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Abstract. Definite descriptions are phrases of the form ‘the x such that
ϕ’. Together with individual names, they are used to refer to single en-
tities in a context. In some cases, however, names and descriptions may
fail to denote any object at all, as witnessed by the name ‘DL 1993’,
for a workshop that never took place, or the description ‘the Special
Session of DL 2020’, for a non-occurring event. In this work, we intro-
duce and investigate DL languages with individual names and definite
descriptions which may both fail to denote. We focus on ALCO-based
and ELO-based languages. A generic polynomial time reduction of the
resulting expressive free DLs with definite descriptions into classical DLs
is provided, and we show that free ELO with definite descriptions is still
in PTime. Moreover, we characterise the expressive power of concepts
relative to first-order formulas interpreted on partial interpretations us-
ing a suitable notion of bisimulation.

1 Introduction

A noun phrase that can be used to refer to a single object in a context is known
in linguistics as a referring expression. These include both individual names,
such as ‘DL 2020’, and definite descriptions, such as ‘the General Chair of DL
2020’ [33, 16]. Another feature of individual names and definite descriptions in
natural language is that they might also fail to denote any object at all. For
instance, ‘DL 1993’ is a non-denoting individual name, since no DL workshop
took place in 1993, while, ‘the Program Chair of DL 2020’ and ‘the Special
Session of DL 2020’ are non-denoting definite descriptions, since this workshop
in 2020 has, respectively, two Program Chairs and no Special Session at all.

When it comes to formalisation, however, this behaviour is not easily cap-
tured in frameworks based on classical first-order logic, where an individual name
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is always assigned to an element of the domain by the interpretation function,
and definite descriptions are not included among the terms of the language. An
approach dating back to Russell [39] paraphrases sentences with definite descrip-
tions in classical first-order logic by making their existence and uniqueness con-
ditions explicit. Logics that allow instead for possibly non-denoting terms, either
definite descriptions or individual names, are known as free logics in the litera-
ture, since their terms may lack existential import. Several syntactical and se-
mantical options for free logics with definite descriptions have been proposed [11,
32].

In this work, we introduce and study a family of DL languages with both
individual names and definite descriptions, that we call free DLs with definite
descriptions, or free DLs, for short. Syntactically, these languages extend the
classical ones with nominals of the form {ιC}, where ιC is a term standing for
the definite description ‘the object that is C’ and C is a concept. We denote
the resulting DLs with an upperscript ι, focussing in particular on ALCOι and
ELOι. Their semantics is based on partial interpretations, that generalise the
classical ones by letting the interpretation function to be partial on individual
names, meaning that only a subset of all the individual names has its elements
assigned to objects of the domain. Moreover, the extension of {ιC} in a partial
interpretation coincides with that of the concept C, if C is interpreted as a sin-
gleton, and it is empty otherwise. This semantic choice respects the main tenets
of Russell’s paraphrase, while also preserving definite descriptions as terms.

One motivation behind the introduction of this family of languages is to add,
at the modelling level, the flexibility of empty-valued individual names, as well
as the possibility to single out elements of a domain via definite descriptions.
These additional features can also be used in the context of query answering
over DL knowledge bases. For example, the Boolean instance queries

>(dl93), ∃isProgramChairOf.{dl09}(ι∃isGeneralChairOf.{dl20}),

ask whether ‘DL 1993’ names anything at all, and whether the General Chair
of DL 2020 was also a Program Chair of DL 2009, respectively. One can now
retrieve not only individual names, but also definite descriptions as answers to
queries. Moreover, nominals involving definite descriptions can be used to form
concept inclusions with different satisfaction conditions. Consider for instance

∃organises.{dl20} v ∃reportsTo.{ι∃isGeneralChairOf.{dl20}},
{ι∃isProgramChairOf.{dl20}} v ∃selects.Reviewer.

The former, stating that every organiser of DL 2020 reports to the General Chair
of DL 2020, forces ∃isGeneralChairOf.{dl20} to have exactly one element in all its
models satisfying ∃organises.{dl20}. The latter holds if, whenever there is exactly
one Program Chair of DL 2020, that individual selects some Reviewer, but also
in interpretations without, or with more than one, Program Chair of DL 2020.

