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Agricultural parcel localization on satellite 1images
using U-Net-based neural network

Maria Pavlova
Vision systems laboratory
IITP RAS (Kharkevich Institute)
Moscow, Russia
m.pavlova@yvisillect.com

Mikhail Zagarev

Digital Agro LLC

Moscow, Russia
mzagarev @ gmail.com

Abstract—This work considers the problem of automatic de-
lineation of agricultural parcels on satellite images based on true-
color images and NDVI vegetation index maps from Sentinel-2
satellites (10 m ground sampling distance). The problem is
solved using a U-Net-based convolutional neural network. We
consider problem formulation either as parcel mask or boundary
detection; the multiclass (simultaneous) training did not prove to
be effective. The approach looks promising and applicable for
automated land mapping for agricultural monitoring systems.
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I. INTRODUCTION

In this paper, we consider the problem of automating the
mapping of agricultural fields using satellite data of 10-
meter spatial resolution. This task is relevant both in cadas-
tral accounting and in agricultural monitoring. High-precision
manual mapping of parcels is a labor-intensive process, and
knowledge about the boundaries of parcels is an essential
element for solving other tasks of agricultural monitoring, in
particular, evaluating various indicators of productivity and
land condition when using precision farming approaches.

There are many works on the related problem of crop clas-
sification [1]-[3]. The problem of field mapping automation
is not so studied, although there are some works [4], [5].

Some works, including [4], [5], use high-resolution data,
which makes the problem easier. For example, high-resolution
80-cm allow to detect single trees [6]. However, lower-
resolution data is more widely available thanks to research
programs such as Sentinel-2 [7]. It provides regularly updated
(about two times per week) multispectral satellite imagery in
resolutions from 10 to 60 meters per pixel, depending on the
spectral channel.

Determining the most suitable spectral ranges for mapping
is not a trivial task. This paper uses the fact that the so-called
vegetation indices-images calculated from images in different
wavelength ranges [8], [9] - have long been known and widely
used to solve problems of agricultural monitoring.
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In this paper, in addition to the image in the visible range,
we investigate the use of the NDVI (Normalized Difference
Vegetation Index) as input data for automated mapping. It is a
normalized relative vegetation index, which is useful in crop
monitoring problems [10]. NDVI is calculated from the ratio
of the observed intensity of red (RED) and near-infrared (NIR)
channels:

NIR — RED
NIR+ RED’

Currently, algorithms based on training in artificial neural
networks, in particular using convolutional layers, are widely
used in various problems of image analysis [4], [5], [11], [12].
A particular case of full-convolution architecture, showing
good quality in segmentation problems, is the U-Net family of
neural networks [13], which implements a multiscale approach
to image analysis. We can also note one of the universal
segmentation algorithms MaskRCNN [14], in which object de-
tection is accompanied by further pixel-by-pixel segmentation
using convolutional layers. This algorithm allows one to detect
individual objects and their exact boundaries, including when
their images intersect. However, this more complicated method
is not required for defining masks or parcel boundaries when
objects do not intersect, and there is no problem with partial
obscuration.

NDVI =

II. METHOD

We used a neural network approach to automatically detect
parcels. In this approach we model detection with a function
fw : X — Y. The f, function maps multi-channel images
r € X = [0,1]"*w*¢ to single-channel images y € YV =
[0,1]"*%. The pixels y; ; € [0,1] of such an image contain
confidence estimates that the ¢,j pixel in the source image
refers to a parcel (or a parcel boundary in case of boundary
detection). The type of f, function depends on the task to
be solved and defines the architecture of an artificial neural
network.
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Fig. 1. Image example and the resulting predictions: a) color data (TCI), b)
NDVI vegetation index, c¢) ground truth binary mask, d) ground truth boundary
mask, e) parcels mask prediction, f) boundary mask prediction.

A sequential network is a simple example of an artificial
neural network. Such a network consists of inputs x = hg
and a few trainable functions (layers) h;, = fi(hi—1),i =
{1, ...,n}, applied sequentially. The last layer output y = h,, is
treated as the neural network output. For the image processing
tasks, the convolutional layers are usually used. In this case,
the input and the output of the layer are images, i.e., 3d tables
(tensors).

hf’y’d — RelLU hzcjldz,ynLdy,Cf

>

dz,dy,cf,ct

7
wdx,dy,cf,ct ’

where ReLU (x) = maz(x,0). The idea of such filters is to
locally process different image parts in the same way. This
also allows to simultaneously optimize weights w on different
parts of the image. Convolutions have typically small kernel
size, usually 3 x 3, (bigger ones are reducible to several such
ones). To make the output size to be equal with the input size,
an input image is usually zeros-padded.

