
Copyright © 2020 for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0) 

Some Applications of Binary Lunar Arithmetic 

Van Vinh Dang 

Hochiminh city University of 

Technology 

Hochiminh city, Vietnam 

dangvvinh@hcmut.edu.vn 

Nataliya Dodonova 

Samara National Research University 

Samara, Russia 
ndodonova@bk.ru 

Svetlana Korabelshchikova 

Northern (Arctic) Federal University 

named after M.V. Lomonosov 

Arkhangelsk, Russia 

s.korabelsschikova@narfu.ru 

Mikhail Dodonov 

Samara National Research University 

Samara, Russia 
dodonoff@mail.ru 

 

Abstract—In general, we formulate the problem of 

extracting n-th order roots from a language as follows: for a 

given language A and a given nN it is required to find all the 

languages B, such that A = Bn.  This theoretical problem is 

closely related to the practical task of decoding messages, where 

it is necessary to find a partition of the encoded message into 

elementary codes that correspond to certain characters of the 

original alphabet. We previously found a solution to the 

problem of extracting n-th order roots for languages of a special 

kind, which is containing all the possible words of the length 

from nn1 to nn2 (n1  n2). We reduced the problem under 

consideration to a knapsack problem and solved it by the 

method of software implementation of the algorithms proposed 

in the article. We found out that the number of roots depends on 

the values of n and k, where k is the cardinal number of the set 

{n1, n1+1,..., n2}. We obtained quantitative estimates of the 

number of n-th power roots for different values of n and k. For 

n = 2, the sequence of the number of square roots from the 

language coincid with the sequence published on the website of 

the online encyclopedia of integer sequences http://oeis.org/ 

A191701. In binary lunar arithmetic, this sequence is the 

number of binary numbers x of length k such that x2 has no 

zeros. In the article, we established and theoretically proved the 

correspondence between operations in binary lunar arithmetic 

and in the ring of polynomials with integer coefficients. Based 

on the established correspondence, we developed algorithms 

that allows us to solve both the special problem of finding roots 

from a language and the more general knapsack problem using 

operations in binary lunar arithmetic. We compared the 

software implementation of the proposed algorithm with the 

well-known classical alternative solutions to the knapsack 

problem. Using the discrete Fourier transform, we were able to 

improve the asymptotic complexity of the original algorithm. 

Keywords—dismal arithmetic, binary lunar arithmetic, 

knapsack problem 

I. INTRODUCTION 

American scientists D. Applegate, M. Lebrun, and N. J. 

A. Sloane introduced the concept of “lunar arithmetic” in [1], 

and originally they used the term “dismal arithmetic”, 

subsequently replacing it with a less pessimistic “lunar 

arithmetic”.  

In the so-called lunar arithmetic, we replace the addition 

and multiplication of numbers by the operations of 

calculating the maximum and minimum, respectively. For 

example, 2 + 7 = 7, and 27=2. With multi-digit numbers, the 

addition operation is performed by columns, i.e., a maximum 

is selected in each column. For instance 6179 + 348 = 6379. 

The rule for multiplication of two multi-digit numbers is that 

the first number multiplies every digit of the second number 

and then the results are added together, i.e., we select the 

maximum in each digit (column): 

 

You can learn more about the features of lunar arithmetic 

in [1]. We are most interested in the binary case when 

operations on numbers are performed according to the rules 

formulated above, but the numbers belong to the set {0, 1}. 

In the past, in [2, 3], we considered the problem of 

extracting all the roots from special kind of languages. In 

general, the problem of extracting the n-th root from a 

language can be formulated as follows: for a given language 

A and given nN, it is required to find all languages B such 

that A = Bn. In this case, we call the language В the n-th root 

of the language А. This theoretical problem is closely related 

to the practical problem of decoding messages, where it is 

necessary to find the division of the encoded message into 

elementary codes corresponding to the characters of the 

original alphabet. 

Let us introduce the necessary notations. Let М be a finite 

subset of the set of natural numbers, let  - be an alphabet, 

possibly infinite. We consider languages of the form (М) 

containing all the i-digit long words over the alphabet , 

where iМ. We call the set М, defining the language (М), - 

the set of indices. The solution to the problem of extracting 

all the roots was obtained for languages А=[t1;t2], 

containing all the words of length from t1 to t2 (t1 t2). Let us 

show two examples. 