On the technical side, we show that reasoning in free DLs with definite de-
scriptions can be performed at no additional costs. For (extensions of) ALCOι,
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we employ a reduction to languages covered by the OWL 2 standard, so that
efficient off-the-shelf reasoners can be used. In particular, we prove that sat-
isfiability in ALCOι can be polynomially reduced (via a translation that can
be applied to other constructors as well) to ALCOu, i.e., ALCO extended with
the universal role. Moreover, we show that entailment in ELOι knowledge bases
remains tractable, using a modified version of the algorithm for classical ELO.
Finally, we focus on ALCOι expressive power, showing that its concepts can be
characterised in terms of first-order formulas on partial interpretations that are
invariant under a suitable notion of bisimulation. We conclude the paper with a
discussion of related work and future directions.

2 Free Description Logics

We introduce basic notions for free DLs (with definite descriptions) by presenting
the syntax and semantics of ALCOι, which we define as a free DL based on the
classical DL ALCO [5], and other related languages.

2.1 Syntax

Let NC, NR and NI be countably infinite and pairwise disjoint sets of concept
names, role names, and individual names, respectively. The ALCOι terms and
concepts are constructed by mutual induction as follows:

τ ::= a | ιC, C ::= A | ¬C | (C u C) | ∃r.C | {τ},

with a ∈ NI, A ∈ NC and r ∈ NR. A term of the form ιC is called a definite
description, and a concept {τ} is called a (term) nominal. An ALCOι atom
is either an ALCOι concept inclusion (CI ) of the form C v D or an ALCOι
assertion of the form A(τ) or r(τ1, τ2), where C,D are ALCOι concepts, A ∈ NC,
r ∈ NR, and τ, τ1, τ2 are ALCOι terms. An instance query is either an assertion
or an expression of the form C(τ), where C is an ALCOι concept and τ is a
term. We may omit ‘ALCOι’ if this is clear from the context. Thus, a TBox T
is a finite set of CIs, an ABox A is a finite set of assertions, and a knowledge
base (KB) K is a pair (T ,A). Although we are particularly interested in working
with KBs, for the presentation of the results it is convenient to combine CIs and
assertions into ALCOι formulas, defined as expressions of the form

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ),

where α is an atom. All the usual syntactic abbreviations and conventions are
assumed. In particular, for concepts, we set ⊥ = A u ¬A, > = ¬⊥, C t D =
¬(¬Cu¬D), C ⇒ D = ¬CtD, and ∀r.C = ¬∃r.¬C, while a concept equivalence
(CE ) C ≡ D abbreviates C v D,D v C (as a formula, it stands for the
conjunction of the two). The signature of ϕ, Σϕ, is the set of all concept, role
and individual names occurring in ϕ, while con(ϕ) is the set of all concepts
occurring in ϕ (and similarly for concepts, TBoxes, ABoxes and KBs).
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In the rest of this paper, we will consider other DL languages with nominals,
that we introduce briefly here. Since ALCOι nominals are constructed using
arbitrary terms, the classical ALCO is the sublanguage of ALCOι where terms
can only be in NI. The language ALCOu extends ALCO with the universal role
u, allowing for concepts of the form ∃u.C [5]. Moreover, ELOι is the language
obtained from ALCOι by allowing only for ⊥, > (considered now as primitive
logical symbols), concept names, term nominals, conjunctions (both on concepts
and formulas) and existential restrictions, while negations and disjunctions can
be applied to formulas only. Finally, ELO is the sublanguage of ELOι with only
individual names as terms.

2.2 Semantics

For the DL languages with nominals considered in this work, we introduce se-
mantics that generalise the classical ones through the notion of partial interpre-
tation. A partial interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty
set, called the domain of I, and ·I is a function that maps every A ∈ NC to a
subset of ∆I , every r ∈ NR to a subset of ∆I ×∆I , the universal role u to the
set ∆I ×∆I itself, and every a in a subset of NI to an element in ∆I . In other
words, ·I is a total function on NC ∪ NR and a partial function on NI. A total
interpretation is a partial interpretation I = (∆I , ·I) in which ·I is also total on
NI. The value τI of a term τ in I and the extension CI of a concept C in I are
defined by mutual induction:

(ιC)I =

{
d, if CI = {d}, for some d ∈ ∆I ;
undefined, otherwise.

