 GHz, and 16 GB of DDR4-1330 MHz
memory. Both UI-FAME and LETHE were allocated 8GB heap space for each
test round.

4.2 Test Data

Table 1. Statistics of three Oxford-ISG snapshots

Min Max Medium Mean 90th percentile

I
|NC | 0 1582 86 191 545
|NR| 0 332 10 29 80

|TBox| 0 990 162 262 658

II
|NC | 200 5877 1665 1769 2801
|NR| 0 887 11 34 61

|TBox| 1008 4976 2282 2416 3937

III
|NC | 1162 9809 4042 5067 8758
|NR| 1 158 4 23 158

|TBox| 5112 9783 7277 7195 9179

The ontologies used for the comparison were taken from the Oxford Ontology
Repository (Oxford-ISG).13 Oxford-ISG contained a large number of ontologies
collected from multiple sources. In particular, Oxford-ISG contained 797 ontolo-
gies, and we took 494 of them with the number |TBox| of TBox axioms in the
ontology not exceeding 10000. We further split the entire corpus of 494 ontologies
into three groups: Corpus I with 10 ≤ |TBox| ≤ 1000, containing 356 ontologies,
Corpus II with 1000 ≤ |TBox| ≤ 5000, containing 108 ontologies, and Corpus
III with 5000 ≤ |TBox| ≤ 10000, containing 26 ontologies. This gives a clearer
insight into how LETHE and UI-FAME perform forgetting for ontologies of dif-
ferent sizes. Table 1 shows statistical information about the selected ontologies,
where |NC | and |NR| denote the average numbers of the concept names and role
names in the selected ontologies.

4.3 Performance Comparison

To fit for real-world application scenarios, the standard of forgetting success was
set to be: (1) forgetting all the terms in the forgetting signature F ; (2) without

11 https://testng.org/doc/
12 http://www.hermit-reasoner.com/
13 https://www.cs.ox.ac.uk/isg/ontologies/

introducing any extra expressivity outside of ALC in the forgetting solutions
(definers); (3) finished in the given timeout; (4) finished in the given space limit.
In this experiment, we limited the timeout to 20 minutes and heap space to 8GB.

Both UI-FAME and LETHE were tested over the three Oxford-ISG snap-
shots. For each snapshot, we considered forgetting respectively 10% and 30% of
the terms from the signature of each ontology. With a randomly generated for-
getting signature, the test was repeated three times for UI-FAME and LETHE.

Table 2. Performance Results (Mem: memory consumption of successful cases, S-
Rate: success rate, TO-Rate: timeout rate, MO-Rate: out of memory rate, Extra: extra
expressivity percent)

Duration(s) Mem(MB) S-Rate TO-Rate MO-Rate Extra

UI-FAME

0.1
I 6.2 43 89.7 2.9 0.0 7.4
II 13.3 349 81.7 12.5 0.0 5.7
III 3.6 306 81.5 16.9 0.0 1.5

0.3
I 4.8 106 85.4 13.3 0.0 1.3
II 19.3 301 57.5 42.5 0.0 0.0
III 26.9 424 68.6 31.4 0.0 0.0

LETHE

0.1
I 9.7 199 85.4 7.1 0.0 7.3
II 10.2 1101 66.7 31.8 0.0 1.5
III 48.1 1881 65.4 25.6 0.0 5.1

0.3
I 21.7 322 73.9 18.2 0.0 7.7
II 41.4 868 51.2 47.5 0.0 1.2
III 69.7 1083 50.0 46.2 0.0 5.0

The results are shown in Table 2, where “Duration” denotes the average time
consumption of the successful cases, and “Extra” denotes the percentage of cases
introducing extra expressivity outside of ALC. Such expressivity is not desired
to be in forgetting solutions; if extra expressivity cannot be removed from the
resulting ontologies, then the forgetting fails.

UI-FAME had better success rates than LETHE because of a less timeout
rate attained by UI-FAME (TO-Rate). Apparently, UI-FAME was faster than
LETHE when forgetting percentage is relatively big. This is partly because the
elimination in LETHE is based on resolution, while UI-FAME uses both resolu-
tion and Ackermann’s Lemma; the latter allows concept names to be eliminated
more cheaply when forgetting task is big. In addition, we found that in almost
97% of the elimination rounds, a concept name could be eliminated using Acker-
mann’s Lemma. Another fact that accounts for such performance results is that
UI-FAME introduces definers in a conservative manner (only when really nec-
essary), while LETHE introduces them in a systematic and exhaustive manner,
as is illustrated in the following example.