Example 1. Let  be an arbitrary alphabet. We can 

extract 5 square roots from the language А=[2;14] with sets 

of indices {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 6, 7}, {1, 2, 4, 5, 6, 

7}, {1, 2, 4, 6, 7} and {1, 2, 3, 5, 6, 7}. 

Let’s consider, for example, the language B=(М), where 

М={1, 2, 4, 6, 7}. We can show, that B2=A. The 

multiplicative operation here is concatenation. Since 

language B contains all 1-digit long words, language В2 

contains concatenations of 1-digit long words, that is, all 2-

digit long words. Similarly, language В2 contains all words of 

length 4, 8, 12, and 14. We can get all the 3-digit long words 

by concatenating words of length 1 and 2 (1, 2М), we can 

get all the 5-digit long words by concatenating words of 

length 1 and 4 (1, 4М), and so on for the remaining natural 

numbers from the interval [2, 14]. 

   6 1 7 9 

  X  3 4 8 

   6 1 7 8 

  4 1 4 4  
+ 3 1 3 3   

 3 4 6 4 7 8 
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Example 2.  

Let us find all the cube roots from the language 

А=[27;42]. 

Obviously, the set M1={9, 10, 11, 12, 13, 14} defines a 

cubic root В=[9;14] from А. Similarly to the example 1, we 

can verify that the set М2 = {9, 10, 13, 14} defines another 

cube root from the language А. Therefore, the roots will be 

also two other languages with sets of indices 

M3={9, 10, 11, 13, 14} and M4={9, 10, 12, 13, 14}. 

In general, the n–th root from the language А=[t1;t2] is 

extracted successfully if and only if t1 and t2 are divisible by 

n. Let M  be a subset of the set of natural numbers 

{n1, n1 + 1, …, n2}, where n1=t1/n, n2=t2/n. The language 

B=(М), containing all words of length aj, ajМ, is an n‒th 

root from the language А if and only if the condition is 

satisfied: 

       (i) (n  n1  i  n  n2  i = a1 + a2 + … + an),      (1) 

where a1, a2, …, an are some elements from М (not 

necessarily different). 

The task of checking condition (1) is equivalent to the 

specific case of the unlimited knapsack problem. We can 

solve this problem by the method of dynamic programming, 

finding the answer in polynomial time. Condition (1) is 

obviously satisfied for the set {n1, n1 + 1, …, n2} and 

corresponds to the trivial root В=[n1,n2], containing all 

words of length from n1 to n2. Verification of condition (1) 

for other subsets of the set {n1, n1 + 1, …, n2} was carried out 

by the method of a software implementation of well-known 

algorithms for solving the unlimited knapsack problem. 

Table 1 shows the results of the program, i.e., the number of 

n-th roots from languages of the form А=[t1;t2] for some n 

and k (k = n2 – n1 + 1). For k from 1 to 3, the values are 1. 

TABLE I.  THE NUMBERS OF N‒TH ROOTS IN DIFFERENT K 

n \k 4 5 6 7 8 9 10 11 12 13 14 

2 1 2 3 5 9 15 28 50 95 174 337 

3 1 2 4 7 13 25 49 95 185 365 721 

4 1 2 4 8 15 29 57 113 225 447 889 

5 1 2 4 8 16 31 61 121 241 481 961 

6 1 2 4 8 16 32 63 125 249 497 993 

7 1 2 4 8 16 32 64 127 253 505 1009 

We found the sequence for n = 2 on the website 

http://oeis.org/A191701, which, in turn, refers to the work 

[1]. D. Applegate, M. Lebrun and N. J. A. Sloane obtained 

this sequence for k from 1 to 41: 

1, 1, 1, 1, 2, 3, 5, 9, 15, 28, 50, 95, 174, 337, 637, 1231,              

2373, 4618, 8974, 17567, 34387, 67561, ...                    (2) 

In binary lunar arithmetic, this sequence is the number of 

binary numbers x of length k such that x2 has no zeros. In this 

paper, we will establish the reason for this coincidence, 

interpret our results in terms of lunar arithmetic, and apply 

the established relation to solve the knapsack problem. 

