
Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

Some Applications of Binary Lunar Arithmetic

Van Vinh Dang

Hochiminh city University of

Technology

Hochiminh city, Vietnam

dangvvinh@hcmut.edu.vn

Nataliya Dodonova

Samara National Research University

Samara, Russia
ndodonova@bk.ru

Svetlana Korabelshchikova

Northern (Arctic) Federal University

named after M.V. Lomonosov

Arkhangelsk, Russia

s.korabelsschikova@narfu.ru

Mikhail Dodonov

Samara National Research University

Samara, Russia
dodonoff@mail.ru

Abstract—In general, we formulate the problem of

extracting n-th order roots from a language as follows: for a

given language A and a given nN it is required to find all the

languages B, such that A = Bn. This theoretical problem is

closely related to the practical task of decoding messages, where

it is necessary to find a partition of the encoded message into

elementary codes that correspond to certain characters of the

original alphabet. We previously found a solution to the

problem of extracting n-th order roots for languages of a special

kind, which is containing all the possible words of the length

from nn1 to nn2 (n1  n2). We reduced the problem under

consideration to a knapsack problem and solved it by the

method of software implementation of the algorithms proposed

in the article. We found out that the number of roots depends on

the values of n and k, where k is the cardinal number of the set

{n1, n1+1,..., n2}. We obtained quantitative estimates of the

number of n-th power roots for different values of n and k. For

n = 2, the sequence of the number of square roots from the

language coincid with the sequence published on the website of

the online encyclopedia of integer sequences http://oeis.org/

A191701. In binary lunar arithmetic, this sequence is the

number of binary numbers x of length k such that x2 has no

zeros. In the article, we established and theoretically proved the

correspondence between operations in binary lunar arithmetic

and in the ring of polynomials with integer coefficients. Based

on the established correspondence, we developed algorithms

that allows us to solve both the special problem of finding roots

from a language and the more general knapsack problem using

operations in binary lunar arithmetic. We compared the

software implementation of the proposed algorithm with the

well-known classical alternative solutions to the knapsack

problem. Using the discrete Fourier transform, we were able to

improve the asymptotic complexity of the original algorithm.

Keywords—dismal arithmetic, binary lunar arithmetic,

knapsack problem

I. INTRODUCTION

American scientists D. Applegate, M. Lebrun, and N. J.

A. Sloane introduced the concept of “lunar arithmetic” in [1],

and originally they used the term “dismal arithmetic”,

subsequently replacing it with a less pessimistic “lunar

arithmetic”.

In the so-called lunar arithmetic, we replace the addition

and multiplication of numbers by the operations of

calculating the maximum and minimum, respectively. For

example, 2 + 7 = 7, and 27=2. With multi-digit numbers, the

addition operation is performed by columns, i.e., a maximum

is selected in each column. For instance 6179 + 348 = 6379.

The rule for multiplication of two multi-digit numbers is that

the first number multiplies every digit of the second number

and then the results are added together, i.e., we select the

maximum in each digit (column):

You can learn more about the features of lunar arithmetic

in [1]. We are most interested in the binary case when

operations on numbers are performed according to the rules

formulated above, but the numbers belong to the set {0, 1}.

In the past, in [2, 3], we considered the problem of

extracting all the roots from special kind of languages. In

general, the problem of extracting the n-th root from a

language can be formulated as follows: for a given language

A and given nN, it is required to find all languages B such

that A = Bn. In this case, we call the language В the n-th root

of the language А. This theoretical problem is closely related

to the practical problem of decoding messages, where it is

necessary to find the division of the encoded message into

elementary codes corresponding to the characters of the

original alphabet.

Let us introduce the necessary notations. Let М be a finite

subset of the set of natural numbers, let  - be an alphabet,

possibly infinite. We consider languages of the form (М)

containing all the i-digit long words over the alphabet ,

where iМ. We call the set М, defining the language (М), -

the set of indices. The solution to the problem of extracting

all the roots was obtained for languages А=[t1;t2],

containing all the words of length from t1 to t2 (t1 t2). Let us

show two examples.

Example 1. Let  be an arbitrary alphabet. We can

extract 5 square roots from the language А=[2;14] with sets

of indices {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 6, 7}, {1, 2, 4, 5, 6,

7}, {1, 2, 4, 6, 7} and {1, 2, 3, 5, 6, 7}.

