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Abstract
Named Entity Recognition is one of the subtasks of Natural Language Processing, which aims to locate
and classify named entities in text into pre-defined categories. The CANTEMIST 2020 is a task for
tumor named entity recognition and we propose a new model for this task. We use Recurrent Neural
Networks and Convolutional Neural Networks to extract relevant text features. Then dynamic attention
mechanism is used to merge features extracted from these two structures. In the final evaluation, we
achieve an F1-score of 0.746.
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1. Introduction

With the development of the Biomedical Named Entity Recognition (BNER) task, it has gradually
become an important means for auxiliary treatment and diagnosis, and tumor named entity
recognition is one subtask of BNER. Due to the protection of patient privacy and the confusion of
clinical records, there are few data sets about tumor named entity recognition. The CANTEMIST
2020 [1] is a great opportunity to study tumor named entity recognition, and we participated in
the CANTEMIST-NER subtask, which requests to find the mentioned tumor morphology in
clinical records.

Currently, the main method for BNER tasks is to adopt BiLSTM-CRF [2] and various fine-
tuning models for BERT [3]. To achieve more lightweight, our team proposed a parallel-attention
model based on Recurrent Neural Networks (RNN) [4] and Convolutional Neural Networks
(CNN) [5]. On the other hand, the tumor named entity recognition task has out-of-vocabular
(OOV) problem. The clinical records contain a large amount of professional and unstructured
texts, which cannot be represented by pre-training words. So we use character embedding to
supplement word embedding to alleviate the impact of the OOV problem. Finally, our model
achieves excellent performance.
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2. Related Work

Cancer is one of the diseases with the highest mortality rate, and the number of people suffering
from cancer are increasing year by year. With the rapid development of natural language
processing (NLP), it has become an essential means of early cancer diagnosis, which can
effectively prevent the deterioration of the tumor. The BNER task is a prerequisite task for
other NLP tasks on cancer, and its performance significantly affects the final diagnosis. Tumor
named entity recognition is a subtask of BNER in the tumor field, and its experimental method
is similar to the BNER task.

The current main methods for BNER are machine learning methods and deep learning
methods. For example, Makino et al. [6] use SVM and Settles et al. [7] use CRF to process the
BNER task. However, the feature engineering of machine learning methods relies on manual
processing, and the generalization ability of the model is not enough, which leads to its effect
only on specific tasks.

With the rapid development of Neural Networks (NN), people have gradually abandoned
traditional methods to deal with BNER tasks and replaced them with NN methods. Sahu et al.
[8] uses the RNN network to process the BNER task and achieve a significant improvement.
Luo L et al. [9] uses An attention-based BiLSTM-CRF approach to solve the BNER task. These
and many other experiments fully prove the effectiveness of RNN for BNER tasks. Later, Jacob
Devlin et al. [3] creates BERT which achieves significant success on the NER task. Subsequently,
Lee et al. [10] applies the BERT model to BNER and proposes Biobert, which achieves great
success and proves the effectiveness of BERT for BNER task. But BERT generates a large number
of parameters and training time. In this context, it becomes a meaningful work to implement a
lightweight model with good performance based on RNN.

3. Our Model

Our model includes four parts: the embedding layer, the parallel layer, the attention structure,
and the classification layer. In the embedding layer, we vectorize the text sequences by using
word embedding and character embedding. The RNN and CNN modules are used to extract
context information respectively in the parallel layer, and then we use the dynamic attention
structure to merge these contextual information. Finally, the dense layer acts as a classifier to
output the final prediction. The overall model structure is shown in Figure 1.

