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Abstract

We present our submission for the CANTEMIST (CANcer TExt Mining Shared Task - tumor named
entity recognition) 2020 task [1]. We participated in track 3, which focuses on automatic eCIE-O-3.1
codes assignment (English version: ICD-O-3), an extreme multi-label classification (XMLC) problem.
We developed a model which utilizes a BERT-like encoder and word-level attention mechanism between
input clinical cases and textual descriptions of the labels. We found that our model predicted a wider
variety of codes across the test set than our baseline, thereby capturing more low-resource labels. Our
final submission achieved a mean average precision (MAP) of 39.4% and F1-micro of 26.8%.
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1. Introduction

Automatic International Classification of Diseases (ICD) code assignment is a classification
problem which involves taking as input an electronic health record (EHR) and outputting a set
of ICD codes (labels). Unlike multi-class classification, where only one label is assigned from
three or more classes, ICD code assignment is a multi-label classification problem, meaning that
there can be any number of labels from a set assigned to an instance. Furthermore, automatic
ICD code assignment constitutes an extreme multi label classification (XMLC) problem as there
are 140,000+ ICD-10 codes, a number which regularly increases due to new diagnoses and
procedures in the medical field. In XMLC, a small subset of labels from a very large label space
are assigned to an instance. A challenge specific to XMLC is known as the ‘tail end problem’,
which means that there are a few labels assigned to many instances, while the vast majority of
labels - the ‘tail end’ - in the labels space are assigned to very few instances [2]. As such, it is
important in XMLC to ensure that models are not achieving high scores by simply assigning only
the frequent labels, as this collapses the XMLC problem into a basic multi-label classification
one. In other words, if a label space has a dimensionality of 1000, and a classifier performs
well according to a given metric but only ever assigns the top 20 labels, this is not a good
XMLC classifier. Therefore, the major challenge in XMLC is to capture these rare or unseen
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Split  # Docs  # Unique Codes # Unseen Codes

Train 501 493 -

Dev1 249 338 208

Dev2 250 334 203

Test 300 386 164 (train), 107 (+devs)

Table 1
Number of documents, unique codes, and unseen codes per data split. ‘# Unseen codes’ refers to codes
which are not present in training data split.

labels, and develop a classifier which can detect and assign them. Lastly, in the medical field,
ICD codes are assigned to an EHR in descending order of importance, as these codes are used
for billing purposes. To our knowledge, this code ranking has not been a major focus in past
automatic ICD code assignment research, which has mostly sought to develop systems which
can correctly predict the codes as an unordered set. However, this code ranking aspect will need
to be addressed if these automatic classifiers are expected to be used in a real-world application.
In the CANTEMIST 2020 task, track 3, participants were expected to submit model predictions
in this ranked order. The submissions were evaluated using the mean average precision (MAP)
metric. In this metric, if all predictions for a given instance are correct, their ordering does not
matter. However, an incorrect prediction occurring high on a ranked list or before other correct
predictions causes the MAP to decrease.

2. Related Work

Until recently, research on automatic ICD code assignment has focused mostly on classic machine
learning architectures. Many researchers have exploited external ICD code information, such as
[3], where they incorporated the ICD code heirarchy in their SVM model which yielded an F1
increase from 27.6% to 39.5%. With the recent boom in deep learning, research has shifted from
classic machine learning models to neural architectures. [4] evaluated several neural network
based classifiers in assigning ICD-10 codes to non-technical summaries of animal experiments.
They found that a BERT-based classifier outperformed the other models, achieving an F1-micro
score of 80.82%. Other recent work has focused on incorporating external resources to aid in
automatic ICD code assignment. [5] developed the Convolutional Attention for Multi-Label
classification (CAML) model, which used the ICD code textual descriptions to identify spans of
text within a document which triggered the assignment of a given code. This model architecture
increased performance on the ‘low-resource’ codes, those which have few positive training
instances. [6] developed the Label-Specific Attention Network (LSAN), a general-purpose multi-
label text classification architecture which utilizes label vectors generated from textual label
descriptions and computes attentions scores between each label vector and each word in a
document. [7] created a framework which generates pseudo features from the ICD code textual
descriptions, and achieved an increase in F1 score from nearly 0 to 20.91% for the codes not
seen during training, referred to as ‘zero-shot codes’.
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Figure 1: Number of codes as a function of absolute frequency. For example, 427 codes occur with
1 document, 146 codes occur with 2 documents, and so on. Truncated on x-axis to top 30 absolute
frequencies.