Let’s consider, for example, the language B=(М), where

М={1, 2, 4, 6, 7}. We can show, that B2=A. The

multiplicative operation here is concatenation. Since

language B contains all 1-digit long words, language В2

contains concatenations of 1-digit long words, that is, all 2-

digit long words. Similarly, language В2 contains all words of

length 4, 8, 12, and 14. We can get all the 3-digit long words

by concatenating words of length 1 and 2 (1, 2М), we can

get all the 5-digit long words by concatenating words of

length 1 and 4 (1, 4М), and so on for the remaining natural

numbers from the interval [2, 14].

 6 1 7 9

 X 3 4 8

 6 1 7 8

 4 1 4 4
+ 3 1 3 3

 3 4 6 4 7 8

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 76

Example 2.

Let us find all the cube roots from the language

А=[27;42].

Obviously, the set M1={9, 10, 11, 12, 13, 14} defines a

cubic root В=[9;14] from А. Similarly to the example 1, we

can verify that the set М2 = {9, 10, 13, 14} defines another

cube root from the language А. Therefore, the roots will be

also two other languages with sets of indices

M3={9, 10, 11, 13, 14} and M4={9, 10, 12, 13, 14}.

In general, the n–th root from the language А=[t1;t2] is

extracted successfully if and only if t1 and t2 are divisible by

n. Let M be a subset of the set of natural numbers

{n1, n1 + 1, …, n2}, where n1=t1/n, n2=t2/n. The language

B=(М), containing all words of length aj, ajМ, is an n‒th

root from the language А if and only if the condition is

satisfied:

 (i) (n  n1  i  n  n2  i = a1 + a2 + … + an), (1)

where a1, a2, …, an are some elements from М (not

necessarily different).

The task of checking condition (1) is equivalent to the

specific case of the unlimited knapsack problem. We can

solve this problem by the method of dynamic programming,

finding the answer in polynomial time. Condition (1) is

obviously satisfied for the set {n1, n1 + 1, …, n2} and

corresponds to the trivial root В=[n1,n2], containing all

words of length from n1 to n2. Verification of condition (1)

for other subsets of the set {n1, n1 + 1, …, n2} was carried out

by the method of a software implementation of well-known

algorithms for solving the unlimited knapsack problem.

Table 1 shows the results of the program, i.e., the number of

n-th roots from languages of the form А=[t1;t2] for some n

and k (k = n2 – n1 + 1). For k from 1 to 3, the values are 1.

TABLE I. THE NUMBERS OF N‒TH ROOTS IN DIFFERENT K

n \k 4 5 6 7 8 9 10 11 12 13 14

2 1 2 3 5 9 15 28 50 95 174 337

3 1 2 4 7 13 25 49 95 185 365 721

4 1 2 4 8 15 29 57 113 225 447 889

5 1 2 4 8 16 31 61 121 241 481 961

6 1 2 4 8 16 32 63 125 249 497 993

7 1 2 4 8 16 32 64 127 253 505 1009

We found the sequence for n = 2 on the website

http://oeis.org/A191701, which, in turn, refers to the work

[1]. D. Applegate, M. Lebrun and N. J. A. Sloane obtained

this sequence for k from 1 to 41:

1, 1, 1, 1, 2, 3, 5, 9, 15, 28, 50, 95, 174, 337, 637, 1231,

2373, 4618, 8974, 17567, 34387, 67561, ... (2)

In binary lunar arithmetic, this sequence is the number of

binary numbers x of length k such that x2 has no zeros. In this

paper, we will establish the reason for this coincidence,

interpret our results in terms of lunar arithmetic, and apply

the established relation to solve the knapsack problem.

II. BINARY LUNAR ARITHMETIC AND OPERATIONS ON

POLYNOMIALS

Let the initial set be {0, 1}. In the binary case, the lunar

addition (finding a maximum) corresponds to the disjunction,

and the multiplication (finding a minimum) corresponds to

the conjunction. Let us consider lunar operations over multi-

digit binary numbers. When adding in each column, select the

maximum: 1011 + 101 = 1111. When multiplying, we follow

the rule of multi-digit numbers multiplication in the lunar

arithmetic shown above.

Thus, 1011 101= 101111 (when summing by columns we

find the maximum).