3.1. Embedding layer

In order to alleviate the OOV problem, our model combines word embedding and character
embedding to obtain OOV information in the embedding layer. The character embedding is
initialized by random feature vector, while word embedding is initialized by Spanish Medical
Word Embeddings [11] that is train on SciELO and Wikipedia Health through fasText [12]

For the word embedding, we denote the input sentence as 𝑠 = [𝑠1, ..., 𝑠𝑖 , ..., 𝑠𝑙], where 𝑠𝑖 is
the i-th token, as well as 𝑙 is the number of token in the sentence. The word embedding 𝑤𝑖 is
expressed as follows:

𝑤𝑖 = 𝑤𝑜𝑟𝑑𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠𝑖),
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Figure 1: Our model structure

where 𝑤𝑜𝑟𝑑𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔() is the word embedding function. Then we use character embedding
to supplement word embedding to obtain OOV information. The character embedding 𝑐𝑖 is
expressed as follows:

𝑡𝑖 = [𝑐𝑖1, ..., 𝑐𝑖𝑗 , ..., 𝑐𝑖𝑛],
𝑐𝑖 = 𝑐ℎ𝑎𝑟𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑡𝑖),

where 𝑐ℎ𝑎𝑟𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔() is a character embedding function to randomly initialize the token 𝑡𝑖 ,
𝑛 is the number of characters in the token 𝑡𝑖 , and 𝑗 represents the j-th character in the token 𝑡𝑖 .
Because the dimensions of word embedding and character embedding are inconsistent, they
can not be merged directly. Here we use CNN to fine-tune the character embedding, and the
specific step is as follows:

𝑐𝑖𝑗 = 𝑐𝑜𝑛𝑣([𝑐𝑖𝑗−𝑘/2, .., 𝑐𝑖𝑗 , ..., 𝑐𝑖𝑗+(𝑘/2)]),
where 𝑘 represents the size of the convolution kernel, and k is set to 3 in this paper. Finally, we
concatenate word embedding 𝑤𝑖 and character embedding 𝑐𝑖 to obtain the final token features
𝑠𝑖 .

3.2. Parallel layer

The parallel layer is aimed to extract the context-dependence information of the text sequence.
It consists of an RNN module to obtain the long-distance dependence information and a CNN
module to obtain the local dependence information.
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RNN module: Whether in industry or academia, long short-term memory (LSTM) [13] has
proven its excellent performance in NER, but LSTM adds a forget gate mechanism, which
introduces more parameters and increases training costs. To make the model more lightweight
while ensuring outstanding performance, we combine Gated Recurrent Unit (GRU) [14] and
Simple Recurrent Unit (SRU) [15] in this model to replace the traditional LSTM. Firstly, the
output sequence 𝑠 = [𝑠1, ..., 𝑠𝑛] of the embedding layer is used as the input of the GRU, and the
output of the GRU can be expressed as follows:

𝑧𝑖 = 𝜎 (𝑊𝑧 ⋅ [𝑔𝑖−1, 𝑠𝑖]),

𝑎𝑖 = 𝜎 (𝑊𝑟 ⋅ [𝑔𝑖−1, 𝑠𝑖]),
𝑔�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑔 ⋅ [𝑎𝑖 ∗ 𝑔𝑖−1, 𝑠𝑖]),

𝑔𝑖 = (1 − 𝑧𝑖) ∗ 𝑔𝑖−1 ∗ 𝑔�̃� ,
where 𝑊𝑧 , 𝑊𝑟 , and 𝑊𝑔 are parameter matrix for calculating the update gate 𝑧𝑖 , the reset gate 𝑟𝑖 ,
and the new memory 𝑔�̃� , and then we can get the output 𝑔 = [𝑔1, ..., 𝑔𝑖 , ...] of the GRU. In order
to extract long-distance dependence information more comprehensively, the model stacks the
GRU and the SRU. At the same time, considering the overfitting caused by ordinary stacking
and the disappearance of SRU gradient, the output of GRU is added as a penalty to the output
of SRU. After the addition operation, the output of the final RNN module is as follows:

𝑓𝑖 = 𝜎 (𝑊𝑓 𝑔𝑖 + 𝑉𝑓 𝑐𝑖−1 + 𝑏𝑓 ),

𝑐𝑖 = 𝑓𝑖𝑐𝑖−1 + (1 − 𝑓𝑖)(𝑊𝑔𝑖),
𝑏𝑖 = 𝜎 (𝑊𝑟𝑔𝑖 + 𝑉𝑟𝑐𝑖−1 + 𝑏𝑟 ),

𝑠𝑖 = 𝑏𝑖𝐶𝑖 + (1 − 𝑏𝑖)𝑔𝑖 ,
𝑟𝑖 = 𝑠𝑖 + 𝑔𝑖 ,

where 𝑊 , 𝑊𝑓 , 𝑊𝑟 are parameter matrix, and 𝑉𝑓 , 𝑉𝑟 , 𝑏𝑓 and 𝑏𝑟 are parameter vector in SRU.
𝑟 = [𝑟1, ..., 𝑟𝑖 , ...] is the final output of the entire RNN module.

