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Abstract—In this paper, parameterized algorithms of 

multidimensional signal interpolation are adapted for use as part 

of differential compression methods. These methods are based on 

the efficient coding of quantized differences between the initial 

and interpolated signal samples during sequential signal 

scanning. The proposed interpolators are based on the 

classification of signal samples and the use of various 

interpolation formulas within the classes. The sample classifier 

and its training procedure and a set of interpolating functions for 

the compression method are described. The results of 

experimental research on real multidimensional signals confirm 

that the use of an adapted parameterized interpolator leads to an 

increase in the efficiency of the differential compression method. 
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I. INTRODUCTION 

Algorithms for interpolation of multidimensional signals 
can be divided into two groups [1]: adaptive algorithms and 
non-adaptive ones. The most common examples of non-
adaptive algorithms have relatively low computational 
complexity due to the lack of use of local signal features. They 
are: rectangular interpolation from the nearest (or neighboring) 
sample, as well as bilinear and bicubic interpolation [2]. 

Adaptive algorithms, on the contrary, take into account the 
features of the local neighborhood of each sample, which 
usually allows improving accuracy. Examples of such 
algorithms include DCCI [3], NEDI [4-5], super-resolution 
algorithms based on neural networks [6-7], as well as many 
other algorithms [8-10]. In this paper, we consider adaptive 
parameterized interpolation algorithms [11] based on the 
classification of signal samples using local features and the use 
of a simple interpolating formula for each sample class. 

The goal of this research is to adapt the parametrized 
interpolators for differential compression methods [2, 8] based 
on interpolation of signal samples during sequential sweep and 
compression of interpolation errors. 

II. DIFFERENTIAL COMPRESSION OF MULTIDIMENSIONAL 

SIGNALS 

During differential compression, [2, 8] samples of a 

multidimensional signal ( )f x are processed sequentially. Each 

sample ( )f x is interpolated using the function R based on the 

nearest processed (compressed and decompressed) 

samples  ( ) :g x     , after which the difference 

signal  v x  is calculated, which is then quantized by the 

function W to calculate the quantized difference signal  w x : 
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where  r x  – is the interpolated signal,   – is the array of 

reference sample displacements during interpolation. For 
quantization in this work, we used a quantizer with absolute 
error eabs control: 
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where function int(...) calculates the integer part of a value, and 
sign(...) calculates its sign. 

Then, restoration (decompression) of the current sample is 
performed, i.e. calculation of the reference value, which will is 
calculated during decompression: 

      xg r xwx    

The described feedback (interpolation not according to the 
initial, but according to the decompressed values of the 
samples) is necessary to ensure the identity of the interpolator 
at the stages of compression and decompression (the source 
signal is no longer available during decompression). The 

quantized difference signal
 w x

 is processed by a statistical 
encoder to reduce the amount of data and is sent to a 
communication channel or archive data storage. 
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III. ADAPTATION OF THE PARAMETERIZED ALGORITHM FOR 

DIFFERENTIAL COMPRESSION 

A. Parameterized interpolation algorithm for differential 
compression 

Before interpolating, we will classify the signal samples 

based on a local feature ( )x :  

     ,) , ( c xx C    

where  c x  – is the number of sample’s class, a sample has 

coordinates x , ( )x  – is the local feature,  ( ) ,xC    – 

classifier,   – classifier parameter, which is calculated for 

each signal anew by the training procedure based on the 
optimization of some criterion. 

Each class with a number  c x  has its own interpolation 

function
c

R , the interpolation procedure can be expressed in 

the following way: 
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During classifier  C x  training procedure decompressed 

signal  g x is used both as a training set and a test set.  

To adapt a parametrized interpolator to differential 
compression, the following elements of the interpolation 
algorithm need to be specified: the classifier of samples, the 
optimization criterion of the classifier, the optimization 
procedure for the classifier, a set of interpolating functions. 