II. BINARY LUNAR ARITHMETIC AND OPERATIONS ON 

POLYNOMIALS  

Let the initial set be {0, 1}. In the binary case, the lunar 

addition (finding a maximum) corresponds to the disjunction, 

and the multiplication (finding a minimum) corresponds to 

the conjunction. Let us consider lunar operations over multi-

digit binary numbers. When adding in each column, select the 

maximum: 1011 + 101 = 1111. When multiplying, we follow 

the rule of multi-digit numbers multiplication in the lunar 

arithmetic shown above. 

Thus, 1011 101= 101111 (when summing by columns we 

find the maximum). 

We see that the original vector 1011, when multiplied by 

1, remains unchanged, shifting to the left by the position of 

this bit. This multiplication is similar to a multiplication in 

the ring Z[x]  of polynomials. If the original polynomial f(x) 

is multiplied by xi, then all its coefficients will remain 

unchanged, only i zeros will be added to the right, which 

corresponds to a shift of the coefficient vector f(x) by i 

positions to the left. We associate the binary vector 1011 with 

the polynomial x3+x+1 and vector 101 with the polynomial 

x2+1. We get: 

(x3+x+1)1= x3+x+1=1011 

(x3+x+1) x2= x5+x3+ x2=101100 

Adding the coefficients at the equal powers, we have 

x5+2x3+x2+x+1=102111. In the polynomial ring, when 

calculating the coefficients at the equal power, we perform 

the usual addition, and in the lunar binary arithmetic if there 

is 1 in the column, the result is 1, if all the numbers are zeros, 

the result is 0. Thus, the following theorem is true. 

Theorem 1. Let us compare the polynomial 

anxn+an-1xn-1+…+a1x+a0 

to the binary vector (an,an-1,…,a1,a0). When the mapping is 

set in this way, operations in binary lunar arithmetic 

correspond to operations on polynomials in the ring Z[x] with 

subsequent replacement of non-zero coefficients by 1. 

Proof. 

Without loss of generality, we consider two binary 

vectors a=(an,an-1,…,a1,a0) and b=(bn,bn-1,…,b1,b0) of the 

same length. Otherwise, we can add to the shorter vector 

zeros on the left. Then a+b=(an bn, an-1 bn-1,…,a1 b1, a0 

b0) and 0 will be in the i-th position if and only if ai= bi=0.  

On the other hand, for the polynomials a(x)=anxn+an-1xn-

1+…+a1x+a0 and b(x)=bnxn+bn-1xn-1+…+b1x+b0, we have 

a(x)+ b(x)= (an+ bn) xn+(an-1+bn-1 )xn-1+…+ (a1+b1 )x+a0+b0 

Since the initial vectors a and b are binary, the coefficients of 

the polynomial a(x)+ b(x) belong to the set {0,1,2}, moreover 

the coefficient xi equals  0 if and only if ai= bi=0. For this 

reason, after replacing all nonzero coefficients by 1, the 

coefficient vector of the polynomial a(x)+ b(x) is equal to the 

vector a+b.  

The corresponding results for multiplication can be 

derived similarly. 

   1 0 1 1 

  X  1 0 1 

   1 0 1 1 

  0 0 0 0  
+ 1 0 1 1   

 1 0 1 1 1 1 
 

http://oeis.org/A191701
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III. BINARY LUNAR ARITHMETIC AND THE PROBLEM OF 

FINDING ALL THE ROOTS OF THE LANGUAGE 

Next, we interpret the content of the sequence (1). 

According to the author’s terminology, this sequence 

represents the number of k-digit long binary vectors. The 

lunar squares of these vectors consist of all ones. The lunar 

square is the result of multiplying the vector by itself. 

Example 3. Lunar squares of the following 5 vectors with 

the same length k = 7: 1111111, 1111011, 1101111, 1101011 

and 1110111 are 1111111111111=1(13), therefore, the seventh 

term in the sequence (1) is 5. For all other 7-digit long binary 

vectors, the lunar square will contain zeros. 

Let us move to the polynomial operations. 

For instance, we associate the polynomial 

a(x)=x6 + x5 + х3 + х + 1 with the fourth vector a=1101011. 

After multiplying the polynomial with itself, we get  

(x6 + x5 + х3 + х + 1) (x6 + x5 + х3 + х + 1) = 

=c12x12 + c11x11 +c10x10 + c9x9 + c8x8 + c7x7 + c6x6 + 

+ c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0. 