We say that τ denotes in I iff τI = d, for a d ∈ ∆I . Thus, in particular, an
individual name a denotes in I iff aI is defined. In addition:

(¬C)I = ∆I \ CI , (C uD)I = CI ∩DI ,
(∃r.C)I = {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}.

Moreover, we set {τ}I = {τI}, if τ denotes in I, and {τ}I = ∅, otherwise.
A concept C is satisfied in I iff CI 6= ∅, and it is satisfiable iff there is

a partial interpretation in which it is satisfied. The satisfaction of an ALCOι
formula ϕ in I, written I |= ϕ, is defined as follows. For CIs:

I |= C v D iff CI ⊆ DI .

For instance queries (generalizing assertions):

I |= C(τ) iff τ denotes in I and τI ∈ CI ,
I |= r(τ1, τ2) iff τ1, τ2 denote in I and (τI1 , τ

I
2 ) ∈ rI .

Finally, for the remaining formulas:

I |= ¬ψ iff I 6|= ψ, I |= ψ ∧ χ iff I |= ψ and I |= χ.
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We say that ϕ is satisfied in a partial interpretation I (or that I satisfies, or
is a model of, ϕ) iff I |= ϕ, and that ϕ is satisfiable iff it is satisfied in some
I. Moreover, ϕ entails ψ, written ϕ |= ψ, if every interpretation that satisfies ϕ
satisfies also ψ. Finally, ϕ and ψ are equivalent iff they entail each other. As usual,
the formula satisfiability problem is the problem of deciding whether a given
formula is satisfied in some (partial) interpretation. The entailment problem is
the problem of deciding whether a given formula entails another formula (or, in
particular, an instance query). We may also consider these problems restricted
to total interpretations and write ‘on total interpretations’ explicitly whenever
this is the case. These notions extend naturally to TBoxes, ABoxes and KBs, as
well as to other free DLs presented in subsequent sections.

Example 1. In the context of DL workshops, dl93 and dl20 are examples of,
respectively, a non-denoting and a denoting individual name, while the definite
description ι∃isGeneralChairOf.{dl20} denotes the General Chair of DL 2020.
The following concept, applying to Program Chairs of DL 2020 that are not the
only ones, shows an interaction between a nominal constructed from a definite
description and the concept occurring inside it:

∃isProgramChairOf.{dl20} u ¬{ι∃isProgramChairOf.{dl20}}.

Let OneOfDL20ProgramChairs abbreviate the concept above. The CI

OneOfDL20ProgramChairs v ∃collaboratesWith.∃isProgramChairOf.{dl20}

states that every DL 2020 Program Chair who is not the only one collaborates
with someone who is a DL 2020 Program Chair.

2.3 First Observations

We discuss some properties of free DLs. Our first observation is that the ALCOι
formula satisfiability problem on total interpretations can be reduced to the
ALCOι formula satisfiability problem on partial interpretations. This is because
an ALCOι term τ denotes in a partial interpretation I iff I |= ¬({τ} v ⊥).
An ALCOι formula ϕ entails >(τ) iff ϕ |= ¬({τ} v ⊥) and this happens iff τ
denotes in all the ALCOι partial interpretations that are models of ϕ. Then, to
solve satisfiability on total interpretations, one can simply add conjuncts of the
form ¬({τ} v ⊥) for each individual name τ = a occurring in the formula.

Our second observation is that, due to partial interpretations, an instance
query C(τ) is not equivalent to {τ} v C. Indeed, while terms always denote
in the models of the instance queries (and assertions) in which they occur, the
CI {τ} v C is satisfied in any partial interpretation where τ is not denoting.
Nevertheless, instance queries are just syntactic sugar: one can replace C(τ) by
{τ} v C ∧ ¬({τ} v ⊥); and r(τ1, τ2) by {τ1} v ∃r.{τ2} ∧ ¬({τ1} v ⊥). Thus,
from now on, we may assume without loss of generality that ALCOι formulas
do not contain assertions. Also, deciding whether instance queries are entailed
can be reduced to formula satisfiability. Observe that this encoding yields an
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equivalent formula. It is possible to obtain an equisatisfiable translation that is
also expressible within the ELOι fragment by replacing C(τ) with CIs of the
form > v ∃s.{τ}, {τ} v C, and r(τ1, τ2) with > v ∃s.{τ1}, {τ1} v ∃r.{τ2},
where s is a fresh role name.