CNN module: Because of the characteristics of convolution, CNN can not capture the long-
distance dependence information in the text sequence. However, due to the window sliding
mechanism in convolution operation, we can obtain obvious local features by controlling the
size of convolution kernel. In the CNN module, it extracts local information between different
distances by setting three convolutional layers with different kernel sizes. And through a lot of
tuning experiments, we set the size of the three convolution kernels to 3, 5 and 7 respectively.
Then we perform data compression through average pooling operation while reducing data
redundancy. Finally, the results of three convolution layers are added to get the output 𝑐 of
CNN module
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3.3. Attention structure

Similar to the self-attention mechanism [16], weighted attention can dynamically assign different
weights to long-distance dependence information and local dependence information in the
current sequence for data compression and enhancement of effective data. Firstly, we execute
the activation function 𝑡𝑎𝑛ℎ on the 𝑟 output by the RNN module and the 𝑐 output by the CNN
module, and then add the two parts as the attention matrix 𝑎. The specific steps are as follows:

𝑎𝑟 = 𝑡𝑎𝑛ℎ(𝑊𝑟 𝑟 + 𝑏𝑟 ),

𝑎𝑐 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑐 + 𝑏𝑐),
𝑎 = 𝑎𝑟 + 𝑎𝑐 ,

where 𝑊 is weight and 𝑏 is bias term. Through the weight control of the activation function, the
attention matrix of the current sequence can be obtained after addition operation. Taking into
account the new noise brought by the addition operation, we execute the activation function
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 on 𝑎, which can enhance the weight of the effective value:

𝑎 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑎 + 𝑏),

where 𝑊 is weight and 𝑏 is bias term. Then we can calculate the attention matrix 𝑎 and use it
to weight the output of the RNN and CNN modules. The specific method is as follows:

𝑧 = 𝑎 ⋅ 𝑐 + (1 − 𝑎) ⋅ 𝑟 .

Through the attention structure, our model can assign different weights to the output of the
RNN and CNN modules, and filter the useless information of these two modules at the same
time, thereby effectively reducing the impact of redundant context-dependence information on
the final result.

3.3.1. Classification layer

After encoding at the parallel layer and the attention structure, the model obtains a sequence
of semantic features that contain context-dependence. Considering the over-fitting problem
during training, only a single dense layer is used as the final classifier. Finally, through the
activation function 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 which computes the probability of a label for each tag, the final
prediction is obtained.

4. Experiment and Result

4.1. Corpus

The CANTEMIST corpus consists of 3000 clinical cases, and the professional clinical coding ex-
perts annotate these clinical cases in Spanish with eCIE-O-3.1 codes using the BRAT annotation
tool. These cases are distributed in plain text in UTF8 encoding, and each clinical case is stored
as a file. The corpus is randomly divided into training set, development set and test set. There
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Table 1
The number of records and sentences in each data set

Train set Dev1 set Dev2 set Test set Total

Number of Records 501 250 250 300 1031
Number of Sentence 18842 9274 8478 10985 47579

Table 2
HyperParameter settings

HyperParameter Value

character_embedding_size 200
character_CNN_kernel 3
word_embedding_size 200

GRU_units 200
SRU_unit 200

CNN_kernel 3,5,7
batch_size 16

epoch 5
dropout 0.1

learning_rate 0.0001

are two development set in this task, and we use them to adjust the hyperparameters of this
model. The test set have 300 clinical records with standard annotations, which can be used to
test the performance of the model. This task also introduces a background set without standard
annotations to prevent the participating teams from making manual corrections. Finally we
count the number of records and sentences to help understand the distribution of the data sets.
The results are shown in Table 1.

