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Abstract—We adapt parameterized multidimensional signal 

interpolators for hierarchical compression methods and 

interpolation compression methods based on the coding of 

quantized post-interpolation residues. The considered 

interpolators automatically select the most appropriate 

interpolating function at each point of the signal using a 

parameterized decision rule. We propose a set of interpolation 

functions for these compression methods. We select the 

optimization criterion for the proposed interpolator. The 

optimization criterion is based on minimization the entropy of 

the quantized post-interpolation residues. We solve the 

optimization problem of the adaptive parameterized 

interpolator according to this criterion. We perform 

computational experiments to study the proposed interpolators 

in natural multidimensional signals. The experimental results 

confirm that the use of the adaptive interpolators can 

significantly increase the effectiveness of the mentioned methods 

of multidimensional signals compression.  

Keywords—multidimensional signal, heterogeneous signals, 

adaptive interpolation, decision rule, interpolation error 

I. INTRODUCTION 

A large number of signal compression algorithms are 
known [1-10]: methods based on wavelet transform [2] 
(including JPEG-2000 [3]), fractal methods [4], DOP methods 
(including JPEG [5 ] based on DCT [6]), etc. This work deals 
with interpolation methods [7-8] and hierarchical methods [9-
10] of multidimensional signals compression. 

Interpolation compression methods [7-8], as their name 
implies, are based on the interpolation of signal samples from 
other (reference) samples of the same signal and the 
subsequent efficient coding [11-12] of post-interpolation 
residues. 

Hierarchical compression methods [9-10] are based on a 
hierarchical (pyramidal) signal representation, which allows 
us to interpolate more down-sampled levels of the signal 
samples “pyramid” from less down-sampled levels. Then we 
encode for the errors of this interpolation. 

The most important step in the last two compression 
methods is the interpolation algorithm. One of the most 
promising interpolators is the adaptive algorithm [13-14], 
which selects an interpolating function at each signal point 
using a parameterized decision rule. In this paper, we perform 
the adaptation of such algorithm for hierarchical methods and 
interpolation methods of multidimensional signals 
compression. 

II. ADAPTATION OF THE PARAMETRIZED ALGORITHM 

FOR INTERPOLATION COMPRESSION METHODS 

A. Adaptive interpolator of multidimensional signal 

We interpolate a multidimensional signal sample ( )x n  

based on reference samples   k
nx . We select an 

interpolating function  
   k

i

U nx  for each sample with 

coordinates n . We select the function
 i

U  for each sample 

using the parameterized rule P, depending on the vector 

parameter t : 

  
 

        , , ,
i

k
u n fn U x ti P n   

where  u n  is the interpolating value, t is the vector of 

parameters,  f n  is the vector of local features. We calculate 

these local features based on the same reference samples

  k
nx . 

B. Interpolation compression methods 

Interpolation compression methods work as follows. We 

select a reference samples set   k
nx  from the set  ( )x n  of 

all signal samples. We interpolate the remaining 
(intermediate) samples of the signal based on the reference 
samples: 

        
k

Uu n x n  

Then we calculate the difference signal (post-interpolation 
residuals): 

      n x n u n    

Then we quantize the difference signal using 

a quantization function Q : 
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     q n Q n  

Then we encode the post-interpolation residues  q n  with 

some statistical encoding algorithm and put the encoded signal 
into the communication channel or archive file. 

To adapt the parameterized interpolator to interpolation 
methods of signal compression, it is necessary to specify the 
following elements of this interpolator: 

1) optimization criterion; 

2) local features and decision rule; 

3) optimization procedure for the parametrized interpolator; 

4) interpolating functions. 

C. Adaptive interpolator optimization criterion for 

compression 

The criteria [11-12] based on the interpolation error 
minimization are usually used to optimize the interpolators. 
However, this work deals with a criterion more suitable for the 
compression problem. This criterion is based on minimization 
of the compressed data size. We use the unnormalized entropy 
of the quantized post-interpolation residuals as an estimate of 
this compressed data size: 

     
1

1

ln m in

Q

q q
t

q Q

H t N t N t



  

      m a x
n

Q q n  

where  q
N t  is the number of quantized post-

interpolation residues equal to q for a fixed parameter t  of the 

adaptive interpolator. 