Our third observation is regarding Boolean operators. CIs of the form

{ι(C tD)} v {ιC} t {ιD}, {ιC} u {ιD} v {ι(C uD)}

are satisfied in every partial interpretation (but the direction w may not hold).
Finally, we point out that, for satisfiability checking, it suffices to consider

ALCOι formulas where all occurrences of definite descriptions are of the form
ιB, where B is a concept name. Indeed, let ιC1, . . . , ιCn be all the definite
descriptions in ϕ that do not occur in the body of another definite description
ιC ′, where the body of a definite description ιC is just C. We define the ALCOι
formula ϕ′ as the formula obtained by substituting the bodies C1, . . . , Cn of
ιC1, . . . , ιCn with fresh concept names BC1

, . . . , BCn , respectively. Then, ϕ′′ is
defined as the ALCOι conjunction:

ϕ′ ∧
∧

1≤i≤n

(BCi ≡ Ci)′′,

where (BC ≡ C)′′ is the formula obtained by recursively applying the proce-
dure just described to the CE BC ≡ C. It can be checked that ϕ and ϕ′′ are
equisatisfiable ALCOι formulas. Moreover, given ϕ′′, we assume without loss of
generality that ϕ′′ does not contain any assertion (cf. second observation above).
Finally, all the CIs occurring in ϕ′′ will be assumed without loss of generality
to be either of the form E v F , where E,F are ALC concepts, or {τ} v A, or
A v {τ}, with A ∈ NC and τ either an individual name or of the form ιB, where
B ∈ NC. Indeed, given an ALCOι CI C v D occurring in ϕ′′, we can obtain
an equisatisfiable ALCOι formula by substituting all nominals {τ} occurring in
C v D with concept names Aτ , and taking the conjunction of the resulting ALC
CI with the CEs Aτ ≡ {τ}. A formula in this format is said to be in normal
form.

3 Reasoning in Free Description Logics

We analyse the complexity of reasoning in ALCOι and in ELOι.

3.1 Satisfiability in ALCOι

We prove that satisfiability in ALCOι is ExpTime-complete. To show this result,
we provide a polynomial size equisatisfiable translation into ALCOu. Given an
ALCOι formula ϕ in normal form, we define a translation of ϕ into an ALCOu
formula ϕ∗. While the translation preserves concept and role names in NC ∪NR,
nominals {τ} are translated in the following way:

{τ}∗ = {τ}+ u C≤1τ ,
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where

{τ}+ =

{
Ab, if τ is of the form b ∈ NI,

B, if τ is of the form ιB,

with Ab fresh concept name, and C≤1τ stands for the concept

∀u.({τ}+ ⇒ {aτ}),

with aτ fresh individual name. We now define ϕ∗ inductively as follows:

(E v F )∗ = E v F, ({τ} v A)∗ = {τ}∗ v A, (A v {τ})∗ = A v {τ}∗,

(¬ψ)∗ = ¬ψ∗, (ψ ∧ χ)∗ = ψ∗ ∧ χ∗,

where E,F are ALC concepts, and A is a concept name. Finally, we define the
formula translation as

ϕ† = ϕ∗ ∧
∧

{τ}∈con(ϕ)

{τ}+ v ∀u.({aτ} ⇒ {τ}+).

Lemma 1. An ALCOι formula ϕ is satisfiable iff the ALCOu formula ϕ† is
satisfiable on total interpretations.

It follows from a known result in Propositional Dynamic Logic extended with
nominals and the universal modality [35, Corollary 7.7] that the ALCOu formula
satisfiability problem is in ExpTime. The matching lower bound comes from the
ALC formula satisfiability problem [23]. Since the ALCOι formula satisfiability
and entailment problems on total interpretations are reducible to their counter-
parts on partial interpretations (Subsection 2.3), the following holds.