3. Data

The data for the CANTEMIST 2020 - Coding Track consists of a training set of 501 documents,
two development sets consisting of 249 and 250 documents, and a test set of 300 documents.
Across the training and development splits, the average number of whitespace-split tokens per
document is 738. Each document is assigned one or more eCIE-O-3.1 (English version: ICD-O-3)
codes, with an average of 5.4 codes per document across train, dev, and test data. Across all
datasets, there are 850 unique eCIE-O-3.1 codes, many of which are present only in the test
split (see Table 1). Additionally, the two most frequent codes are assigned to the majority of the
documents, followed by a rapid decrease in code frequency (Table 2). This demonstrates the
aforementioned ‘tail end problem’ in XMLC, and is further illustrated in Figure 1, which shows
that across the training, dev, and test data, 427 of the 850 unique codes are only assigned to a
single document, 146 are only assigned to two documents, etc. This means that over half of
all codes present in the entirety of the data set only have a single positive training instance,
and 67% of the 850 codes have only 1-2 positive training instances, etc. Meanwhile, the most
frequent code, 8000/6, is assigned to 1000+ documents across all data splits. This constitutes an
extreme label imbalance.
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Code  Train + Devs Test

8000/6 89% 83%
8000/1 76% 74%
8000/3 40% 42%
8140/3 22% 21%
8010/3 14% 9%
8140/6 13% 9%
8500/3 10% 7%
8001/1 9% 7%
8001/3 8% 7%

Table 2
Top 9 codes and percentage of positive instances across the train (including dev) and test splits

3.1. Additional Data

Additional to the data provided by the task organizers, we downloaded textual descriptions
corresponding to each eCIE-O-3.1 code’. Figure 2 shows how the numerical composition of
each code is informative, as the first four digits specify a cell type, the fifth digit a behavior
(benign, malignant, etc), and the sixth digit a grade (well differentiated, poorly differentiated,
etc). A small number of 6-digit codes present in the provided datasets lacked descriptions,
however. This means that we obtained text descriptions for all codes which specify cell type and
behavior, but were missing some for a few codes which specify cell type, behavior, and grade.
We therefore generated our own descriptions by taking the description corresponding to the
first five digits of that code (cell type + behavior), and simply appending text which corresponds
to the final digit, or the grade. There are only four possible digits to specify the grade, and
therefore only four grade descriptions®.

4. Methods

4.1. Models

Baseline Our baseline model utilized a BERT encoder [8] followed by a classification layer.
The encoder passes the pooled output of the input sequence to the classification layer, which
outputs a binary matrix representing the presence or absence of a given code.

Label Description Attention The authors in [6] generated a vector for each label from their
corresponding textual descriptions and calculated attention scores between each label vector and
word in a document. Building off of this, we developed a label description attention component
of our model which calculates attention scores at the word level. Our label attention model
(Appendix A) employs a BERT or BERT-like encoder which it applies both to the input text
from the documents, as well as the textual descriptions of the labels (described in 3.1). This
model utilizes the sequence output, rather than pooled output, of both of these input texts,

'https://eciemaps.mscbs.gob.es/ecieMaps/documentation/documentation.html,
version 3.0, last edited 01.01.2018, accessed 28.07.2020
2http://www.sld.cu/galerias/pdf/sitios/dne/voll_morfologia_tumores.pdf
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Structure of a morphology code

histology behavior grade

Example: well-differentiated adenocarcinoma

M-8140/3 1

/T

Tumor/cell type  Behavior Differentiation
[adeno-] [carcinoma] [well-differentiated]

Figure 2: Structure of the ICD-O-3 codes. [9]

calculating attention scores between each word in each input document, and each word in each
label description. To the best of our knowledge, this is the first time word-level attention has
been applied between textual label descriptions and document text in multi label classification.