D. Decision rule and local features 

Averaging (smoothing) interpolator [7-8] is the simplest 
for interpolation compression: 

    
1

1
  

N

k

k

xu n n
N 

   

where N is the number of reference samples. 

This interpolator is quite precise inside smoothly changing 
areas of the signal, since averaging filters noise a little. 
However, the error of the averaging interpolator almost 
always increases substantially at the boundaries of these 
smooth regions. However, the error of the averaging 
interpolator usually increases substantially at the boundaries 
of these smooth areas. 

To interpolate these boundaries, nonlinear algorithms 
implementing interpolation “along” the boundaries are more 
efficient. For example, the Graham interpolator [12] works 
exactly in this way in the two-dimensional case. There are also 
modifications of this interpolator to the case of more than two 
directions [8]. However, nonlinear interpolators lose accuracy 
within smoothly varying areas of the signal. 

We suggest using the adaptive interpolator described 
above for interpolation compression methods. This algorithm 
combines the advantages of averaging and non-linear 
approaches to interpolation. The adaptive interpolator can 

automatically select the “averaging” or “nonlinear” 
interpolating function depending on the direction and the 
severity of the boundary of smoothly changing regions in the 
neighborhood of each processed sample. 

Denote by Nc the number of possible directions of the 

regions boundaries. Let   : 0
i c

n i N    be the set of 

differences      i
n n nx x

 
    between the reference 

samples    ,x xn n
 

 in the considered directions. This set 

of differences  i
n  describes the severity (and the fact of 

presence) of the boundary of the regions in the neighborhood 

of the current reference with coordinates n . 

We detect the boundary and calculate its direction by 
means of a decision rule depending on the vector  

parameter t . This parameter consists of several threshold 

values ti. The decision rule compares the differences  i
n  

with these thresholds. If there is no border at a current signal 
point, then the decision rule selects the “averaging” 
interpolating formula of the form (6): 

  
 

     
1

1 1
, , 0 ,

N

k i i c

k

u xn U n n if t i N
N





    

If there is a boundary at the current point, then the decision 

rule selects the average value  x n  of the nearest reference 

samples located “along” the boundary: 

  
 

     
2

, , 0 ,
j i i c

u n U n x n if t i N     

Therefore, we describe decision rule (1) by expressions 
(8-9). We need to solve the optimization problem (5) in the 

parametric space of ti of dimension
c

N  to calculate the 

parameters  ti of this decision rule. 

The compression task often imposes restrictions on 
computing resources, and the complexity of the interpolator 

optimization in the
c

N -dimensional parametric space of the 

decision rule can become a source of problems even in the 
case of a three-dimensional or even two-dimensional signal. 

We propose using a reduced-dimensional parametric 
space for the interpolator optimization as part of interpolation 
compression methods. In this case, the decision rule instead of 

differences
i

  uses relies on their ratio. We describe these 

relations by a variational series [8] 
 

 
 

 
 

 
 

 
10 1 2

. .
c

N

n n n n   


    , in which
 i

  

are renumbered differences
i

 . 

If there are no boundaries of smooth regions in the 
neighborhood of the current signal point, then all difference

i
 s have similar values. If the boundary is present, then the 

difference corresponding to the direction of this boundary is 
minimal. Besides, this difference is at the initial (zero) 

position
 0

  of the variational series.  
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The remaining differences have similar meanings. The 

difference
 0

  in this case differs significantly from the other 

differences    11

..
c

N

 


. Therefore, we can calculate the 

feature  f n  of the severity and direction of the boundary at 

the current signal point by means of the rank filter: 

  
 

 
 

 
1 0

f n n n    

We use this characteristic as the feature of the decision 
rule (1) to select the interpolating function at each signal point. 