Theorem 1. The ALCOι formula satisfiability and the entailment problems on
partial and total interpretations are ExpTime-complete.

The reduction we presented can be easily adapted to deal with more expres-
sive DLs, e.g., extensions of ALCO with inverse roles and number restrictions.

3.2 Reasoning in ELOι

We prove that satisfiability of ELOι formulas is NP-complete and entailment in
ELOι KBs is PTime-complete. To show these results, we assume without loss of
generality that the ABox and instance queries can be encoded within the TBox
(cf. Subsection 2.3) and adapt the completion algorithm for ELO TBoxes [7].
The main idea is to add a copy of each concept name in a TBox and remove it
only if the extension of it is exactly one in any model. Even though ELOι admits
a mild form of disjunction ({ιA} v B states that the extension of A contains at
least two elements or that A v B), the logic remains ‘Horn’ in the sense that
minimal models exist.

Let T be an ELOι TBox. We denote by BCT the union of {>}, the set of
all concept names occurring in T , and the set of all concepts {a} with a an



8 A. Artale et al.

individual name occurring in T . Also, we denote by BC+T the union of BCT with
{⊥} ∪ {{ιA} | {ιA} occurs in T } and by RT the set of role names occurring in
T . We assume without loss of generality that any ELOι TBox T is normalized
and all CIs in it have one of the following forms:

C1 u C2 v D, ∃r.C v D, C v ∃r.D, {τ} v D, D v {τ},

where C(i) ∈ (BCT ∩ NC) ∪ {>}, D ∈ (BCT ∩ NC) ∪ {>,⊥} and all terms τ in
T are either of the form {a}, with a ∈ NI, or of the form {ιA}, with A ∈ NC.
Given A,B ∈ NC, we may write A v B instead of AuA v B. Moreover, if {ιA}
occurs in T then we assume without loss of generality that {ιA} v A ∈ T .

The classification graph for T is a tuple (V, V × V, S,R) where

– V = BCT ∪ {Ac | A ∈ (BCT ∩ NC)}, with each Ac ∈ NC fresh;
– S is a function mapping nodes in V to subsets of BC+T ;
– R is a function mapping edges in V × V to (possibly empty) subsets of RT .

Intuitively, a concept name of the form Ac represents a second element in the
extension of A, and it is removed from the classification graph if A has at most
one object in its extension. We write C ;R D iff there are C1, . . . , Ck ∈ BCT
such that C1 = C; R(Cj , Cj+1) 6= ∅, for all 1 ≤ j < k; Ck = D. One can show
that the label sets satisfy the following invariants:

– D ∈ S(C) implies T |= C v D; and
– r ∈ R(C,D) implies T |= C v ∃r.D.

Initially, we set S(C) := {C,>} for all nodes C ∈ V , and R(C,D) := ∅ for
all edges (C,D) ∈ V × V . If C ∈ V \ BCT is of the form Ac, with A ∈ NC, then
we add A to S(Ac). The above invariants are satisfied by these initial label sets.
The completion rules are given in Table 1. Assume that rules are only applied
if S or R or V change after the rule application. This bounds the number of
rule applications to a polynomial in the number of concept and role names in T .
We assume that A is a special concept name we want to check for satisfiability
(it appears in Rule R10 of Table 1). To show that subsumption in ELOι can be
decided in polynomial time one needs to show that if no more rules are applicable,
then T |= A v B iff B ∈ S(A). We formalise this with Lemma 2.

Lemma 2. Given a TBox T , let S be the node function of a complete classifica-
tion graph for T (cf. rules in Table 1). Then, T |= A v B iff S(A)∩{B,⊥} 6= ∅.

Any ELOι TBox T can be normalized (preserving satisfiability) in polyno-
mial time and the classification graph for an ELOι TBox T can be constructed
in polynomial time with respect to the size of T . Then, given arbitrary ELOι
concepts C,D and an ELOι TBox T , one can decide whether C v D is entailed
by T by adding A ≡ C and B ≡ D to T , normalizing it, and then checking
whether S(A)∩{B,⊥} 6= ∅, where A, B are fresh concept names (Lemma 2). As
already mentioned, ABoxes can be encoded into the TBox and instance checking
can be reduced to the entailment of CIs. Formula satisfiability can be divided
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Table 1. The completion rules for subsumption in ELOι with respect to TBoxes.