Following the rule of theorem 1, we consider all non-zero 

coefficients equal to 1. 

c0= a0 a0=1, 

c1= a0 a1+ a1 a0=1+1=1, 

c2= a0 a2+ a1 a1+ a2 a0=0+1+0=1, and so on. 

We get c0= c1=…= c12=1. 

The power xi can be represented as the sum of the powers 

of the factors, that is as a sum of powers of a polynomial a(x),  

if and only if this power is present in the product a(x)a(x). 

For some, not necessarily different, j and k we obtain i=j+k, 

where j, k{0, 1, 3, 5, 6}.  

In the polynomial a(x)a(x), all the coefficients ci are 

nonzero, hence any i from 0 to 12 can be represented as the 

sum of two (not necessarily different) numbers from {0, 

1, 3, 5, 6}. 

Let us recall that the problem of extracting all the roots 

from the language А=[t1;t2] is reduced to the same question. 

In the example 1 we extracted 5 square roots from the 

language А=[2;14] with the sets of indices: 

{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 6, 7}, {1, 2, 4, 5, 6, 7}, 

{1, 2, 4, 6, 7} and {1, 2, 3, 5, 6, 7}. We associate these 

subsets of the set {1, 2, 3, 4, 5, 6, 7} to its binary 

characteristic vector (1, 2, …, 7), so we obtain  5 binary 

7-digit long vectors from the example 3. 

Let us interpret the results obtained in Table 1 in terms of 

lunar arithmetic. 

It is not difficult to verify that the second sequence of the 

number of cubic roots from languages of the form А=[t1;t2] 

coincides with the number of k-digit long binary numbers, 

whose lunar cubes consist of ones. 

In particular, for k = 6, the lunar cubes of four vectors: 

110011, 111011, 110111, and 111111 give a unit vector (it 

will be 16 -digit long). These vectors are characteristic 

vectors for the sets of indices from Example 2. 

In the general, the following theorem is true. 

Theorem 2. Let  be an arbitrary alphabet. Let k be the 

cardinal number of the set {n1, n1+1,..., n2}, i.e. 

k = n2 – n1 + 1. Let M be a subset of the set 

{n1, n1 + 1, …, n2}, and  = (1, 2, …, k) be the binary 

characteristic vector of the subset M. The language В=(М) 

is a n‒th root from the language А=[nn1;nn2] if and only if 

in binary lunar arithmetic n has no zeros. 
The Theorem 2 provides another method to verify whether 

a subset М is a set of indices for some root from a language of 

the form А=[t1;t2]. 

IV. APPLICATION OF  LUNAR ARITHMETIC TO SOLVING 

THE KNAPSACK PROBLEM 

The classical knapsack problem in general can be 

formulate as follows: given a set of items, each with a weight 

and a value, select a certain subset of objects so that we get 

maximum total cost, subject to the restrictions on the total 

weight. 

The unlimited knapsack problem is a generalization of the 

classical problem when any item can be taken any number of 

times. We consider a special case of this problem when the 

value of the item is a natural number, and equal to its weight. 

Therefore, we may not take into account the cost of items, but 

only their weight. We also add the condition that the taken 

items must be equal exactly M. We formulate this problem in 

mathematical language. 

The knapsack problem 1. Given N items. The capacity 

of the knapsack is W, M - the number of items to be taken, 

and the natural numbers w1, w2, …, wN. - are weights 

corresponding to the items. Find a set of values x1, x2, …, xN, 

where xi is the number of taken items of a certain type, and 

such that: 

1. x1 w1 + … + xN wN ≤ W; 

2. x1 + … + xN = M; 

3. x1 w1 + … + xN wN has a maximum. 

Note. All the weights of objects are different. If there are 

any objects with the same weight, then we will always take 

from them only some specific one. Such an assumption will 

not change anything in problem 1, since any item can be 

selected any number of times. 

Algorithm 

Step 1. Create a polynomial 𝑦 = 𝑥𝑤1 + 𝑥𝑤2 +⋯+ 𝑥𝑤𝑁  

according to the selected set of weights ŵ= {w1, w2, …, wN}.  

Step 2.  Associate the polynomial y with the binary vector 

u of its coefficients. Then, in the vector u, for all ui, the 

following condition holds ui=1, if i ŵ; otherwise ui=0. 