4.2. Preprocessing and hyperParameter settings

In the preprocessing of this task, we perform basic sentence and word segmentation operations
on the original text. Sentences in clinical texts are split by using specific punctuation (such
as line breaks or periods) and words are split by using spaces. Then taking into account the
character embedding in the model, the original text was not processed with stop words in
the preprocessing, and we also remove punctuation marks, special symbols, and single-word
sentences.

Finally, we use Keras and Tensorflow as the model backend to implement the model, and
train and predict on NVIDIA GeForce GTX 2080Ti. The detailed hyperparameter settings of the
experiment are shown in Table 2.

4.3. Comparative experiment and experiment result

To verify the stability of the model and the credibility of the result, we compare our model with
the BERT, which is the most popular model for NER. The result shown in Table 3. It shows
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Table 3
Results of comparative experiment

model P R F1

Baseline 0.181 0.737 0.291
bert [3] 0.737 0.707 0.722

our model 0.757 0.736 0.746

Table 4
Comparison of different RNN modules and stacking methods

model P R F1

GRU 0.735 0.731 0.733
SRU 0.725 0.716 0.720

LSTM 0.737 0.728 0.732
GRU+LSTM 0.750 0.741 0.745
GRU+SRU 0.757 0.736 0.746

that our model performance on this data sets is better than the BERT, and the F1-score exceeds
2%. Compared with the BERT, our model parameters are less and the training cost is lower.
The comparative experiment proves that our model performs well on the tumor named entity
recognition in Spanish.

5. Ablation Study

The ablation study illustrates the effectiveness of the RNN and CNN modules in this model.
For the RNN module, we mainly compare the performance of LSTM, GRU and SRU without

stacking, and the impact of different stacking methods on model performance. Firstly, we use
LSTM, GRU, and SRU as encoders to encode the embedding layer features without stacking.
From experiments, we find that GRU and LSTM have similar performance on this task, and both
F1-scores are 0.736. Consider the cost of training, GRU can effectively reduce single training
time and the required parameter is also less than LSTM. Therefore, we use the GRU as the first
encoder of the RNN module. For the second encoder of the model, the module of SRU and LSTM
have similar performance when stacking GRU, with F1 scores of 0.746 and 0.745 respectively.
Because SRU reduces a lot of parameters and training costs, so combination of SRU and GRU
will be a more suitable choice for this task. The RNN module comparative experiment results
are shown in Table 4.

For the CNN module, we want to prove whether the existence of the CNN module is necessary.
Firstly, we use the RNN module directly stack with the embedding layer, and the F1-score of
the model can only achieve 0.727. Then we use the CNN module to replace the embedding
layer and find that the F1-score of the model achieve 0.746. This shows that the CNN module is
helpful to improve model performance. The experiment results are shown in Table 5.
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Table 5
The result of CNN module’s impact on model performance

model P R F1

RNN+embedding 0.736 0.718 0.727
RNN+CNN 0.757 0.736 0.746

6. Conclusions

In this paper, we verified the effectiveness of the parallel-attention model and the outstanding
performance of RNN on tumor named entity recognition through CANTEMIST-NER task.
Compared with BERT, which has higher training costs, over-reliance on corpus, and risk of
overfitting, our model is more lightweight. This also shows that RNN is a more suitable choice
for NER tasks.

In our model, we use the local dependency extraction ability of CNN to make up for the
feature extraction ability of the RNN. At the same time, the long-distance dependence extraction
ability of RNN is further strengthened by stacking the GRU and SRU. Finally, by adding a
dynamic attention mechanism, our model can filter the redundant features extracted by the
CNN and RNN. For the OOV problem, we combine character embedding and word embedding
to alleviate this problem. And the comparative experiments and ablation study are also sufficient
to show the outstanding performance of the model and the rationality of each module in this
model.

For future work, our team hopes to compare the model with more advanced models and
verify the effectiveness of the model on more data sets to improve generalization capabilities.
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