Example 1. Let O = {C t ∃r.A,E t ∀r.¬A} and F = {A}. ND is the definers
set disjoint with the signature of O. UI-FAME applies directly the combination

rule (Case 8) to O to eliminate A, yielding the solution {C t ∃r.>, C t E}.
LETHE computes the same solution as our method does, but the derivation is
more complicated, involving these steps:
Step 1: Normalization (D1,D2 ∈ ND):
{1. C t ∃r.D1, 2. ¬D1 tA, 3. E t ∀r.D2, 4. ¬D2 t ¬A}.
Step 2: Role propagation (D3 ∈ ND):
{5. C t E t ∃r.D3 (from 1, 3), 6. ¬D3 t D1, 7. ¬D3 t D2}.
Step 3: Classical resolution:
{8. ¬D3 tA (2, 6), 9. ¬D3 t ¬A (4, 7), 10. ¬D3 (8, 9)}
Step 4: Existential role elimination: {11. C t E (5, 10)}.
Step 5: At this point, O is saturated w.r.t. A, and no further inferences can be
performed. LETHE removes all clauses that contain A; Clauses 2, 4, 8 and 9
are thus removed.
Step 6: Clause 5 is redundant because of 11. Clauses 6 and 7 are redundant
because of 10. Hence, 5, 6 and 7 are removed.
Step 7: Only Clauses 1, 3, 10, 11 remain. LETHE eliminates the definers in
Clauses 1, 3 and 10 by purification, yielding: {12. Ct∃r.>, 13. Et∀r.>, 14. Et
F}. As 13 is a tautology, the forgetting solution computed by LETHE is {12, 14}.

The results also show that UI-FAME had lower memory consumption during
the forgetting process; see the “Mem” column. In particular, LETHE’s memory
consumption was about four times of UI-FAME. We believe that this could be
attributed to the definer introduction mechanism employed by LETHE.

0-1 1-2 2-4 4-1
0

10-
20

20-
100

100
-10

00

100
0-1

500

Time Duration(s)

0

200

400

600

800

1000

Ca
se

 C
ou

nt

prototype_0.1
prototype_0.3
lethe_0.1
lethe_0.3

Fig. 4. Statistical graph of samples in each time period

Figure 4 depicts the cach time distribution for all the successful cases, where
it can be seen that most successful cases were finished within 1 second for both
LETHE and UI-FAME, while UI-FAME had more such cases. In most test cases,
the variation in the sizes of the forgetting signatures did not affect the overall
time consumption too much. This was an undesirable yet interesting observation
which is worth a comprehensive study; we leave this as one of our future work.

0 2000 4000 6000 8000 10000
TBox Size(Before Forgetting)

0

2000

4000

6000

8000

10000

TB
ox

 S
ize

(A
fte

r F
or
ge

tti
ng

)

Prototype_0.1
Prototype_0.3
LETHE_0.1
LETHE_0.3

Fig. 5. TBox scatter plot before and after forgetting

Figure 5 exhibits the changes in the number of the axioms in the ontologies
before and after forgetting in each group of experiments. In general, with the
increase in the size of the original ontologies, the size of the forgetting solutions
decreases; this seems against the theoretical result found in [15] that forgetting
can lead to exponential space explosion in the worst cases. This means that, such
worst cases rarely occur in real-world scenarios.

4.4 Entailment Relationship Checking

In principle, UI-FAME and LETHE should compute logically equivalent forget-
ting solutions for the same problems, which are the strongest entailment sets in
the target signature, though their solutions may look different (having distinct
representations). Based on the forgetting solutions obtained in the experiment,
we compared the entailment relationship of these two systems for the success-

ful cases. HermiT14 was employed to compute the inequivalence between the
forgetting solutions computed by UI-FAME and LETHE.

The results showed that in 97.08% cases UI-FAME and LETHE computed
logically equivalent forgetting solutions, in 2.06% cases LETHE’s solution en-
tailed UI-FAME’s solution but not the other way round, in 0.79% cases UI-FAME’s
solution entailed LETHE’s solution but not the other way round, and in 0.07%
cases they had no mutual entailment relationship. The inequivalent cases are
caused by the data procession or maybe tool bugs. This is somewhat undesir-
able and thus needs further investigation.

5 Conclusion and Future Work

This paper presents an empirical comparison of two forgetting systems, namely
UI-FAME and LETHE, showing better performance of UI-FAME.

Previous work has been largely focused on forgetting concept and role names,
while there has been little attention paid to the problem of nominal elimination.
This considerably restricts the applicability of forgetting for many real-world
applications such as information hiding and privacy protection, where nominals
are extensively present. Our immediate step for future work is to develop a
forgetting method able to eliminate not only concept names and role names, but
also nominals in expressive description logics.

References

1. W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematis-
chen Logik. Mathematische Annalen, 110(1):390–413, 1935.

2. F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

3. L. Bachmair, H. Ganzinger, D. A. McAllester, and C. Lynch. Resolution theorem
proving. In J. A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning (in 2 volumes), pages 19–99. Elsevier and MIT Press, 2001.

4. E. Botoeva, B. Konev, C. Lutz, V. Ryzhikov, F. Wolter, and M. Zakharyaschev.
Inseparability and Conservative Extensions of Description Logic Ontologies: A Sur-
vey. In Proc. RW’16, volume 9885 of Lecture Notes in Computer Science, pages
27–89. Springer, 2016.