Step 3. Raise the vector u to the power M in the lunar 

binary arithmetic. We get the binary vector z = uM. 

In the vector z, all nonzero zk denote that there exists a set 

of exactly M objects, not necessarily different, whose sum of 

weights is k. This statement justifies the next step. 

Step 4. Choose the maximum number k satisfying the 

conditions: k W and zk≠0. 

Step 5. Find the linear combination methodx1 w1 + … + 

xN wN=k using the backstepping. 

Example 4.  Given 4 items with weights 2, 3, 6, 7, and 

the capacity of the knapsack W=17. Find exactly 3 items.  

Step 1. Create the polynomial  𝑦 = 𝑥2 + 𝑥3 + 𝑥6 + 𝑥7. 

Step 2. Associate the polynomial y with the binary vector 

u=(11001100) of its coefficients. 

Step 3. Compute u3 in the lunar arithmetic, we obtain: 

u2= (111011101110000), or (by the theorem 1) 𝑦2 =
𝑥14 + 𝑥13 + 𝑥12 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5+𝑥4.             

u3= (111111111111111000000) = (11606). 

Step 4. k=17. 
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Step 5.  17=10+7; 10=7+3. Hence, 17=7+3+7, so that we 

need to choose 2 items weighing 7 and one item weighing 3. 

There is a second solution 17=14+3; 14=7+7. Hence 

17=7+7+3, which, in fact, coincides with the first solution. 

We evaluate the asymptotic complexity of this algorithm. 

Let us denote by wmax = max{ wi | 1 ≤ i ≤ N}  the weight of 

the heaviest item, that is, the maximum power of the 

polynomial y. Then wmax ∙ M is the maximum power of the 

polynomial yM=z. The latter operation can be implemented in 

a naive way, which involves sequentially calculating the 

powers of y from 2 to M, or using the “binary power raising” 

technique, which allows raising any number to the power of 

n in O (log n) multiplications instead of n multiplications in 

the usual sequential multiplication. Using this technique, the 

asymptotic complexity of this algorithm is 

O ((wmax ∙ M )2 ∙ log (M )), where ( wmax ∙ M )2  is the 

algorithmic complexity of multiplying two polynomials, 

log M  is the algorithmic complexity of binary 

exponentiation. 
We can use the Fast Fourier Transform algorithm (FFT) 

[4, 5] to multiply two polynomials. To multiply two 
polynomials in binary lunar arithmetic, based on Theorem 1, 
it suffices to multiply the polynomials over the standard 
complex field and, after obtaining the resulting polynomial, 
change the coefficients that are greater than one by one. 
Multiplication of polynomials in binary lunar arithmetic using 
FFT has asymptotic complexity O (wmax · log(wmax)). Thus, it 
turned out to improve the asymptotic complexity of the 
original algorithm to O (wmax · log(wmax) · log(M)). We also 
note that FFT can be implemented using the parallel algorithm 
from [6]. 

V. COMPARATIVE ANALYSIS OF SOLUTIONS TO THE 

KNAPSACK PROBLEM 

A comparative analysis of the program execution time 

among various solutions to the problem 1 on the knapsack 

problem was carried out by the 2nd year master specialized 

in 01.04.02 “Applied Mathematics and Computer Science” 

A. I. Chesnokov. Testing was carried out on computing M-th 

power of random polynomials of power N. There are the 

restrictions on N and M in experiments: 

Test 1 – N = 500, M = 500; 

Test 2 – N = 500, M = 1000;  

Test 3 – N = 1000, M = 500;  

Test 4 – N = 1000, M = 1000;  

Test 5 – N = 1500, M = 500; 

Test 6 – N = 1500, M = 1000; 

Test 7 – N = 2000, M = 500; 

Test 8 – N = 2000, M = 1000.  

 There were 7 different solutions to the knapsack problem 

1 [7,8]. 

