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Abstract—Lossy image compression algorithm based on 

fractal discrete cosine transform is proposed in this paper. The 

created algorithm is compared to an algorithm based on two-

dimensional discrete cosine transform. It is shown 

experimentally that the described algorithm brings less 

distortion concerning block structure in comparison with 

square blocks of two-dimensional discrete cosine transform. It 

is remarked that visual quality characteristics of both 

algorithms vary poorly for several values ranges of entropy of 

compressed image. 
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I. INTRODUCTION  

For compression of images, lossy compression 
algorithms are widely used, since the losses introduced into 
the image can be invisible to the eyes and practically do not 
affect the visual quality. In such algorithms, compression is 
performed in the frequency domain, to obtain values in 
which discrete orthogonal transforms (DOTs) are used. 
Discrete cosine transform (DCT), namely, its two-
dimensional variation, is widely used in the field of image 
processing. Since two-dimensional DCT is defined on a 
square region, the resulting artifacts in compression have a 
very noticeable mesh structure. To eliminate this effect, one 
can use the classical one-dimensional DCT applied to the 
sweep generated by some canonical number system (CNS) 
[1], or the fractal DCT (FDCT) defined on the fractal region 
generated by CNS [2]. In this paper, we study a lossy 
compression algorithm that uses various variations of the 
FDCT. The results of the algorithm are compared with a 
compression based on two-dimensional DCT. 

II. THE THEORETICAL BASIS  

A. Fractal DCT 

This section provides brief theoretical information about 
the CNS in imaginary quadratic fields [3]-[6], k- fundamental 
domains, and FDCT [2]. 

Let 𝑄(√𝑑)  is a quadratic field: 𝑄(√𝑑) = {𝑧 = 𝑎 +
𝑏𝑑; 𝑎, 𝑏 ∈ 𝑄}, d is an integer, free of squares. Then the field 

element 𝑧 ∈ 𝑄(√𝑑)  is called a whole algebraic field element 

if its norm and trace are integers 

𝑁𝑜𝑟𝑚(𝑧) = (𝑎 + 𝑏√𝑑)(𝑎 − 𝑏√𝑑),

𝑇𝑟(𝑧) = (𝑎 + 𝑏√𝑑) + (𝑎 − 𝑏√𝑑).

The whole algebraic element 𝛼 ∈ 𝑄(√𝑑) is the basis of 

the CNS in the ring of integer elements 𝑄(√𝑑), if any whole 

element of this field is uniquely representable in the form of 
a finite sum  

 𝑧 = ∑ 𝑧𝑗
𝑘
𝑗=0 𝛼𝑗 , 𝑧𝑗 ∈ 𝑁 = {0,1, . . , |𝑁𝑜𝑟𝑚(𝛼)| − 1} (1)

CNS in the field 𝑄(√𝑑)  is called a pair {α, N} , k-

fundamental domain 𝐺𝑘  is the set of algebraic elements of 

the field 𝑄(√𝑑), created by k-membered sum of a formula 

(1), 

 𝐺𝑘 = {∑ 𝑧𝑗
𝑘−1
𝑗=0 𝛼𝑗, 𝑧𝑗 ∈ 𝑁}. (2)

Let 𝛬COS𝑘(𝑚, 𝑛) = 𝑐𝑜𝑠 (
𝜋Im(�̄�𝑘+1𝑛(𝑥+𝛽))

𝑁𝑜𝑟𝑚(𝛼𝑘)Im(𝛼)
) , where 

parameter β is set for the reason of orthogonality: 

∑ 𝛬𝑥∈𝐺𝑘 COS𝑘(𝑝, 𝑥) ⋅ 𝛬COS𝑘(𝑞, 𝑥) = 0, 𝑝 ≠ 𝑞,

For example, for 𝑁𝑜𝑟𝑚(𝛼) = 2 parameter β is calculated 
as  

𝛽 =
𝛼𝑘+1−2𝛼𝑘+1

2(𝛼−1)
.

Then FDCT over 𝐺𝑘 is called a transformation 

𝑋(𝑚) = 𝜆(𝑚)∑ 𝑥𝑛∈𝐺𝑘
(𝑛)𝛬𝑘(𝑚, 𝑛),

where 𝑚 ∈ 𝐷𝑘 , and 𝜆(𝑚) is FDCT. 