B. Sample classifier for parameterized interpolation. 

We will classify the signal samples based on the severity of 
the directed artifacts in the vicinity of the current sample, 
which we will calculate using a set of partial derivative 

estimates 
    , 0 ,

m
g x m M 

 along different directions (M – 
is the number of directions), which is calculated using the basic 

samples  ( ) :g x      and neighboring processed samples 

(these estimates can be easily calculated based on discrete 
differences of already processed samples). 

Let us sort the derivatives  m
g x  in the ascending order 

and rename them, creating the variation series 
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. . .

M
g x g x g x     . We assume that there is a 

directed artifact in the vicinity, if the least derivative  1
g x  is 

significantly different from others. We will estimate the 

significance via local feature ( )x ,which can be calculated by 

the following three rank filters: 
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where E  performs averaging: 
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Classifier  ( ) ,C x   is based on a thresholding 

function    ( , ( )1)C n xix B     and depends on 

parameter  . The function chooses one of the interpolation 

functions depending on the presence of artifact inside the 
vicinity. 

C. Classifier optimization criterion 

As the optimization criterion, we have decided to use an 

entropy minimum criterion  h   of the quantized differential 

signal  w x : 
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where  ,w w  is the number of values of quantized 

differential signal  w x  which are equal w . Parameter   

determines the choice of interpolating functions at each sample 
of the signal, thereby influencing the difference signal. The 
choice of this criterion was made due to the fact that the 
entropy well approximates the size of the compressed data; this 
makes the criterion the most suitable for the compression 
problem. 

To solve the optimization task (7), the statistics  , ,W c w  

of quantized differential signal  w x  values for every 

class  c x  and every feature value  x is obtained: 
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The number of  ,w w  values for the minimum of  , 

equal 
m in

 , can be calculated as follows:  
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since in this case the same interpolation function is used for all 
samples. 

Values  ,w w  for other  values are calculated as 

follows: 
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After the calculation of the number of  ,w w  values, 

entropy  h   is calculated via expression (7) for every 

parameter  . Since there are not many of these values, brute 

forcing   among  h   values will give the result of 

optimization task.  

D. Interpolation functions of the parameterized interpolator. 

Classifier (4) based on the feature  x  allows determining 

at each point whether an artifact exists in the vicinity. If there 
is no artifacts, then averaging over the nearest reference 
samples interpolation is used: 
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If there is an artifact, then as the interpolated 

value   2
( ) :g xR      the sample along the artifact 

direction is. The direction is defined by the minimum value of 

derivative  m
g x . The general interpolation function (5) will 

look as follows: 
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We specify the described interpolation functions for an 
important special case when the signal dimension is three. The 
displacements of the reference samples in this case can be 
written as follows: 
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Next, we will use the auxiliary difference of the processed 
samples: 
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on the basis of which it is possible to write abnormal estimates 
of partial derivatives in directions 
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Fig. 1 Several contrasted signal channels of the test set. 

 

Fig. 3 Dependence of normalized MSE on compression ratio. 

 

Fig. 2 Gain in compression ratio of the proposed interpolator over the 
averaging one. 
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Then the general interpolation formula (12) takes the 
following form:  
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IV. AN EXPERIMENTAL STUDY  
OF A PARAMETRIZED INTERPOLATOR  

AS PART OF A DIFFERENTIAL COMPRESSION METHOD 

In this work, the proposed parametrized interpolator was 
examined on real multidimensional signals of the UAVSAR 
hyperspectral array [12] (see the example in Fig. 1) as part of 
the differential compression method. The compression 
coefficient K was obtained using a parameterized interpolator 

(with features 
1 2 3
, ,   ), compression coefficient K   was 

obtained with the use of averaging interpolator. Their 

ratio /K K K   shows how the proposed method 

outperforms the averaging one. The dependence of the 
compression coefficient on the absolute error 

   m a x
a b s

x xf g    and squared error 
2

 (normalized by 

signal variance) were obtained.  
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Fig. 4 Dependence of the compression ratio on the absolute error. 

 

 

Fig. 5 Averaged time of processing of a test signal. 