We see that the original vector 1011, when multiplied by

1, remains unchanged, shifting to the left by the position of

this bit. This multiplication is similar to a multiplication in

the ring Z[x] of polynomials. If the original polynomial f(x)

is multiplied by xi, then all its coefficients will remain

unchanged, only i zeros will be added to the right, which

corresponds to a shift of the coefficient vector f(x) by i

positions to the left. We associate the binary vector 1011 with

the polynomial x3+x+1 and vector 101 with the polynomial

x2+1. We get:

(x3+x+1)1= x3+x+1=1011

(x3+x+1) x2= x5+x3+ x2=101100

Adding the coefficients at the equal powers, we have

x5+2x3+x2+x+1=102111. In the polynomial ring, when

calculating the coefficients at the equal power, we perform

the usual addition, and in the lunar binary arithmetic if there

is 1 in the column, the result is 1, if all the numbers are zeros,

the result is 0. Thus, the following theorem is true.

Theorem 1. Let us compare the polynomial

anxn+an-1xn-1+…+a1x+a0

to the binary vector (an,an-1,…,a1,a0). When the mapping is

set in this way, operations in binary lunar arithmetic

correspond to operations on polynomials in the ring Z[x] with

subsequent replacement of non-zero coefficients by 1.

Proof.

Without loss of generality, we consider two binary

vectors a=(an,an-1,…,a1,a0) and b=(bn,bn-1,…,b1,b0) of the

same length. Otherwise, we can add to the shorter vector

zeros on the left. Then a+b=(an bn, an-1 bn-1,…,a1 b1, a0

b0) and 0 will be in the i-th position if and only if ai= bi=0.

On the other hand, for the polynomials a(x)=anxn+an-1xn-

1+…+a1x+a0 and b(x)=bnxn+bn-1xn-1+…+b1x+b0, we have

a(x)+ b(x)= (an+ bn) xn+(an-1+bn-1)xn-1+…+ (a1+b1)x+a0+b0

Since the initial vectors a and b are binary, the coefficients of

the polynomial a(x)+ b(x) belong to the set {0,1,2}, moreover

the coefficient xi equals 0 if and only if ai= bi=0. For this

reason, after replacing all nonzero coefficients by 1, the

coefficient vector of the polynomial a(x)+ b(x) is equal to the

vector a+b.

The corresponding results for multiplication can be

derived similarly.

 1 0 1 1

 X 1 0 1

 1 0 1 1

 0 0 0 0
+ 1 0 1 1

 1 0 1 1 1 1

http://oeis.org/A191701

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 77

III. BINARY LUNAR ARITHMETIC AND THE PROBLEM OF

FINDING ALL THE ROOTS OF THE LANGUAGE

Next, we interpret the content of the sequence (1).

According to the author’s terminology, this sequence

represents the number of k-digit long binary vectors. The

lunar squares of these vectors consist of all ones. The lunar

square is the result of multiplying the vector by itself.

Example 3. Lunar squares of the following 5 vectors with

the same length k = 7: 1111111, 1111011, 1101111, 1101011

and 1110111 are 1111111111111=1(13), therefore, the seventh

term in the sequence (1) is 5. For all other 7-digit long binary

vectors, the lunar square will contain zeros.

Let us move to the polynomial operations.

For instance, we associate the polynomial

a(x)=x6 + x5 + х3 + х + 1 with the fourth vector a=1101011.

After multiplying the polynomial with itself, we get

(x6 + x5 + х3 + х + 1) (x6 + x5 + х3 + х + 1) =

=c12x12 + c11x11 +c10x10 + c9x9 + c8x8 + c7x7 + c6x6 +

+ c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0.

Following the rule of theorem 1, we consider all non-zero

coefficients equal to 1.

c0= a0 a0=1,

c1= a0 a1+ a1 a0=1+1=1,

c2= a0 a2+ a1 a1+ a2 a0=0+1+0=1, and so on.

We get c0= c1=…= c12=1.

The power xi can be represented as the sum of the powers

of the factors, that is as a sum of powers of a polynomial a(x),

if and only if this power is present in the product a(x)a(x).

For some, not necessarily different, j and k we obtain i=j+k,

where j, k{0, 1, 3, 5, 6}.

In the polynomial a(x)a(x), all the coefficients ci are

nonzero, hence any i from 0 to 12 can be represented as the

sum of two (not necessarily different) numbers from {0,

1, 3, 5, 6}.

Let us recall that the problem of extracting all the roots

from the language А=[t1;t2] is reduced to the same question.