Function f,, parameters (or weights) w are automatically
tuned on the collected dataset {z;,y;} with the expertly
marked position of the parcels (and their borders). The w
is changed so to minimize the loss function (or empirical

risk) L(w) = >, I(fw(xi),yi), where [ is the two-class cross

entropy.
~ flog(y) )
l =
(v 9) {_log(l —y)

U-Net-like architectures [13] are commonly used in prob-
lems of image segmentation and pixel-wise classification.
Neural networks of this type have an encoder-decoder archi-
tecture with several layers of different resolutions. Also, such
architecture is not sequential and has shortcut connections. U-
Net-like networks have several advantages, including:

« a sufficiently large receptive field, which allows a neural
network to make each pixel decision based on a relatively
wide spatial neighborhood;

« acomputational efficiency due to the multiscale approach.

The network of this architecture works with a small number
of weights in the original resolution image, then with a large
number of weights in the image of a much lower resolution
and, in the end, combines the low-resolution results with high-
resolution data from the original image for more accurate pixel
prediction. In this paper, we used a neural network with 32
filters on the first layer and the smallest network scale of 1/8
(see Fig. II).

A. Training

A dataset consisting of 122 4-channel images of 22 areas of
the Earth surface for the period 04/05/2018 — 11/11/2018 from
the Sentinel-2 satellite imagery archive was prepared. The size
of each image is 1030 x 1030 pixels, imagery resolution is 10
m/pixel. The first 3 channels of each image are visible colors
(T'C1T in Sentinel-2 nomenclature), and as the fourth channel,
the N DV I vegetation index map is used (calculated by bands
4 and 8 of the original multispectral image), see Fig. lab.

Fields and similar structures were manually marked on each
full-color image in the form of polygonal contours, resulting
in 400 average objects being marked on all images. The field
boundary mask was constructed as follows: the field mask was
morphologically dilatated with a square window of 10 x 10,
after which the points included in the dilatated mask but not
in the original ones were considered as the boundary points
(see Fig. lcd).

The dataset was divided into training and test parts, con-
sisting of 17 regions with 94 images total and 5 sections with
28 images, respectively.

The network has been trained for a 25 epochs with 500
batches. Each batch contains 32 random 128 x 128 patches,
cropped randomly from the original images. The used opti-
mizer is Adam [15] — one of stochastic gradient descent
methods. We used a loss function consisting of a cross entropy
and [, — regularization with 0.0001 coefficient to prevent
overfitting.

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 169



Image Processing and Earth Remote Sensing

InputLayer

128x128x3

Conv 3x3x3 — 32 with Relu
Conv 3x3x32 — 32 with Relu
MaxPool 2x2

64x64x32

Conv 3x3x32 — 64 with Relu
Conv 3x3x64 — 64 with Relu
MaxPool 2x2

B2x32x64

Conv 3x3x64 — 128 with Relu
Conv 3x3x128 — 128 with Relu
MaxPool 2x2

\16){1 6x128

Conv 3x3x128 — 256 with Relu
Conv 3x3x256 — 256 with Relu
UpSampling 2x2

B2x32x256
Y

Conv 3x3x256 — 128 with Relu

64x64x64

Concatenate

128x128x32

32x32x256
y

Conv 3x3x256 — 128 with Relu
Conv 3x3x128 — 128 with Relu
UpSampling 2x2

64x64x128
y

Conv 3x3x128 — 64 with Relu

64x64x64
y

Concatenate

Conv 3x3x128 — 64 with Relu
Conv 3x3x64 — 64 with Relu
UpSampling 2x2

'/128){1 28x64

Conv 3x3x64 — 32 with Relu ‘

128x128x32

Concatenate

128x128x64

Conv 3x3x64 — 32 with Relu
Conv 3x3x32 — 32 with Relu
Conv 3x3x32 — 1 with Sigmoid

Fig. 2. The neural network architecture. It is a U-Net-based one with encoder,
decoder, and shortcut connections.