R1: if C uD v B ∈ T , C,D ∈ S(E) then add B to S(E)
R2: if C v ∃r.D ∈ T , C ∈ S(E) then add r to R(E,D)
R3: if ∃r.C v D ∈ T , C ∈ S(B), r ∈ R(E,B) then add D to S(E)
R4: if {τ} ∈ S(E) ∩ S(D), A ;R D; then S(E) := S(E) ∪ S(D)
R5: if r ∈ R(E,D), ⊥ ∈ S(D) then add ⊥ to S(E)
R6: if {τ} v D ∈ T , {τ} ∈ S(E) then add D to S(E)
R7: if C v {τ} ∈ T , C ∈ S(E) then add {τ} to S(E)
R8: if {τ} ∈ S(B), B ∈ NC then V := V \ {Bc}
R9: if B ∈ S(E), Bc 6∈ V then add {ιB} to S(E)
R10: if A ;R C

′, C ∈ S(C′), {ιB} ∈ S(C) then V := V \ {Bc}

into two problems: one is the satisfiability of a propositional formula obtained
by replacing each CI with a fresh propositional symbol, and the other is entail-
ment of CIs in the ELOι dimension (to ensure that the DL and the propositional
parts of the formula are satisfiable together). The next theorem formalises these
results.

Theorem 2. The ELOι formula satisfiability problem on partial interpretations
is NP-complete and the entailment problem is PTime-complete.

4 Bisimulations and Expressive Power

We discuss the expressive power of free DLs. In particular, we define a notion
of bisimulation for ALCOι that we use to characterise the expressive power
of concepts relative to first-order formulas interpreted on partial interpretations.
First, we present the definitions of bisimulation forALCO andALCOu, which are
standard in the literature [1, 17], adapted to the case of partial interpretations.

Let I and J be partial interpretations, and let Σ ⊆ NC ∪ NR ∪ NI be a
signature. An ALCO Σ-bisimulation between I and J is a non-empty relation
Z ⊆ ∆I ×∆J such that, for every d ∈ ∆I and e ∈ ∆J with (d, e) ∈ Z, every
concept name or nominal X formulated within Σ, and every role name r in Σ:
(atom) d ∈ XI iff e ∈ XJ ; (forth) if (d, d′) ∈ rI then there is e′ ∈ ∆J such
that (e, e′) ∈ rJ and (d′, e′) ∈ Z; and (back) if (e, e′) ∈ rJ then there is d′ ∈ ∆I
such that (d, d′) ∈ rI and (d′, e′) ∈ Z. An ALCOu Σ-bisimulation (between I
and J ) is an ALCO Σ-bisimulation that is total, meaning that ∆I and ∆J are
the domain and range of the relation.

Given a DL language L, a signature Σ, and pointed interpretations (I, d)
and (J , e), we write (I, d) ∼LΣ (J , e) if there is an L Σ-bisimulation Z between
I and J such that (d, e) ∈ Z, and we say that (I, d) is L Σ-bisimilar to (J , e),
or that Z is an L Σ-bisimulation between (I, d) and (J , e). We now introduce
a suitable notion of bisimulation for ALCOι.
Definition 1 (ALCOι Bisimulation). A relation Z ⊆ ∆I ×∆J is an ALCOι
Σ-bisimulation between I and J iff it is an ALCO Σ-bisimulation between I
and J that satisfies, in addition, the following conditions, for every (d, e) ∈ Z:
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JI I J(b)(a)

A

A

A

A

A

A A

A
d

de e

Fig. 1. (a) ALCOu Σ-bisimilar but not ALCOι Σ-bisimilar. (b) ALCOι Σ-bisimilar
but not ALCOu Σ-bisimilar.