In the example 1 we extracted 5 square roots from the

language А=[2;14] with the sets of indices:

{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 6, 7}, {1, 2, 4, 5, 6, 7},

{1, 2, 4, 6, 7} and {1, 2, 3, 5, 6, 7}. We associate these

subsets of the set {1, 2, 3, 4, 5, 6, 7} to its binary

characteristic vector (1, 2, …, 7), so we obtain 5 binary

7-digit long vectors from the example 3.

Let us interpret the results obtained in Table 1 in terms of

lunar arithmetic.

It is not difficult to verify that the second sequence of the

number of cubic roots from languages of the form А=[t1;t2]

coincides with the number of k-digit long binary numbers,

whose lunar cubes consist of ones.

In particular, for k = 6, the lunar cubes of four vectors:

110011, 111011, 110111, and 111111 give a unit vector (it

will be 16 -digit long). These vectors are characteristic

vectors for the sets of indices from Example 2.

In the general, the following theorem is true.

Theorem 2. Let  be an arbitrary alphabet. Let k be the

cardinal number of the set {n1, n1+1,..., n2}, i.e.

k = n2 – n1 + 1. Let M be a subset of the set

{n1, n1 + 1, …, n2}, and  = (1, 2, …, k) be the binary

characteristic vector of the subset M. The language В=(М)

is a n‒th root from the language А=[nn1;nn2] if and only if

in binary lunar arithmetic n has no zeros.
The Theorem 2 provides another method to verify whether

a subset М is a set of indices for some root from a language of

the form А=[t1;t2].

IV. APPLICATION OF LUNAR ARITHMETIC TO SOLVING

THE KNAPSACK PROBLEM

The classical knapsack problem in general can be

formulate as follows: given a set of items, each with a weight

and a value, select a certain subset of objects so that we get

maximum total cost, subject to the restrictions on the total

weight.

The unlimited knapsack problem is a generalization of the

classical problem when any item can be taken any number of

times. We consider a special case of this problem when the

value of the item is a natural number, and equal to its weight.

Therefore, we may not take into account the cost of items, but

only their weight. We also add the condition that the taken

items must be equal exactly M. We formulate this problem in

mathematical language.

The knapsack problem 1. Given N items. The capacity

of the knapsack is W, M - the number of items to be taken,

and the natural numbers w1, w2, …, wN. - are weights

corresponding to the items. Find a set of values x1, x2, …, xN,

where xi is the number of taken items of a certain type, and

such that:

1. x1 w1 + … + xN wN ≤ W;

2. x1 + … + xN = M;

3. x1 w1 + … + xN wN has a maximum.

Note. All the weights of objects are different. If there are

any objects with the same weight, then we will always take

from them only some specific one. Such an assumption will

not change anything in problem 1, since any item can be

selected any number of times.

Algorithm

Step 1. Create a polynomial 𝑦 = 𝑥𝑤1 + 𝑥𝑤2 +⋯+ 𝑥𝑤𝑁

according to the selected set of weights ŵ= {w1, w2, …, wN}.

Step 2. Associate the polynomial y with the binary vector

u of its coefficients. Then, in the vector u, for all ui, the

following condition holds ui=1, if i ŵ; otherwise ui=0.

Step 3. Raise the vector u to the power M in the lunar

binary arithmetic. We get the binary vector z = uM.

In the vector z, all nonzero zk denote that there exists a set

of exactly M objects, not necessarily different, whose sum of

weights is k. This statement justifies the next step.

Step 4. Choose the maximum number k satisfying the

conditions: k W and zk≠0.

Step 5. Find the linear combination methodx1 w1 + … +

xN wN=k using the backstepping.

Example 4. Given 4 items with weights 2, 3, 6, 7, and

the capacity of the knapsack W=17. Find exactly 3 items.

Step 1. Create the polynomial 𝑦 = 𝑥2 + 𝑥3 + 𝑥6 + 𝑥7.

Step 2. Associate the polynomial y with the binary vector

u=(11001100) of its coefficients.

Step 3. Compute u3 in the lunar arithmetic, we obtain:

u2= (111011101110000), or (by the theorem 1) 𝑦2 =
𝑥14 + 𝑥13 + 𝑥12 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5+𝑥4.

u3= (111111111111111000000) = (11606).

Step 4. k=17.

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 78

Step 5. 17=10+7; 10=7+3. Hence, 17=7+3+7, so that we

need to choose 2 items weighing 7 and one item weighing 3.

There is a second solution 17=14+3; 14=7+7. Hence

17=7+7+3, which, in fact, coincides with the first solution.

We evaluate the asymptotic complexity of this algorithm.