- Solution A is a solution using dynamic programming; 

- Solution B is a solution using dynamic programming 

using bitmasks; 

- Solution C is a solution using the product of polynomials 

in lunar arithmetic. The product of polynomials is computed 

using the fast Fourier transform. The M-th power of a 

polynomial is computed in a naive way; 

- Solution D is a solution using the product of polynomials 

in lunar arithmetic. The product of polynomials is produced 

using the fast Fourier transform. The M-th power of a 

polynomial is computed using binary exponentiation; 

- Solution E is a solution using the product of polynomials 

in lunar arithmetic. The product of polynomials is produced 

using the fast Fourier transform. The M-th power of a 

polynomial was raised using binary exponentiation. The 

parallel FFT algorithm was used [6]. Calculations are made 

on 2, 4, or 8 processors. 

Testing was conducted on a cluster of CAFU, which has 

the following characteristics: 

- 20 computing nodes; 

- on each node there are 2 ten-core Intel Xeon processors 

and 64 GB of RAM; 

- additionally installed mathematical coprocessors Intel 

Xeon Phi 5110P on the eighth node; 

- The internal computer network for computing: 

Infiniband 56 Gb / s; 

- FEFS network file system (Fujitsu Exabyte File System) 

with a capacity of more than 50 TB and a bandwidth of 1.67 

GB / s (13.36 GB / s); 

- cluster performance on the CPU in the LINPACK test 

8.02 Tflops; on CPU + Xeon Phi 7.68 Tflops, cumulative 15.7 

Tflops; 

The results of the execution time of the programs are 

presented in table 2. 

TABLE II.  TESTING RESULTS  

T

es
t 

Solution 

A, 
seconds. 

Solutio

n B, 
second

s. 

Solutio

n C, 
second

s 

Solut

ion 
D, 

seco

nds 

Solut

ion 
E 2 p

roces

sors, 
seco

nds 

Solut

ion 
E 4 p

roces

sors, 
seco

nds 

Soluti

on 
E 8 pr

ocess

ors, 
secon

ds 

1 46.780 0.340 14.800 0.18

0 

0.15

3 

0.13

7 

0.131 

2 187.260 1.760 62.300 0.38

0 

0.31

9 

0.27

5 

0.264 

3 192.670 1.250 32.990 0.37

0 

0.31

6 

0.27

7 

0.265 

4 772.610 5.610 137.33

0 

0.83

0 

0.65

7 

0.58

5 

0.550 

5 445.530 1.820 58.310 1.00

0 

0.65

4 

0.57

1 

0.540 

6 1793.23

0 

8.160 268.72

0 

1.90

0 

1.47

6 

1.24

6 

1.244 

7 779.010 3.280 77.380 0.91

0 

0.68

9 

0.57

6 

0.566 

8 3133.81

0 

13.120 322.01

0 

1.94

0 

1.51

2 

1.30

1 

1.241 

 

According to table 2, we can make a conclusion that the 

solution to problem 1 using FFT in binary lunar arithmetic 

and binary exponentiation is faster than the other solutions. 

The speed of the parallel FFT algorithm in all the tests 

increases noticeable, especially with the increasing number 

of threads (in some cases, significantly). 

VI. CONCLUSION 

Let us summarize the results. In the theoretical part of the 

work, we established a relation between operations in binary 

lunar arithmetic and in the ring of polynomials with integer 

coefficients (Theorem 1). We also created an association 

between binary numbers x of length k for which xn does not 

contain zeros in binary lunar arithmetic and sets of indices of 

roots of the n-th power from a language of a special form 

(Theorem 2). A generalization of the problem of extracting 

the n-th root from a language of a special kind is a 
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mathematical model of a special case of the problem of an 

unbounded knapsack problem (Problem 1). To solve this 

problem, we developed an algorithm based on lunar binary 

arithmetic. 

We made the software implementation of the proposed 

algorithm in several variants, using optimization methods of 

calculations and parallel technologies. Table 2 gives us a 

chance to compare the solution obtained by the authors with 

other known solutions (solution A and solution B) of the 

unbounded knapsack problem. 

The knapsack problem belongs to the class NP‒complete 

problems. This means that there is no polynomial algorithm 

to obtain the exact result (solution). The results presented in 

table 2 demonstrate that, despite this pessimistic fact, in some 

cases, a solution to such a problem can be obtained in 

seconds. 
The results obtained in this research can be applied to solve 

many problems related to the knapsack problem. In particular, 
the problem of estimating the number of different cyclic codes 
with given parameters was solved in [9] using this method. 
Some additional algorithms were proposed in [10,11,12]. 
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