(ι.1) there exists d′ ∈ ∆I such that d 6= d′ and (I, d) ∼ALCOΣ (I, d′) iff there
exists e′ ∈ ∆J such that e′ 6= e and (J , e) ∼ALCOΣ (J , e′);

(ι.2) if there is no d′ ∈ ∆I such that d 6= d′ and (I, d) ∼ALCOΣ (I, d′), then for
every u ∈ ∆I there exists v ∈ ∆J such that (u, v) ∈ Z;

(ι.3) if there is no e′ ∈ ∆J such that e 6= e′ and (J , e) ∼ALCOΣ (J , e′), then for
every v ∈ ∆J there exists u ∈ ∆I such that (u, v) ∈ Z.

Intuitively, Condition (ι.1) says that, for two ALCOι Σ-bisimilar elements
d and e, d has a distinct ALCO Σ-bisimilar object (representing an ALCO
Σ-indistinguishable element in the same interpretation) iff e has one as well.
Moreover, Condition (ι.2) (respectively, (ι.3)) states that if there is no distinct
ALCO Σ-bisimilar object to d ∈ ∆I (respectively, e ∈ ∆J ), then the ALCOι
Σ-bisimulation relation is left-total (respectively, right-total), that is, ∆I (re-
spectively, ∆J ) is the domain (respectively, range) of the relation.

The next theorem states that ALCOι Σ-bisimilar elements satisfy the same
ALCOι concepts C formulated within Σ on partial interpretations (given a DL
language L, a signature Σ, and pointed interpretations (I, d) and (J , e), we
write (I, d) ≡LΣ (J , e) iff it holds that d ∈ CI iff e ∈ CJ , for every L concept C
with ΣC ⊆ Σ). Moreover, under the assumption that the partial interpretations
satisfy the conditions of the class of ω-saturated interpretations [21] from model
theory, the converse direction holds as well. These results are known for ALCO,
ALCOu on total interpretations [17, Theorem 4.1.2] and can be adapted to the
case with partial interpretations.

Theorem 3. For all signatures Σ and all partial interpretations I and J ,

(i) if (I, d) ∼ALCOιΣ (J , e), then (I, d) ≡ALCOιΣ (J , e);
(ii) if (I, d) ≡ALCOιΣ (J , e) and I,J are ω-saturated, then (I, d) ∼ALCOιΣ (J , e).

Clearly, ALCOu and ALCOι are both more expressive than ALCO. We now
comment on the expressivity of ALCOu and ALCOι. As illustrated in Fig-
ure 1, there are pointed interpretations (I, d) and (J , e) that are ALCOu Σ-
bisimilar but not ALCOι Σ-bisimilar, and, ALCOι Σ-bisimilar but not ALCOu
Σ-bisimilar, where A ∈ Σ. Since ALCOu and ALCOι are invariant under their
respective notions of bisimulation, it follows that the expressivity of concept ex-
pressions in these languages is not comparable. There is no ALCOu concept D
equivalent to {ιA} and no ALCOι concept D equivalent to ∀u.A.
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Proposition 1. The expressive power of ALCOu and ALCOι concepts is not
comparable on partial (and on total) interpretations.

We now characterise ALCOι as the fragment of first-order logic on partial
interpretations that is invariant underALCOι bisimulations. The standard trans-
lation of an ALCOι concept C into a first-order formula πx(C) (with at most one
free variable x) is defined as usual for concepts built using ALCO constructors.
For nominals of the form {ιC} we have:

πx({ιC}) = ∃xπx(C) ∧ ∀x∀y(πx(C) ∧ πy(C)→ x = y) ∧ ∀y(πy(C)→ x = y).

We say that a first-order formula ϕ(x) with free variable x and such that Σϕ ⊆ Σ
is invariant under ∼ALCOιΣ iff, for every (I, d) and (J , e) such that (I, d) ∼ALCOιΣ

(J , e), we have I, [x 7→ d] |= ϕ(x) iff J , [x 7→ e] |= ϕ(x) (where [x 7→ d] stands
for any variable assignment that maps x to d).

Theorem 4. Let ϕ(x) be a first-order formula with one free variable x and such
that Σϕ(x) ⊆ Σ. The following conditions are equivalent:

(i) there is an ALCOι concept C such that πx(C) is equivalent to ϕ(x);
(ii) ϕ(x) is invariant under ∼ALCOιΣ .