Reverse FDCT (RFDCT) is called 

𝑥(𝑛) = ∑ 𝜆𝑚∈𝐷𝑘
(𝑚)𝑋(𝑚)𝛬𝑘(𝑚, 𝑛),

where 𝑛 ∈ 𝐺𝑘 , and 𝜆(𝑚)  is the normalizing coefficient of 
FDCT. 

The normalizing coefficient of FDCT and RFDCT is 
equal and is calculated using the following equation: 

𝜆(𝑚) =

{
 

 √
1

𝑁𝑜𝑟𝑚(𝛼𝑘)
, 2𝑚 ≡ 0(𝑚𝑜𝑑𝛼𝑘)

√
2

𝑁𝑜𝑟𝑚(𝛼𝑘)
, 2𝑚 ≠ 0(𝑚𝑜𝑑𝛼𝑘)

.

The field 𝐷𝑘 is found algorithmically for the reasons of 
orthogonality of the basis functions: 

∑𝛬COS𝑘(𝑝, 𝑥) ⋅ 𝛬COS𝑘(𝑞, 𝑥) = 0;

𝑥 ∈ 𝐺𝑘; 𝑝, 𝑞 ∈ 𝐷𝑘; 𝑝 ≠ 𝑞

∑𝛬COS𝑘(𝑝, 𝑥) ⋅ 𝛬COS𝑘(𝑞, 𝑥) ≠ 0;

𝑥 ∈ 𝐺𝑘; 𝑝, 𝑞 ∈ 𝐷𝑘; 𝑝 = 𝑞

 

The algorithm for calculating this region is described in 
[2]. 
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B. Two-dimensional DCT 

Two-dimensional DCT is called the transformation 

𝑋(𝑚1, 𝑚2) =

∑ ∑ 𝑥
𝑁2−1
𝑛2=0

𝑁1−1
𝑛1=0

(𝑛1, 𝑛2)𝑐𝑜𝑠 (
𝜋𝑘1(𝑛1+0.5)

𝑁1
) 𝑐𝑜𝑠 (

𝜋𝑘2(𝑛2+0.5)

𝑁2
),

where 𝑥(𝑛1, 𝑛2)  is a source signal (block of image 
brightness), 𝑁𝑖 is the size of the i-th side of the block, and 
𝑋(𝑚1, 𝑚2)  is the resulting spectrum of the source signal. 

Then the inverse two-dimensional DCT is called the 
transformation 

𝑥(𝑛1, 𝑛2) = ∑ ∑ 𝜆1
𝑁2−1
𝑚2=0

𝑁1−1
𝑚1=0

(𝑚1)𝜆2(𝑚2)𝑋(𝑚1, 𝑚2) ×

𝑐𝑜𝑠 (
𝜋𝑘1(𝑚1+0.5)

𝑁1
) 𝑐𝑜𝑠 (

𝜋𝑘2(𝑚2+0.5)

𝑁2
),

where 𝜆𝑖(𝑚) is a normalizing coefficient calculated as 

𝜆𝑖(𝑚) = {

1

√𝑁𝑖
, 𝑚 = 0

√
2

𝑁𝑖
, 𝑚 ≠ 0

.

C. Description of the Compression Algorithm 

The studied compression algorithm consists of the 
following steps: 

 splitting the image into blocks; 

 calculating the DOT for each of the blocks; 

 quantization of the obtained frequency domain (lossy 
compression); 

 packing of quantized spectral components for 
subsequent lossless compression. 

 
Fig. 1. An example of dividing an image into blocks when using FDCT 

for α=-1+i, k=4. 

In the case of FDCP, the partition is performed in 
accordance with the k- fundamental fractal region (2). This 
area describes the shape of the block, and the block offsets 
over the entire image are calculated based on the size of the 
block (Fig.1). When using two-dimensional DCT, square 
blocks are used. In cases where the blocks go beyond the 
image border, the missing values are supplemented by 
brightness values from the nearest pixel. 

