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Abstract—The known feature of hyperspectral images is a 

high spectral resolution, which allows us to identify materials 

and classify objects in images with high accuracy. However 

hyperspectral images contain substantial redundancy, which 

can be eliminated with the aid of dimensionality reduction 

techniques. In this paper, we propose and study several 

dimensionality reduction techniques based on the pretraining 

the encoder-decoder neural network with the results of the 

nonlinear mapping and principal component analysis 

techniques. The experiments performed on an open dataset 

show that the proposed techniques both provide the 

discriminative low-dimensional features and allow us to 

reconstruct source hyperspectral data with little error. 
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I. INTRODUCTION 

Hyperspectral images are widely used nowadays in 
different fields such as agriculture, medicine, biology, 
chemistry, and so on. The known feature of hyperspectral 
images is high spectral resolution, which allows us to 
identify materials and classify depicted images with high 
accuracy. 

However hyperspectral images contain substantial 
redundancy, which can be eliminated with the aid of 
dimensionality reduction techniques. The images obtained 
after the dimensionality reduction stage can be processed 
efficiently as much less data volume is involved in 
processing. It is worth noting that dimensionality reduction 
techniques are often used in different problems of image 
analysis (see [1-3], for example). The key requirement to the 
dimensionality reduction procedures is the possibility to 
preserve the quality of the solution of applied problems that 
is classification, segmentation, material detection, and so on. 

The most commonly used techniques for the 
dimensionality reduction of hyperspectral data are linear 
techniques such as Principal Component Analysis (PCA). 
While a number of general-purpose nonlinear  
dimensionality reduction procedures exist [4], their use in 
hyperspectral image analysis is limited as many of them do 
not provide the ability to restore source hyperspectral data as 
such procedures provide only one-way data mapping.  

In the last years, neural network approaches become 
more and popular. In particular, autoencoder neural networks 
[5] were used for the dimensionality reduction of 
hyperspectral images. Such neural networks perform both 
nonlinear dimensionality reduction and provide the inverse 
mapping, which allows us to restore the source hyperspectral 
data up to some reconstruction error. 

Recently, it was shown [6] that the autoencoder network 
can be pretrained using principal component analysis 
technique, and its use for the dimensionality reduction 

allowed to outperform the PCA technique both in terms of 
the reconstruction error and classification accuracy. 

However, it was also shown [7,8] that the nonlinear 

mapping technique [9] have advantages over the PCA in 

terms of classification and segmentation quality of 

hyperspectral images. For this reason, in this paper, we 

study the possibility to train the autoencoder–like 

architecture to capture the nonlinear mapping. In particular, 

we split the autoencoder into encoder and decoder and train 

both parts separately using the results of nonlinear mapping 

and investigate the effect of the subsequent fine-tuning of 

the whole network.  

The structure of the paper is as follows. In the next 
Section II, we give necessary theoretical information on the 
neural network architecture and the nonlinear mapping 
algorithm. In Section III we describe the training procedures 
used in the experimental study and describe the results of 
experiments. The conclusions and the list of references are 
given at the end of the paper.  

II. METHOD 

A. Autoencoder Neural Network 

The autoencoder neural network proposed in [5] was 
earlier referred to as the autoassociative neural network. It 
consists of two consecutive parts called the encoder and 
decoder. 

The encoder part takes a multidimensional vector x ϵ RM 
as input and produces corresponding low-dimensional 
representations y ϵ Rm so that m<M. The encoder consists of 
at least two fully – connected layers. The first layer contains 
some number of neurons (defined by the parameters of the 
neural network architecture) connected to all the components 
of an input vector. The last layer of the encoder contains the 
number of neurons equal to the desired dimensionality of the 
reduced space. 

The decoder usually has the mirror-reflected architecture. 
It has the same number of layers with the same number of 
neurons, but this is not the necessary requirement. Anyway, 
the input layer of the decoder takes the reduced 
representation y ϵ Rm from the output of the encoder and 

restores the multidimensional vectors x
~ ϵ RM. So the output 

layer of the decoder has the number of neurons equal to the 
input dimensionality M. The number of hidden layers and 
neurons is defined by the parameters of the neural network 
architecture. 