4.2. Document Batching

A drawback of BERT and BERT-like models is that they can only accept input up to a pre-
defined maximum sequence length, due to memory constraints regarding the way they calculate
self-attention. Additionally, this maximum sequence length applies to the number of tokens
after the subword tokenization is applied, meaning that a sequence may have fewer than 510
whitespace tokens, but many more when tokenized according to the BERT-like models’ sub-
word tokenization scheme. As the average number of whitespace tokens in the CANTEMIST
data sets is around ~768 per document, we felt it important to utilize as much of each document
as possible. Therefore, we developed a model component we have designated as ‘document-
batching’. This component fits each document into varying-size batches, such that each batch is
only one document, and uses a ‘sliding window’ so that there is an overlap between sequences
in a batch in order to preserve context. We then perform max-pooling over the batch dimension
of the logits, and pass the resulting vector to our loss function, or to make predictions.

5. Experiments

All experiments were conducted using the provided train data split as our training data, and the
dev1 as our evaluation data. We combined the baseline model (simple encoder plus classification
layer) and the label attention model with the three BERT and BERT-like models in 5.1, as well
as with/without the document batching component.
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5.1. BERT Models

We utilized the publicly available HuggingFace® implementations of the following models [10].
All experiments employ the following hyperparameters unless specified otherwise: document
maximum sequence length 200, label maximum sequence length 15, 45 epochs, per-gpu batch
size 8, and the remaining parameters default. All experiments were run across 4 GeForce GTX
TITAN X GPUs.

Multilingual BERT We used the pre-trained BERT-Base-Multilingual-Cased encoder (ML
BERT) in our experiments.

XLM-RoBERTa [11] introduced XLM-RoBERTa (XLM-R), which is nearly identical to the
RoBERTa [12] architecture except it is extended to a multi-lingual setting. XLM-R has outper-
formed multi-lingual BERT on various benchmark tasks, thereby motivating our decision to
explore this model. We used a XLMR-base-cased model.

Further Pretrained XLM-R We additionally further pretrained an XLM-R-base-cased model
(FP XLM-R) using the masked language modeling objective on all of the text from the training,
dev, test, and background data releases. Next, we fine-tuned the model exactly as we did with
the BERT and ‘out of the box’ XLM-R models.

5.2. Document Batching

We ran experiments both with and without the document batching component. When we
included it, we set the maximum per-gpu batch size to 10 and used an overlap of size 50. This
means that each next sequence in a batch contained the last 50 tokens of the previous sequence
in the batch.

5.3. Code Ordering

As the task organizers expected a ranked list of code predictions, we simply ordered the labels
by their confidence scores.

5.4. Loss Functions
5.4.1. Binary Cross Entropy

We used the PyTorch loss function BCEWithLogitsLoss. We observed however that this
loss function was resulting in very high precision and very low recall. We investigated the
predictions and found that the classifier was predicting only a few codes from the entirety of
the label space, and achieving what appeared to be a competitive performance. For example,
using this loss function with the baseline classifier plus document batching resulted in a MAP
of 0.331, F1 of 0.491, precision of 0.855, and recall of 0.343. Despite the deceiving metric scores,
this classifier was assigning the two most frequent codes to every document. We observed this
across several experiments and also with the label attention model. In ICD code classification,
recall is arguably slightly more important than precision, as the precision can be very high if
the classifier simply assigns the most frequent codes to every document. However, detecting

*https://github.com/huggingface/transformers, version 2.11.0
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Model MAP F1 P R Avg # Labels/Doc

a) Label Attn 44%  28%  20.9% 57.4% 19
Baseline 51.7% 14.4% 8% 76.1% 48.1
Document Batching ~ MAP F1 P R Avg # Labels/Doc
b) v 483% 21.3% 14.3% 669% 31.28
X 48.9% 18.4% 12% 70.2% 41.7
BERT MAP F1 P R Avg # Labels/Doc
<) ML BERT 44.6% 25% 18.8% 60.4% 27.6
XLM-R 51.7% 14.9% 83%  75.8% 46
FP XLM-R 51% 17.2% 10% 73.2% 40.6

Table 3

Average MAP, F1, Precision, and Recall scores of the (a) label attention component vs. no label attention,
(b) document batching vs. no document batching, and (c) the different BERT-like models from our pre-
submission experiments.

the ‘rare’ codes is the real challenge in ICD classification. Therefore, we opted for a modified
BCEWithLogitsLoss loss function.