If the feature  f n  is less than the threshold t, then there 

is no boundary at this signal point, i.e. you can use the 
"averaging" formula (8). Otherwise, we apply interpolation 
(9) “along” the boundary corresponding to the minimum 

difference
i

 : 

 

 
     

 
        

1

1

2

,

, a rg m in ,

N

k

k

j i
i

U n n f n t

u n

U n x n f t

x

n j n




 

 

   





Thus, the described adaptive interpolator depends on the 
single scalar parameter t, and the problem of its optimization 
becomes one-dimensional. 

E. Optimization of adaptive interpolator 

We first fill out the three-dimensional auxiliary array
( )

,

i

f q 
N  of number of quantized post-interpolation residues (4) 

to optimize entropy (5): 

    

    

( )

,
: , ,

1, 2 , 0 , , m a x

i

f q i

n

n f n f q n q

i f Q Q q Q Q q n

 
   

       

N

 

where 

    
 

  
i

i
nq Q x Un n  

Each element
( )

,

i

f q 
N  contains the number of quantized 

post-interpolation residues  i
q n  (12), equal q  , with the 

value of feature (11), equal f  . 

We use the array
( )

,

i

f q
N  in the recursive procedure for 

calculating the number  q
N t  of quantized post-interpolation 

residues (4) equal to q for all threshold values  t: 

      
1

(1) (1 ) ( 2 )

, , ,

0

0 ; 1

M

q f q q q t q t q

f

N N t N t





     N N N 

The number of quantized post-interpolation residues

 q
N t  allows us to calculate the entropy  H t  of quantized 

post-interpolation residues for all thresholds t 

      

1

1

ln

Q

q q

q Q

H t N t N t



  

      m a x
n

Q q n 

The minimum value index  a rg m in
t

t H t


  in the short 

array  H t  is the solution to the optimization problem (5). 

F. Interpolation functions of the adaptive interpolator 

during compression 

We write the interpolating functions for the interpolation 
method of compression D-dimensional signal

   0 1
, ...,

D
x xn n n


 . Let the samples  2x n  with even 

numbers be the reference. First, we specify the differences 

   1 ,2 0 ,
i

i Dn   between the reference samples: 

      

     

0 , 0 1 , 1

0 , 0 1 ,

1

1
,

2 1 2 , .. . , 2

2 1 , .. ,. 2, 2 1 0

i

D

D

i D i D

i i D

n x n n

x in n

  

 
















  

    

 

Here, the matrix
,i d

  defines all possible offsets of the 

reference samples relative to the interpolated sample, 

satisfying the condition 1

,
2

D

i d

d




 . 

Next, we write the first interpolating function, averaging 
the neighborhood reference samples: 



 
 

    

    

1

1

0 , 0 1 ,

1

2 1

1

0

2 1

1

0 , 0 1 , 11

0

2 1

2 , .. . , 2

2 1 , .. . , 2 1

1

2

1

2

D

D

i D i

d

D

i D i D

D

D

d

U n

x n n

x n n

 

 

















 

 



 

 



 







Then we write the averaging in the directions: 

 
      

      

0 , 0 1 , 1

0 , 0 1 , 1

2

1

2 1 2 , ... , 2

2 1 , ... , 1

1

2

, 0 , 22

i D i D

i D i D

i

D

u

i

n x n n

x n n

 

 







 



 


  

   



Then we can write the adaptive interpolator (12), which 
selects one of the described interpolating functions at each 
point of the signal: 

  

 
   

 
     

1

2

,

, a rg m in ,
j i

i

U n f n t

u n

u n j f n t

 


 

 


 

III. ADAPTATION OF THE PARAMETERIZED INTERPOLATOR 

FOR HIERARCHICAL COMPRESSION METHODS 

Hierarchical compression methods use a redundant 
pyramidal representation of a multidimensional signal

  x nX  in the form of a set of L scale levels
l

X :  
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
     

     

1

0

1 1

1

, : ,

2 , 2 \ 2 , 0

L

l l l l

l

L l l

L l

n n n I

I n I n n l L





 



   

   

X X X X X

 

Here, each set Il contains the coordinates of the samples of 

the corresponding scale level
l

X . 