As the number of neurons in the output layer of the 
encoder is less than the number of neurons in the input and 
hidden layers, this layer is often referred to as a bottleneck 
layer, and the whole network architecture is often referred to 
as a bottleneck architecture. 
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The autoencoder architecture is usually trained in self-
learning mode by applying the same multidimensional 
vectors x ϵ RM to both input and output layers of the 
autoencoder. The training process itself is based on the 
minimization of the following cast function: 
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where N is the number of samples, and x ϵ RM, x
~  ϵ RM are 

inputs and outputs of the network. After training the encoder 
can be used to perform the dimensionality reduction of the 
source data (direct mapping), and decoder can be used to 
restore the source data by its reduced representation (inverse 
mapping). 

In this paper, we study, if the encoder and decoder parts 
can be trained separately to force the neural network to 
perform the mapping with the desired properties. It was 
shown earlier that the separate pre-training of encoder and 
decoder with the PCA results helped to perform the training 
more efficiently compared to the standard training. 

In particular, the approach proposed in [6] consists of the 
following steps: perform the PCA for the input dataset; pre-
train the encoder to produce the PCA results for the input 
data; pre-train the decoder to produce the input data for the 
encoded data; fine-tune the whole network according to the 
standard scheme. 

In this paper, we follow the similar scheme but use the 
results of the nonlinear mapping algorithm instead of the 
PCA, and perform the fine-tuning optionally to study if such 
an approach can be more efficient than the standard PCA, 
nonlinear mapping or the proposed recently autoencoder 
pretrained with the PCA [6]. 

B. Nonlinear Mapping 

The nonlinear mapping is a numerical procedure that 
performs the mapping (nonfunctional) of data into low-
dimensional space so that the data structure is preserved (see 
[8] for example). This structure is defined in nonlinear 
mapping by all the pairwise distances between the points in 
the dataset. The Euclidean distance d() is usually used to 
measure the distances.  

As the pairwise distances cannot be preserved exactly in 
a common case, the so-called data mapping error is 
introduced: 
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Here N is the number of data points, d(xi,xj) is the distance 
between points xi and xj in the multidimensional space, 
d(yi,yj) is the distance between the corresponding points yi, yj 

in the reduced space, µ and  are some constants. Usually, µ 
is the inversion of the sum of square distances between all 
the possible pairs of data points in multidimensional space, 

and ij are equal to one.  

The minimization of the data mapping error is usually 
performed using the gradient descent technique. The 
coordinates of data points yi ϵ Rm are the tunable parameters.  

In this paper, we use the stochastic gradient descent 
based on mini-batches to minimize the data mapping error. 
The overall algorithm for dimensionality reduction using the 

nonlinear mapping consists of the initialization of the 
coordinates yi with the results of the principal component 
analysis with the subsequent refinement of yi using the 
stochastic gradient descent. The optimization process 
(refinement) stops when the coordinates of the data points yi 
in the reduced space become stable. 

C. The methods used in the study 

As it was outlined in the introduction, in this paper, we 
study several variants of training the autoencoder-like 
encoder-decoder network. In particular, we consider the 
following techniques: 

- The autoencoder network pretrained with the results of 
the PCA technique (AE-PCA), as it is described in [6]; 

- The neural network with encoder and decoder (ED-
NLM) trained separately using the results of the nonlinear 
mapping technique; 

- The same autoencoder network pretrained with the 
results of the nonlinear mapping technique and fine-tuned 
using the standard approach (AE-NLM). 

III.  EXPERIMENTS 

In this section, we describe the results of the experiments, 
which were performed using the Indian Pines dataset. This 
dataset was acquired using the AVIRIS hyperspectral sensor. 
This dataset contains 145 x 145 image pixels and 224 
spectral components [10]. Due to the high noise and water 
absorption in the source image, we used the version 
containing 204 spectral channels. 

In all the described experiments, for the implementation 
of the neural networks, we used the Keras framework and 
Python language. The experiments were carried out on 
GeForce GTX 1070 ti. 