5.4.2. Balanced Binary Cross Entropy

Building off of PyTorch’s BCEWithLogitsLoss, we created a loss function which calculates
positive class weights based on the ratio of negative classes per example in a batch. For
example, if there are 5 negative labels for every 1 positive label, each positive label for that
example receives a weight of 5. This appropriately addressed the problems with the basic
BCEWithLogitsLoss loss function, in that we saw a substantial increase in recall, albeit at
the expense of the precision.

5.5. Results and Discussion

Label Attention vs Baseline Table 3 shows that while the baseline achieves on average a
higher MAP score, the precision and recall are far less balanced and many more labels are
predicted per document. When looking into these labels, the baseline predicts only on average
(across all experiments) 71.8 unique labels across all predictions on the dev1 set, whereas the
label attention model predicts on average 81.75 unique labels across the dev1 set. We therefore
feel that even if the MAP metric is lower, the label attention model produces a more varied set of
predictions. Additionally, in all of the twelve experiments conducted (six of which included the
baseline), there was only one time that the baseline classifier did not assign the same codes to
every single document. Conversely, we observed that the label attention model only assigned all
of the same codes to every document once. However, the label attention model plus ML BERT
only assigned 32 and 30 unique codes across the entire dev1 set with and without document
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# Codes Removed

None Top 2 Top 9
Model | MAP F1 P R |MAP F1 P R |[MAP F1 P R
Label Attn | 50.2 24% 15% 60% | 233 13% 8% 42% | 62 6% 3% 17%
Baseline | 51.6 16% 9% 65% | 251 9% 5% 50% | 7.7 5% 2% 29%
Table 4

Pre-submission model performances when n most frequent codes are removed.

batching respectively, but even then, the models assigned only 6.9 and 7.98 on average to each
document. This, we feel, is much better than assigning 45 and 52 unique labels, but assigning
all of them to every document, as we observed with the baseline classifier with ML BERT
with/without document batching respectively. Lastly, we evaluated model performance when
removing the top 2 most frequent labels, as they occur in over half of the documents, and the
top 9 most frequent codes (see table 4). Both models were trained on the training set, using
document batching and evaluated on dev1. The label attention model outperforms the baseline
with respect to F1 and precision, but fails regarding MAP and recall.

Document Batching The average MAP scores with respect to document batching are nearly
identical across the experiments, but the F1 are higher when this is used due to a slightly more
balanced P/R. While we expected to see more of a performance boost with the document batch-
ing, but its inclusion does help to make up for the precision decrease from our loss function.
BERT & Friends There does not seem to be a clear winner regarding the type of BERT-like
encoder, as shown in table 3c. However, we explored the number of unique codes assigned
during eval on the dev1 set, and found that the FP XLM-R is the clear winner when it comes to
variety of codes assigned. On average, the FP XLM-R model predicted 126.8 unique codes, as
opposed to 39.8 and 46 for the ML BERT and XLM-R models respectively. This means that more
rare codes were predicted, which is what we hoped to see.

Finally, we feel that models which can predict on average fewer labels per document and still
be competitive are learning more than the models which predict more labels per document on
average. While recall is perhaps slightly more important than precision here, models which
continuously predict 50 labels per document are not necessarily achieving high recall by catching
the ‘rare’ labels; if the models are predicting 50 codes per document and only predicting 52
unique codes, this is not a very well-informed model. Therefore, high recall is only beneficial if
the average number of labels predicted per document is substantially lower than the number
of unique labels predicted. Otherwise, the model is repeatedly assigning most or all of the top
most frequent codes, and presumably failing to capture the rarer codes.