TABLE I. METHODS COMPARISONS

Input Data Output Data Results AUC-ROC/AUC-PR
TCI boundaries 0.80 £ 0.00 / 0.39 £ 0.00
TCI parcels 0.82£0.01/0.53 £ 0.02
TCI parcels & boundaries | (b) 0.78 £ 0.00 / 0.36 £ 0.00
TCI parcels & boundaries | (p) 0.77 £ 0.02 / 0.47 £ 0.06

NDVI boundaries 0.79 £ 0.00 / 0.39 £+ 0.01
NDVI parcels 0.80 £0.01 / 0.51 + 0.04
NDVI parcels & boundaries | (b) 0.77 £0.01 / 0.34 £ 0.02
NDVI parcels & boundaries | (p) 0.78 £0.02 / 0.43 £ 0.05

TCI and NDVI
TCI and NDVI
TCI and NDVI
TCI and NDVI

boundaries
parcels
parcels & boundaries
parcels & boundaries

0.79£0.02/0.36 £ 0.03
0.81 £0.01/0.45+0.08
(b) 0.78 £0.01 / 0.37 £ 0.00
(p) 0.81 £0.02/0.53 +£0.01

random boundaries
random parcels

0.50 £ 0.00 / 0.06 £ 0.00
0.50 £ 0.00 / 0.39 £ 0.00

III. RESULTS

We use pixel-wise classification metrics. The most common
one is the AUC-ROC metric. To calculate it we consider all
possible thresholds to obtain the all possible classifiers

el =1y,;>T),T€eR.

i

These classifiers’ parameters on the TPR and FPR coordinates
plot the so-called ROC curve. The area under this curve is the
desired value. However, this metric may be low informative if
the classes are highly unbalanced. In our case, the number
of background non-borders pixels is much bigger than the
number of object pixels (borders). To reduce this effect, we
also calculate the AUC-PR metric built similarly on the values
of precision and recall instead of TPR and FPR.

We did a few computational experiments to study depen-
dence by the input channels: TCI, NDVI, TCI+NDVI. Also,
we did a few experiments to check the multiclass method,
in which the neural network learns to predict parcels and its
boundaries simultaneously. In each case, the experiment was
repeated three times to estimate not only the value but its
standard deviation also.

For comparison, the value of metrics for a random classifier
is given. For boundaries & parcels prediction, different bound-
ary (b) and parcels (p) results are presented. The results are
listed in Tab. L.

The presented results show that a neural network is signif-
icantly higher than the random algorithm, which has AUC —
ROC and AUC — PR equals to 0.5 / 0.4 for the fields and
to 0.5 / 0.06 for the boundaries. The results of the multitask
training are not significantly different from the usual ones.
The quality of border detection by AUC-PR metrics is much
lower than that of AUC-ROC, because of a much lower share
of boundary pixels compared to the share of parcels pixels.
The results of the network look strongly correlated with the
correct answer (see Fig. 1de), which is probably the most
important thing in this task: both the metrics themselves
and the ground truth values are not very reliable, as it is
difficult to check whether it is a field boundary at a given
point or it is another visually similar structure. We see that
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this approach is applicable to the construction of agricultural
monitoring systems and the appropriate optimization for a
particular application scenario. In the case of a larger dataset,
there are no obstacles to obtain good results.

IV. CONCLUSION

The paper considers the problem of determining the location
of agricultural parcels using multispectral satellite images. The
input images contain visible range imagery, NDVI vegetation
index maps, or both. The output ground truth annotation
contains parcels, boundaries, or both.

The results demonstrated the applicability of the U-Net
network architecture for this task with at least 0.7 AUC-ROC
metric value for the parcels and boundaries. The comparison of
different variants of the training task setting showed that using
vegetation index maps may be useful in this task. However,
in the absence of infrared images using only the image in the
visible range shows the comparable result. Multiclass training
did not show any advantages.

In general, the obtained results show the perspective of U-
Net architecture neural networks application for solving the
tasks of large-scale automated agricultural monitoring using
freely available satellite data of medium spatial resolution
(10 m/px in the considered case of Sentinel-2). Further de-
velopment of this work can be the construction of more
relevant metrics (and, accordingly, loss functions) for the task,
using more multispectral information and historical images of
the same parcels to improve the accuracy and relevance of
recognition results.
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