Lossy compression is performed by quantizing the 
spectral components of each block in accordance with the 
quantization vector (or matrix in the two-dimensional case). 
Quantization vectors are calculated for each algorithm based 
on the standard square deviation (SSD) of the corresponding 
spectral components according to the formula 

𝑞𝑖 = ⌊

𝜎𝑚𝑎𝑥
𝜎𝑖

+10

3
⌋ ⋅ 𝑄,

where 𝑞𝑖  is i-th component of the quantization vector (or 
matrix), 𝜎𝑖  is i-th component of the mean squared error 
vector, 𝜎𝑚𝑎𝑥  is the maximum value of the standard deviation 
for all components, Q is the algorithm parameter, which is 
the image compression ratio setting. The meaning of this 
formula is to give more quantization levels to a component 
with a larger standard deviation. For example, for FDCT 𝛼 =
−1 + 𝑖, 𝑘 = 3, the quantization vector at 𝑄 = 1 is equal to 
(3, 4, 5, 4, 6, 7, 7, 6). 

The quantized values of the spectral components are 
recorded sequentially, 2 bytes were allocated to each 
component. 

III. RESEARCH  

A. Description of the experiment 

The comparison was carried out on 10 halftone images 
512×512 in size from the Waterloo Gray Set. All images 
were compressed by algorithms using two-dimensional DCT 
on blocks 4 х 4 and 8 х 8 and FDCT with parameters 𝛼 =
−1 + 𝑖; 𝑘 = 3,4,5,6. 

As a comparative measure of visual quality, PSNR, or the 
ratio of peak signal to noise, and MSSIM, or a measure of 
structural similarity averaged over the image, were chosen. 

PSNR is calculated by the formula 

𝑃𝑆𝑁𝑅(𝑥, 𝑦) = 20𝑙𝑜𝑔10255 −

10𝑙𝑜𝑔10
1

𝑁1𝑁2
∑ ∑ [𝑥(𝑖, 𝑗) − 𝑦(𝑖, 𝑗)]2

𝑁2−1
𝑗=0

𝑁1−1
𝑖=0 , 

where x and y are the compared grayscale images, 𝑁1, 𝑁2 are 

image width and height respectively; PSNR value is 
measured in decibels. The higher the PSNR value, the less 
the image has changed compared to the original. 

MSSIM is calculated as the average SSIM for disjoint 

88 blocks : 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1

2)(2𝜎𝑥𝑦+𝐶2
2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1
2)(𝜎𝑥

2+𝜎𝑦
2+𝐶2

2)
,  

𝑀𝑆𝑆𝐼𝑀 =
1

𝑀
∑ 𝑆𝑆𝐼𝑀𝑀−1
𝑖=0 (𝑥, 𝑦), 

where x and y are grayscale images being compared, M is the 

number of 88 blocks, 𝐶1 = 2.55 , 𝐶2 = 7.65 . MSSIM 
values range from -1 to 1, the higher value corresponds to a 
better visual similarity of two images [7]. 

To assess the degree of compression, informational 
entropy was used. Information entropy shows how much 
information the spectral component carries on average after 
compression [8], and describes the theoretical limit of 
sequence compression. Accordingly, the lower the value of 
entropy, the greater the compression ratio can be achieved by 
compressing this sequence. Entropy was calculated from a 
sequence of quantized spectral components by the formula 

𝐻 = −∑ 𝑝𝑖
65535
𝑖=0 𝑙𝑜𝑔2𝑝𝑖 , 

where 𝑝𝑖  – is the probability of occurrence of the value of i in 
the sequence. 

B. Results 

As a result of the study, it turned out that for most images 
for equal values of entropy, algorithms based on two-
dimensional DCT show the best values of comparative 
measures of visual quality compared to algorithms based on 
FDCT (Fig. 2), but the following can be noted: firstly, when 
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the entropy is one and a half bits per sample and higher, the 
MSSIM value for FDCT-based algorithms differ no more 
than by 1%, which means that the difference is almost 
imperceptible. 

Secondly, starting from a certain value of entropy, the 
visual quality of images compressed by the FDCT algorithm 
is superior to the visual quality of images compressed by the 
algorithm based on two-dimensional DCT. This can also be 

seen from the graphs in Fig. 2. Such a property can be useful 
in image transmission systems for which low PSNR values 
(about 20 dB) are acceptable. 

Moreover, Fig. 3 shows the nature of the distortions 
introduced by the FDCT fractal blocks. Compared to the 
square blocks of two-dimensional DCT, the fractal structure 
is less noticeable, and the boundaries of the objects in the 
image are sharper, although more noisy.