Let us denote by wmax = max{ wi | 1 ≤ i ≤ N} the weight of

the heaviest item, that is, the maximum power of the

polynomial y. Then wmax ∙ M is the maximum power of the

polynomial yM=z. The latter operation can be implemented in

a naive way, which involves sequentially calculating the

powers of y from 2 to M, or using the “binary power raising”

technique, which allows raising any number to the power of

n in O (log n) multiplications instead of n multiplications in

the usual sequential multiplication. Using this technique, the

asymptotic complexity of this algorithm is

O ((wmax ∙ M)2 ∙ log (M)), where (wmax ∙ M)2 is the

algorithmic complexity of multiplying two polynomials,

log M is the algorithmic complexity of binary

exponentiation.
We can use the Fast Fourier Transform algorithm (FFT)

[4, 5] to multiply two polynomials. To multiply two
polynomials in binary lunar arithmetic, based on Theorem 1,
it suffices to multiply the polynomials over the standard
complex field and, after obtaining the resulting polynomial,
change the coefficients that are greater than one by one.
Multiplication of polynomials in binary lunar arithmetic using
FFT has asymptotic complexity O (wmax · log(wmax)). Thus, it
turned out to improve the asymptotic complexity of the
original algorithm to O (wmax · log(wmax) · log(M)). We also
note that FFT can be implemented using the parallel algorithm
from [6].

V. COMPARATIVE ANALYSIS OF SOLUTIONS TO THE

KNAPSACK PROBLEM

A comparative analysis of the program execution time

among various solutions to the problem 1 on the knapsack

problem was carried out by the 2nd year master specialized

in 01.04.02 “Applied Mathematics and Computer Science”

A. I. Chesnokov. Testing was carried out on computing M-th

power of random polynomials of power N. There are the

restrictions on N and M in experiments:

Test 1 – N = 500, M = 500;

Test 2 – N = 500, M = 1000;

Test 3 – N = 1000, M = 500;

Test 4 – N = 1000, M = 1000;

Test 5 – N = 1500, M = 500;

Test 6 – N = 1500, M = 1000;

Test 7 – N = 2000, M = 500;

Test 8 – N = 2000, M = 1000.

 There were 7 different solutions to the knapsack problem

1 [7,8].

- Solution A is a solution using dynamic programming;

- Solution B is a solution using dynamic programming

using bitmasks;

- Solution C is a solution using the product of polynomials

in lunar arithmetic. The product of polynomials is computed

using the fast Fourier transform. The M-th power of a

polynomial is computed in a naive way;

- Solution D is a solution using the product of polynomials

in lunar arithmetic. The product of polynomials is produced

using the fast Fourier transform. The M-th power of a

polynomial is computed using binary exponentiation;

- Solution E is a solution using the product of polynomials

in lunar arithmetic. The product of polynomials is produced

using the fast Fourier transform. The M-th power of a

polynomial was raised using binary exponentiation. The

parallel FFT algorithm was used [6]. Calculations are made

on 2, 4, or 8 processors.

Testing was conducted on a cluster of CAFU, which has

the following characteristics:

- 20 computing nodes;

- on each node there are 2 ten-core Intel Xeon processors

and 64 GB of RAM;

- additionally installed mathematical coprocessors Intel

Xeon Phi 5110P on the eighth node;

- The internal computer network for computing:

Infiniband 56 Gb / s;

- FEFS network file system (Fujitsu Exabyte File System)

with a capacity of more than 50 TB and a bandwidth of 1.67

GB / s (13.36 GB / s);

- cluster performance on the CPU in the LINPACK test

8.02 Tflops; on CPU + Xeon Phi 7.68 Tflops, cumulative 15.7

Tflops;

The results of the execution time of the programs are

presented in table 2.

TABLE II. TESTING RESULTS

T

es
t

Solution

A,
seconds.

Solutio

n B,
second

s.