 

As can be seen from the dependencies shown in figures.2-5, 
the use of the proposed interpolator gives a significant gain in 
compression ratio. Best results were obtained for the feature 

2
 , however its usage is significantly time consuming. In 

general, obtained results show that proposed algorithm 
outperforms averaging one.  

V. CONCLUSIONS 

In this paper, the parametrized algorithms for interpolation 
of multidimensional signals were modified and adapted for use 
as part of differential compression methods based on the 
efficient coding of quantized differences between the initial 
and interpolating values of the samples during sequential signal 
sweep. The studied interpolators are based on the classification 
of signal samples and the use of various interpolation formulas 
within the classes. The classifier of readings and the procedure 
for its training are described, as well as a set of interpolating 
functions for the differential compression under consideration. 
Computational experiments on real multidimensional signals 
have confirmed that the use of an adapted parameterized 
interpolator has led to an increase in the efficiency of the 
differential compression method. 

 

 

 

 

ACKNOWLEDGMENT 

The reported study was funded by RFBR, project number 
18-01-00667 (in parts III.A, III.B, III.C, III.D, IV, V), 18-07-
01312 (in part II) and by the Russian Federation Ministry of 
Science and Higher Education within a state contract with the 
"Crystallography and Photonics" Research Center of the RAS 
under agreement 007-ГЗ/Ч3363/26 (in part I). 

REFERENCES 

[1]  S.E. Vaganov and S.I. Khashin, “Comparison of Doubling the Size of 
Image Algorithms,” Modeling and Analysis of Information Systems, 
vol. 23, no. 4, pp. 389-400, 2016.  

[2] V.A. Soifer, “Computer image processing, Part II: Methods and 
algorithms,” Saarbrücken, Germany: VDM Verlag, 2010. 

[3] D. Zhou, X. Shen and W. Dong, “Image zooming using directional 
cubic convolution interpolation,” IET Image Processing, vol. 6, no. 6, 
pp. 627-634, 2012. DOI: 10.1049/iet-ipr.2011.0534. 

[4] X. Li and M.T. Orchard, “New Edge-Directed Interpolation,” IEEE 
Transactions on Image Processing, vol. 10, no. 10, pp. 1521-1527, 2001.  

[5] M.V. Gashnikov, “Interpolation based on context modeling for 
hierarchical compression of multidimensional signals,” Computer 
Optics, vol.42, no. 3, pp. 468-475, 2018. DOI: 10.18287/2412- 6179-
2018-42-3-468-475. 

[6] C. Dong, C.C. Loy, K. He and X. Tang, “Image Super-Resolution Using 
Deep Convolutional Networks,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 38, no. 2, pp. 295-307, 2016.  

[7] S. Vaganov, “Adaptive ANN-based method of constructing an 
interpolation formula for doubling the image size,” Computer Optics, 
vol. 43, no. 4, pp. 627-631, 2019. DOI: 10.18287/2412-6179-2019- 43-
4-627-631. 

[8] R.C. Gonzalez and R.E. Woods, “Digital image processing,” Prentice 
Hall, 2007, 976 p. 

[9] M.V. Gashnikov, “Multidimensional signal interpolation based on 
parametric space dimension reduction,” 7th International Symposium on 
Digital Forensics and Security (ISDFS), vol. 8757491, 2019. 

[10] Y.C. Eldar and G. Kutyniok “Compressed Sensing: Theory and 
Applications and signal processing,” Cambridge University Press, 2012, 
p. 558. 

[11] M.V. Gashnikov, “Optimization of the multidimensional signal 
interpolator in a lower dimensional space,” Computer Optics, vol. 43, 
no. 4, pp. 653-660, 2019. DOI: 10.18287/2412-6179-2019-43-4- 653-
660. 

[12] A. Najafi, M.Hasanlou and V. Akbari “Land cover change detection in 
polarimetric SAR data using Algebra, similarity, and distance based 
methods,” The International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, vol. XLII-4/W4, 2017. DOI: 
10.5194/isprs-archives-XLII-4-W4-195-2017. 

 

 

 

 