5.6. Submission and Performance

Our submitted model predictions were generated from a further pretrained XLM-R base model,
trained for 45 epochs on a concatenation of the training and dev1 data, with a document maxi-
mum sequence length of 200, a label maximum sequence length of 11, document batching, and
the balanced binary cross entropy loss function. Since we trained the model on the concatena-
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Model, Doc MSL, Label MSL ‘ MAP  F1 P R Avg#Codes/Doc # Unique Codes

Final Submission, 200, 11 394 26.8 18.2 51 15 178

Label Attention, 150, 15 48.2 9.9 5.3 67.2 70.5 76

No Label Attention, 200, - 48 124 6.8 646 52 52
Table 5

Comparison of model performances between the submitted model and other identical models, differing
only where specified. ‘“MSL’ refers to ‘maximum sequence length’.

tion of the training and dev1 data, 130 of the 386 labels present in the test data were unseen
during training, leaving 256 unique labels in the test data which our model had been trained on.
Table 5 shows our model performance according to various metrics.

5.7. Post-Submission Experiments

When developing our model, we found that setting document maximum sequence length to 200,
label maximum sequence length to 15, while using the document batching component with a
maximum batch size of 10 yielded promising results. However, when training the final model
on the concatenation of the training and dev1 splits, this meant that our label space increased
from 493 to 623. As all of the label descriptions are re-encoded in every forward pass, this
caused memory issues and we had to decrease the label maximum sequence length and 11 in
order to fit all label descriptions into the memory. To probe what effect this had on the model’s
performance on the test set, we trained another model with maximum sequence lengths of 150
(document) and 15 (label). The resulting model achieved an MAP of 0.48, which surpasses our
submitted model’s MAP but performs worse in F1 micro and precision. Additionally, this model
only predicts 76 unique codes, and assigns on average 70.5 codes per document. Recall that
across all data splits, the average number of codes per document is 5.4.

Additionally, the post-submission experimental model’s top codes predictions almost entirely
lack variation across all 300 test documents. When treating model predictions as an unordered
set, the top 15 predictions are identical across all test documents (with only two distinct
orderings). Similarly with the top 25 codes, we see only 2 distinct code set predictions and 9
distinct orderings. In summation, this model appears to perform better than our submission
by the MAP metric alone, but if the top 15 (or 25) code predictions across all documents are
nearly identical, it seems that the model is over-assigning frequent codes, and perhaps the
lower-ranking predictions are more informative, as we observed much greater variation across
these ‘bottom’ codes predictions.

We also trained a model identical to our submitted model, just without the label attention
component. Table 5 shows that without the label attention component (essentially, our baseline
model plus document batching), the model predicts the same 52 codes for all documents, in
exactly the same order, despite achieving a higher MAP score.
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6. Conclusion

Automatic ICD code classification is not only challenging, but evaluating the quality of such a
classifier is also a daunting task. This is because models can trick the evaluation metrics, while
in the end producing useless predictions. We feel that it is important to not only evaluate a
model by it performance metric, but to also explore the predictions: How many unique labels
are predicted? Are only the most frequent labels predicted? What is the ratio of total unique
labels predicted to the average number of labels assigned to a document? These are important
questions to ask if the ultimate goal is to develop a system which can function in real-world
applications.

Our label description attention model did not always win in our pre-submission experiments,
but it did consistently produce more varied predictions, a larger set of unique labels, and fewer
codes per document, all while maintaining high recall and a competitive F1 score. Our motivation
to use our chosen model in the final submission as opposed to another which produces a higher
MAP score, is that we sought to increase performance on the low-resource codes without
assigning too many codes to each input document, thereby maintaining precision. A drawback
of our model is its computational expense: our current architecture requires re-encoding all
label descriptions in every forward pass, as the encoder parameters are updated during training.
Future work could focus on finding a more efficient way to embed the label descriptions, as our
architecture would be extremely computationally expensive in a larger label space. We planned
to use higher capacity models in our experiments and submission, but ran into memory issues;
this could also make for interesting future work, as such large label spaces could benefit from
this increase in capacity. Furthermore, exploiting the ICD code hierarchy, which is encoded
in the composition of the codes themselves (figure 2), and incorporating this into the label
description embeddings could make for interesting future work.
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