Solutio

n C,
second

s

Solut

ion
D,

seco

nds

Solut

ion
E 2 p

roces

sors,
seco

nds

Solut

ion
E 4 p

roces

sors,
seco

nds

Soluti

on
E 8 pr

ocess

ors,
secon

ds

1 46.780 0.340 14.800 0.18

0

0.15

3

0.13

7

0.131

2 187.260 1.760 62.300 0.38

0

0.31

9

0.27

5

0.264

3 192.670 1.250 32.990 0.37

0

0.31

6

0.27

7

0.265

4 772.610 5.610 137.33

0

0.83

0

0.65

7

0.58

5

0.550

5 445.530 1.820 58.310 1.00

0

0.65

4

0.57

1

0.540

6 1793.23

0

8.160 268.72

0

1.90

0

1.47

6

1.24

6

1.244

7 779.010 3.280 77.380 0.91

0

0.68

9

0.57

6

0.566

8 3133.81

0

13.120 322.01

0

1.94

0

1.51

2

1.30

1

1.241

According to table 2, we can make a conclusion that the

solution to problem 1 using FFT in binary lunar arithmetic

and binary exponentiation is faster than the other solutions.

The speed of the parallel FFT algorithm in all the tests

increases noticeable, especially with the increasing number

of threads (in some cases, significantly).

VI. CONCLUSION

Let us summarize the results. In the theoretical part of the

work, we established a relation between operations in binary

lunar arithmetic and in the ring of polynomials with integer

coefficients (Theorem 1). We also created an association

between binary numbers x of length k for which xn does not

contain zeros in binary lunar arithmetic and sets of indices of

roots of the n-th power from a language of a special form

(Theorem 2). A generalization of the problem of extracting

the n-th root from a language of a special kind is a

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 79

mathematical model of a special case of the problem of an

unbounded knapsack problem (Problem 1). To solve this

problem, we developed an algorithm based on lunar binary

arithmetic.

We made the software implementation of the proposed

algorithm in several variants, using optimization methods of

calculations and parallel technologies. Table 2 gives us a

chance to compare the solution obtained by the authors with

other known solutions (solution A and solution B) of the

unbounded knapsack problem.

The knapsack problem belongs to the class NP‒complete

problems. This means that there is no polynomial algorithm

to obtain the exact result (solution). The results presented in

table 2 demonstrate that, despite this pessimistic fact, in some

cases, a solution to such a problem can be obtained in

seconds.
The results obtained in this research can be applied to solve

many problems related to the knapsack problem. In particular,
the problem of estimating the number of different cyclic codes
with given parameters was solved in [9] using this method.
Some additional algorithms were proposed in [10,11,12].

REFERENCES
[1] D. Applegate, M. LeBrun and N.J.A. Sloane, “Dismal Arithmetic,”

Arxiv preprint: 1107.1130v2.pdf, 2011.

[2] S.Yu. Korabel’shchikova, A.I. Chesnokov and A.G. Tutygin, “On
primitive roots from languages of a special type,” Proceedings of the

IX international conference Discrete models in the theory of control
systems, pp. 116-118, 2015.

[3] B.F. Melnikov, S.Yu. Korabelshchikova and V.N. Dolgov, “On the
task of extracting the root from the language,” International Journal of
Open Information Technologies, vol. 7, no. 3, pp. 1-6, 2019.

[4] G. Nussbaumer, “Fast Fourier Transform and convolution algorithms
of computation,” Moscow: Radio and communications, 1985.

[5] S.Yu. Korabel’shchikova and A.I. Chesnokov, “Lunar arithmetic
algorithms and fast Fourier transform in a knapsack problem,”
Heuristic Algorithms and Distributed Computing, vol. 2, no. 3, pp. 41-
49, 2015.

[6] V.V. Voevodin and Vl.V. Voevodin, ‘Parallel computing,” SPb.:
BHV-Petersburg, 2002.

[7] D. Pisinger, ”Knapsack problems,” 1995.

[8] S. Martelo and P. Toth, “Knapsack problems,” Wiley, 1990.

[9] S.Yu. Korabel’shchikova and A.I. Chesnokov, “On the number of
different cyclic codes of a given length,” Vector science TSU, vol. 4,
no. 26, pp. 25-26, 2013.

[10] S.Y. Korabelshchikova, L.V. Zyablitseva, B.F. Melnikov and S.V.
Pivneva, “Linear codes and some their applications,” Journal of
Physics: Conference Series electronic edition, 012174, 2018.

[11] B.F. Mel’nicov, S.Yu. Korabel’shchikova, “Algorithms for
computing the number of error-correcting codes of a general and
special form,” Informatization and communication, vol. 1, pp. 55-60,
2019.

[12] V.M. Chernov, “Fibonacci, tribonacci, ..., hexanacci and parallel
"error-free" machine arithmetic,” Computer Optics, vol. 43, no. 6, pp.
1072-1078, 2019. DOI: 10.18287/2412-6179-2019-43-6-1072-1078.