For each considered neural network technique, we varied 
the number of hidden layers in the encoder and decoder and 
performed experiments for one and two hidden layers that 
correspond to four and six layers in the corresponding 
autoencoder networks.  

The number of neurons in the input layer of the encoder 
and the output layer of the decoder was defined by the 
dimensionality of the input space that is the number of 
channels in the hyperspectral image. The number of neurons 
in the bottleneck layer varied from 1 to 10 according to the 
dimensionality of the reduced space. We also varied the 
number of neurons in the hidden layers. In particular, we 
used 64, 128, and 256 neurons in hidden layers. 

According to the recommendations given in [6], we used 
ReLU activation functions for hidden layers and linear 
activations in the output layers of the encoder and decoder. 
Analogously, we used Adam optimizer [11] with the default 
parameters. The batch size was set to 16, however, we 
suppose that a bigger batch size could also be used.  

To measure the effectiveness of each particular approach, 
we estimated both the reconstruction error as it is defined in 
(1) and the classification accuracy using the reduced 
representation. The latter indicator plays an important role in 
hyperspectral image analysis problems, for example, in 
vegetation type recognition [12]. 

For the latter indicator, we used the overall accuracy of 
the one nearest neighbor (1-NN) classifier. The accuracy 
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itself was measured as a fraction of correctly classified image 
pixels. To measure the accuracy, at first, we performed 
dimensionality reduction using one of the studied techniques 
for all the pixels in the considered image. Then we split all 
the ground truth pixels into training and testing sets in the 
proportion 60/40. After that, we trained the classifier using 
the training set and estimated its accuracy using the test one. 

In our first experiment, we compared different techniques 
described in Subsection II.C and different architectures from 
the viewpoint of the reconstruction error (1). The results of 
this experiment are shown in Fig. 1. In particular, we pre-
trained the encoder and decoder of the AE-PCA network for 
50 iterations, fine-tuned the entire network for 50 iterations, 
and then measures the reconstruction quality.  

 
(a) 

 
(b) 

 
(c) 

Fig. 1. The reconstruction error for different techniques and network 

architectures (a-c). 

 For the AE-NLM network, we trained the network with 
the same strategy, but used the NLM results instead of the 
PCA results at the pretraining stage. For the ED-NLM 
network, we trained separately encoder and decoder for 100 
epochs. After the training, we measured the error (1) as the 

quality indicator. The experiment was carried out for a 
different number of layers and neurons. 

As can be seen in the figure, the reconstruction error 
decreases with the growth of the dimensionality m of the 
reduced space defined by the number of neurons in the 
bottleneck layer, which is an expected result. 

While we cannot highlight any winner technique in this 
experiment, we should note, that the AE-NLM technique 
often shows better results. It means that the nonlinear 
mapping result, which was used for training, provide the 
ability to restore the source data with quite a good quality. 
This also means that the decoder trained on the NLM data 
can be used as an inverse mapping for the NLM. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. The classification accuracy for different techniques and network 

architectures (a-c). 

In our second experiment, we compared the considered 
techniques from the viewpoint of the classification accuracy. 
The results of this experiment are shown in Fig. 2. In this 
figure, we added the results for the classical linear (PCA) and 
nonlinear (NLM) dimensionality reduction techniques.  
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As can be seen, the proposed techniques provided better 
results than the classical approaches in most cases. Again, it 
is difficult to outline any approach. Nevertheless, we do not 
observe any substantial advantages in the fine-tuning of the 
NLM initialized network over the version with separate 
encoder and decoder. 

IV. CONCLUSION 

In this paper, we studied several dimensionality reduction 
neural network techniques based on autoencoder 
architecture. We compared the proposed techniques from the 
viewpoint of the reconstruction error and the accuracy of the 
per-pixel classification.   

We showed that the proposed techniques outperformed 
the baseline (PCA and NLM) approached in terms of the 
classification accuracy in almost all the considered cases. 
The decoder trained using the results of the NLM can be 
successfully used as an inverse mapping for hyperspectral 
image analysis. 
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