 
Fig. 2. Dependence of the visual characteristics of the Cameraman image on the information entropy: a) PSNR; b) MSSIM. 

 
Fig. 3. Fragments of the Cameraman image: a) before compression; b) after compression by an algorithm based on two-dimensional DCT 88 (PSNR = 

28.7 dB; MSSIM = 0.81); c) after compression by an algorithm based on FDCT k = 6 (PSNR = 25.42 dB; MSSIM = 0.74). Both compressed images have an 

entropy of 0.19 bit/pixel. 

Finally, it can be noted that in experiments on images 
consisting of text, FDCT-based algorithms showed 
themselves better than algorithms based on two-dimensional 
DCT, which makes great practical sense when working with 
scanned documents and books. An example of the operation 
of algorithms in images containing text is shown in Fig. 4.  

IV. CONCLUSION 

In this paper, a lossy image compression algorithm based 
on a fractal discrete cosine transform was implemented and 
studied. The implemented algorithm was compared with the 
algorithm based on two-dimensional DCT. As a result, it 
turned out that FDCT has a completely different character of 
distortions introduced into the image during compression: an 
image compressed by the FDCT algorithm has sharper but 
more noisy object boundaries compared to two-dimensional 
DCT; the structure of fractal blocks is less noticeable than 
the structure of a square block of two-dimensional DCT. 
Despite the fact that FDCT does not show the best numerical 
characteristics of visual quality with an equal value of 
entropy compared to two-dimensional DCT, the actual visual 
quality differs insignificantly for some values of entropy, 
which can be used in a number of image processing areas. 

Actual problems associated with the FDCT-based 
compression algorithm are the synthesis of fast FDCT 

algorithms, the study of FDCT-based algorithms in other k- 
fundamental areas, as well as the synthesis of the algorithm 
for reducing the noise introduced by compression when 
using FDCT. 

 
Fig. 4. Image fragments with text: a) before compression; b) after 
compression by an algorithm based on FDCT k = 3 (PSNR = 24.54 dB; 
MSSIM = 0.92); c) after compression by an algorithm based on two-

dimensional DCT 44 (PSNR = 28.04 dB; MSSIM = 0.96); c) after image 

compression by an algorithm based on two-dimensional DCT 88 (PSNR = 
25.86 dB; MSSIM = 0.89). All compressed images have an entropy of 1.2 
bits/pixel. 

REFERENCES 

[1] A.M. Belov, “The study of the effectiveness of one-dimensional 
discrete cosine transforms on the scans of two-dimensional signals 
generated by canonical number systems,” Computer Optics, vol. 35, 
no. 4, pp. 519-522, 2011. 

[2] M.S. Kasparyan, “Fractal discrete cosine transformations on 
prefractal areas associated with the fundamental areas of canonical 
number systems,” Computer Optics, vol. 38, no. 1, pp. 148-153, 2014. 



Image Processing and Earth Remote Sensing 

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020)  156 

[3] I. Katai and A. Kovacs, “Canonical number system in imaginary 
quadratic fields,” Acta Mathematica Hungarica, vol. 37, pp. 159-164, 
1981. 

[4] I. Katai and J. Szabo, “Canonical number systems for complex 
integers,” Acta Sci. Math. (Szeged), vol. 37, pp. 255-260, 1975. 

[5] V.M. Chernov, “Arithmetic methods for the synthesis of fast discrete 
orthogonal transform algorithms,” M.: Fizmatlit, 2007.  

[6] V.M. Chernov, “Exotic" binary number systems for rings of Gauss 
and Eisenstein integers,” Computer Optics, vol. 42, no. 6, pp. 1068-
1073, 2018, DOI: 10.18287/2412-6179-2018-42-6-1068-1073. 

[7] Z. Wang, Alan C. Bovik, Hamid R. Sheikh and E.P. Simoncelli, 
“Image Quality Assessment: From Error Visibility to Structural 
Similarity,” IEEE Transactions on Image Processing, vol. 13, pp. 600-
612, 2004.  

[8] V.D. Kolesnik and G.Sh. Poltyrev, “Information theory course,” M.: 
Nauka, 1982. 

 