5. M. Hepp, P. D. Leenheer, A. de Moor, and Y. Sure, editors. Ontology Management,
Semantic Web, Semantic Web Services, and Business Applications, volume 7 of
Semantic Web and Beyond: Computing for Human Experience. Springer, 2008.

6. M. C. A. Klein and D. Fensel. Ontology versioning on the Semantic Web. In Proc.
SWWS’01, pages 75–91, 2001.

7. M. C. A. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology Versioning and
Change Detection on the Web. In A. Gómez-Pérez and V. R. Benjamins, editors,
Proc. EKAW’02, volume 2473 of Lecture Notes in Computer Science, pages 197–
212. Springer, 2002.

14 http://www.hermit-reasoner.com/

8. B. Konev, C. Lutz, D. Walther, and F. Wolter. Model-theoretic inseparability and
modularity of description logic ontologies. Artif. Intell., 203:66–103, 2013.

9. B. Konev, D. Walther, and F. Wolter. The Logical Difference Problem for Descrip-
tion Logic Terminologies. In IJCAR, volume 5195 of Lecture Notes in Computer
Science, pages 259–274. Springer, 2008.

10. B. Konev, D. Walther, and F. Wolter. Forgetting and Uniform Interpolation in
Large-Scale Description Logic Terminologies. In Proc. IJCAI’09, pages 830–835.
IJCAI/AAAI Press, 2009.

11. P. Koopmann. Practical Uniform Interpolation for Expressive Description Logics.
PhD thesis, The University of Manchester, UK, 2015.

12. P. Lambrix and H. Tan. Ontology Alignment and Merging. In Anatomy Ontologies
for Bioinformatics, Principles and Practice, volume 6 of Computational Biology,
pages 133–149. Springer, 2008.

13. M. Ludwig and B. Konev. Practical Uniform Interpolation and Forgetting for ALC
TBoxes with Applications to Logical Difference. In Proc. KR’14. AAAI Press, 2014.

14. C. Lutz, I. Seylan, and F. Wolter. An Automata-Theoretic Approach to Uniform
Interpolation and Approximation in the Description Logic EL. In Proc. KR’12,
pages 286–297. AAAI Press, 2012.

15. C. Lutz and F. Wolter. Foundations for Uniform Interpolation and Forgetting in
Expressive Description Logics. In Proc. IJCAI’11, pages 989–995. IJCAI/AAAI
Press, 2011.

16. N. Nikitina and S. Rudolph. (Non-)Succinctness of uniform interpolants of general
terminologies in the description logic EL. Artif. Intell., 215:120–140, 2014.

17. N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. In Proc. AAAI/IAAI’00, pages 450–455. AAAI
Press/The MIT Press, 2000.

18. N. F. Noy and M. A. Musen. Ontology versioning in an ontology management
framework. IEEE Intelligent Systems, 19(4):6–13, 2004.

19. M. M. Ribeiro and R. Wassermann. Base revision for ontology debugging. J. Log.
Comput., 19(5):721–743, 2009.

20. D. Schrimpsher, Z. Wu, A. M. Orme, and L. H. Etzkorn. Dynamic ontology version
control. In Proc. ACMse’10, page 25. ACM, 2010.

21. N. Troquard, R. Confalonieri, P. Galliani, R. Peñaloza, D. Porello, and O. Kutz.
Repairing Ontologies via Axiom Weakening. In Proc. AAAI’18, pages 1981–1988.
AAAI Press, 2018.

22. K. Wang, G. Antoniou, R. W. Topor, and A. Sattar. Merging and aligning on-
tologies in DL-programs. In RuleML, volume 3791 of Lecture Notes in Computer
Science, pages 160–171. Springer, 2005.

23. Y. Zhang and Y. Zhou. Forgetting revisited. In Twelfth International Conference
on the Principles of Knowledge Representation and Reasoning, 2010.

24. Y. Zhao, G. Alghamdi, R. A. Schmidt, H. Feng, G. Stoilos, D. Juric, and M. Kho-
dadadi. Tracking Logical Difference in Large-Scale Ontologies: A Forgetting-Based
Approach. In Proc. AAAI’19, pages 3116–3124. AAAI Press, 2019.

25. Y. Zhao and R. A. Schmidt. Role forgetting for ALCOQH(O)-ontologies using
an ackermann-based approach. In Proc. IJCAI’17, pages 1354–1361. IJCAI/AAAI
Press, 2017.

26. Y. Zhao and R. A. Schmidt. FAME: An Automated Tool for Semantic Forgetting
in Expressive Description Logics. In Proc. IJCAR’18, volume 10900 of Lecture
Notes in Computer Science, pages 19–27. Springer, 2018.

	UI-FAME: A Deductive Forgetting System for Creating Views of ALC-TBoxes