We leave open the question of which notion can precisely capture ELOι. This
notion should be less strict than ALCOι bisimulations. One of the difficulties in
finding it is that with {ιC} one can express a limited form of disjunction.

5 Related and Future Work

The DLs proposed in this article introduce a mild form of cardinality constraints,
a set of constructors that has a long tradition in DL research [8, 40, 9, 6]. We refer
the reader to [10] for a review of the state of the art. Using these formalisms,
it is possible to constrain the number of elements in the extension of a concept.
Thus, the ALCOι instance query ∃selects.Reviewer(ι∃isProgramChairOf.{dl20})
can be captured by the ALCO CI ∃isProgramChairOf.{dl20} v ∃selects.Reviewer,
together with the requirement that ∃isProgramChairOf.{dl20} has cardinality
one. The expressivity of many of these logics goes far beyond the DLs proposed
here, and novel reasoning tools are required. In contrast, we have shown that
reasoning in the DLs considered here can be reduced to reasoning in standard
DLs (ALCOι) or mild extensions (ELOι).

In computational linguistics, the referring expression generation (REG) prob-
lem is concerned with the (automatic) production of such noun phrases, so that
they can be used to describe an entity in a given domain [36, 31, 30]. REG has
been addressed in a DL setting as well, where the problem of finding a concept to
describe an element is formulated with respect to a single interpretation, given
as input [3, 2]. Other expressive DLs, as well as a relaxed version of the closed-
world assumption, are considered in [38, 37]. Further research in the REG direc-
tion might involve adaptations of the algorithms proposed in these approaches
to the case of partial interpretations and free DLs considered in our work.
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Referring expressions are also relevant to other knowledge representation
tasks, as in the case of identity resolution problems [12, 41, 42], or in query-
answering over first-order and DL knowledge bases, where an approach allow-
ing for referring expressions as answers to queries (in place of individual names
only) has been recently proposed [13, 14]. The DLs considered in these papers are
tractable languages tailored to efficient query answering in presence of function-
ality and path-based identification constraints. In [42], in particular, a knowledge
base K consists of a TBox T and a finite set of concepts C, called a CBox, in-
troduced to replace the standard notion of an ABox. An interpretation I is a
model of K iff I is a model of T and the extension in I of each concept in C
has cardinality one. Moreover, given a conjunctive query ϕ with free variables
x1, . . . , xn, a finite list (C1, . . . , Cn) of concepts in C is a certain answer to ϕ in
K iff K |= ∃x1 . . . ∃xn(ϕ∧C1(x1)∧ . . .∧Cn(xn)). Thus, in order to serve as refer-
ring expressions under a given knowledge base, these concepts have to satisfy an
existence, a uniqueness, and a correctness (with respect to a query) condition.
They are not, however, directly treated as possibly non-denoting terms of the
language. We plan to explore further the connections with this approach.

Closely related are also the computation of explicit definitions of concepts
and the Beth definability property (BDP) in DLs [17–19]. Unfortunately, it is
known that the BDP fails for ALCO, while it is regained if the use of individual
names in definitions is not restricted and the language is extended with the @
operator from hybrid logic [20, 18]. Using recent results from [4], we plan to study
how the BDP behaves in case of ALCOι on partial interpretations, and to apply
new techniques to find explicit definitions of concept names and nominals.

Finally, to the best of our knowledge, hybrid logics with non-denoting nomi-
nals have not received much attention in the literature, with the exception of [27]
in the context of public announcement logics. On the other hand, formalisms in-
volving definite descriptions, variously inspired by free logics in their accounts
for non-denoting terms, have been extensively investigated in first-order modal
logic [28, 24, 15, 26, 22, 25, 29, 34]. Here, the possible lack of referents for names
and descriptions is usually paired with another feature, that of non-rigid denota-
tion, i.e., the ability to refer to different objects at different states (time instants,
epistemic alternatives, etc.). We intend to apply our framework for free DLs with
definite descriptions to modal and temporal extensions as well, particularly in
the context of query answering over temporal DL knowledge bases, where the
interaction between denotation failure and non-rigidity can be at stake.
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