We compress the scale levels
l

X  one by one, in order

1 2 1 0
, , ..., ,

L L 
X X X X . We interpolate samples of each scale 

level
l

X , based on samples of less down-sampled scale levels

l m
X . Then we quantize and encode the interpolation errors.  

We use samples of all scale levels
l m

X  to interpolate 

samples of each scale level
l

X , since scale levels
l m

X  

together compose the regular D-dimensional grid of signal 

samples with the step
1

2
l 

:  


 

     
1

1 1

1

1

2

L

l l

l

m

x n x n



 





  X  

Therefore, the hierarchical compression of each scale level 
is reduced to the interpolation compression of the signal by the 
signal described in the previous section. Thus, we optimize the 
decision rule twice for each scale level with hierarchical 
compression.  

Thus, we reduce the hierarchical compression of each 

scale level
l

X  to the interpolation compression of the signal

 
 

l

x n  by the signal
 

 
 

 
1

2
l l

x n x n


  described in the 

previous section. Therefore, we optimize the decision rule 
twice for each scale level during hierarchical compression. 

IV. EXPERIMENTAL STUDY OF THE ADAPTIVE INTERPOLATOR 

DURING COMPRESSION 

We performed experimental studies of the adaptive 
interpolator as part of the hierarchical method and 
interpolation method of multidimensional signals 
compression.  

We used a uniform scale with step  2 1   to quantize (4) 

the post-interpolation residues  n  in both of these 

compression methods. We describe the quantizer Q  and the 

dequantizer 1
Q

  when using this scale as follows:  


  

 
  

      
1

i
2 1

2 1

n t

n

Q s

Q

n ig n n

n q n



 










 














 

 

Here   sets the controlled maximum error

   m a x
n

x n y n    between the original  x n  and 

decompressed  y n  signals. 

 
Fig. 1. Some frames of the test video signal "highway". 

 

 

 

 

 

Fig. 2. The gain of the adaptive interpolator from the averaging interpolator 

within the hierarchical compression method (solid line) and the interpolation 
compression method (dashed line) in the signals: “escalator”, “beach”, 

“forest fire”, “building collapse”, “highway”. 
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Fig. 3. The gain of the adaptive interpolator from the averaging interpolator 

within the hierarchical compression method (solid line) and the interpolation 

compression method (dashed line) in the signals: “fountain”, “marathon”, 
“railway”, “clouds”, “falling trees”. 

We used natural test video signals from the dataset 
“Dynamic scenes data set” [15] (see the example in Fig. 1). 

We calculated the relative gain  1 1 0 0 %K K KD     in the 

compression coefficient, achieved by replacing the averaging 

interpolator (6) with the adaptive interpolator (here K , K  are 
the compression coefficients with averaging or adaptive 
interpolator, respectively). 

We show the dependence of the gain KD  on the 
maximum error   for several test signals in Fig. 2-3. The 

graphs confirm that the adaptive interpolator can significantly 
(up to 17%) increase the efficiency of hierarchical methods 
and interpolation methods of multidimensional signals 
compression. 

V. CONCLUSION 

We have adapted parameterized algorithms for 
interpolating multidimensional signals for hierarchical 
compression methods and interpolation compression methods 
based on the coding of quantized post-interpolation residues. 

We proposed interpolation functions based on 
interpolation along the most preferred directions. We have 
chosen the criterion for decision rule optimization based on 
minimizing the entropy of the quantized post-interpolation 
residues. We have solved the problem of optimizing the 
decision rule by this criterion. 

We performed computational experiments in natural 
multidimensional signals. These experiments confirmed the 
significant increase in the effectiveness of the considered 
compression methods using parameterized interpolators. 
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