
Copyright © 2020 for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0) 

Modified genetic algorithm as a new approach for 

solving the problem of 3d packaging  

Vladimir Mokshin  

Kazan National Research Technical 

University named after A. N. Tupolev - 

KAI  

Kazan, Russia 
vladimir.mokshin@gmail.com 

Alexander Zolotukhin  

Kazan National Research Technical 

University named after A. N. Tupolev - 

KAI  

Kazan, Russia 

avol116@yandex.ru 

Darya Maryashina 

Kazan National Research Technical 

University named after A. N. Tupolev - 

KAI  

Kazan, Russia 
maryashina.darya@yandex.ru 

Leonid Sharnin 

Kazan National Research Technical 

University named after A. N. Tupolev - 

KAI  

Kazan, Russia 

sharnin_lm@mail.ru 

Nikita Stadnik 

Kazan National Research Technical 

University named after A. N. Tupolev - 

KAI  

Kazan, Russia 
erter.live@gmail.com 

 

Abstract—In this paper, we proposed one of the options for 

developing a new evolutionary heuristic approach for solving 

the three-dimensional packing problem called BPP (Bin 

packing problem), as applied to the variation of this problem 

with a single container and a set of boxes of various 

dimensions, called the SKP (Single knapsack problem), and the 

comparison of 11 basic evolutionary heuristic approaches to 

solving the problem of three-dimensional packing of BPP (Bin 

packing problem) variations SKP (Single knapsack problem) 

with the developed new evolutionary heuristic approach to 

solving BPP using modi cited genetic algorithm (MGA). By 

performing correlation and statistical analysis using 10 

randomly created sets of input data for solving BPP, the 

effectiveness of MGAs was proved in comparison with 11 basic 

evolutionary algorithms for solving BPP. Thus, it was 

confirmed that MGA and similar algorithms can be effectively 

used to solve such logistic NP-difficult problems.  

Keywords—modelling, genetic algorithm, 3d packing 

I. INTRODUCTION  

In tough competitive market relations, each company 
seeks to reduce the cost of its products without 
compromising on quality. One of the factors affecting the 
cost of a product is packaging and distribution. In modern 
freight transportation, the packaging problem is an important 
applied section of transport logistics and allows you to solve 
many practical problems in the management, automation and 
optimization of cargo transportation. 

The three-dimensional packing problem is a well-known 
NP-hard problem, both exact and evolutionary approaches 
are used to solve various variations of it. The most popular 
variations of the packing problem are RBPP (Residual bin 
packing problem), when it is required to pack different box 
sizes in different containers, and SKP (Single knapsack 
problem), when it is required to pack different types of boxes 
in one container. This article describes an algorithm for 
solving the problem of three-dimensional packing of the SKP 
variation (Single knapsack problem) from one container and 
N boxes. 

Today, there are a number of evolutionary algorithms 
based on the mechanism of biological evolution and used to 
solve packaging problems. Let's consider each algorithm 
separately. 

II. EVOLUTIONARY ALGORITHMS 

A. Ant algorithm 

Ant Algorithm (ACO) is one of the effective bionic 
methods and packaging algorithms. ACO is based on the 
principle of a multi-agent method of intellectual optimization 
based on modeling the behavior of an ant colony. Each ant 
individually represents a low-level unit, however, in general, 
an ant colony is a rational multi-agent system. An ant acts as 
an agent, looking for an optimal path between its ant hill and 
a food source. The following terms apply to ACO when 
solving sequential packaging tasks: ACO nodes are the 
points of space inside the container, and the paths along 
which ants move are the trajectories of the boxes inside the 
container to the places of their final packaging (nodes). Each 
ant begins its path from the zero node (ant nest, which is 
located in the lower left far corner of the container). If the ant 
cannot pack the boxes in the current node, then it goes to the 
next node other than zero. The ants move around the nodes 
until all the boxes are packed in a container with the 
maximum possible filling of each node [1]. 

B. Annealing simulation algorithm 

The annealing simulation algorithm (SA) is associated 
with the methods of simulation modelling (SM) in statistical 
physics. The algorithm is based on the process of metal 
annealing in metallurgy, which consists in slow cooling of 
the material to increase its strength and reduce defects. The 
annealing process in metalworking can be described as 
follows: the temperature of the metal increases until it begins 
to melt in the heat bath, i.e. until the end of the process of 
complete transition of the metal into a liquid state of 
aggregation. After this, the metal in a liquid state is slowly 
cooled, i.e. its temperature is gradually and carefully reduced 
until the particles return to their original state of aggregation. 
As applied to the problems of three-dimensional packing, the 
main purpose of applying the annealing simulation algorithm 
is to minimize the free space of the container (i.e., to find the 
best way to pack the boxes into the container). The objective 
function of the algorithm can be described as follows: 

( ) m in
to ta l u se fu l

V V  , where 
to ta l

V  is the total volume 

of the container; 
u se fu l

V  is the useful volume occupied by the 

boxes, i.e. the volume of the figure, consisting of the closest 
points of the boxes to coordinate zero and the farthest points 
of the boxes from coordinate zero [2], [3]. 
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C. Tabu Search n algorithm 

Tabu Search (TS) is a mathematical optimization method 
that uses the local search method. Unlike the local search 
method, TS has a higher productivity. The prohibition search 
process is characterized by a set of states (options for three-
dimensional packing of boxes in a container), and at each 
stage (step), a transition is made from the current state to one 
of the neighboring ones. Performance improvements are 
achieved through the use of prohibition lists. Once a 
potential solution (the most optimal option from previously 
found options for three-dimensional packaging of boxes in a 
container) has been found, it is placed in the prohibition list, 
that is, marked as “taboo”, which reduces the search time due 
to the ban on “visiting” earlier discovered solutions. After 
this operation, the local search process continues until a new 
improved solution is found [4]. 

D. Guided Local Search 

Guided Local Search (GLS) is one of the different types 
of searches with bans. The basis of GLS is metaheuristics, 
which, like TS, uses memory (a list of previously obtained 
solutions) to control the search process. The managed local 
search algorithm is a local search option in which 
components are searched, often leading to a local minimum 
of the objective function. As applied to the packing problem, 
the objective function of the algorithm can be written as 

follows: f( ) ( )
to ta l u se fu l

x V V  , where 
to ta l

V  is the total 

volume of the container; 
u se fu l

V  is the useful volume 

occupied by the boxes, i.e. volume of the figure consisting of 
the closest points of the boxes to coordinate zero and the 
farthest points of the boxes from coordinate zero. Then, 
solutions using these components are fined, thereby 
enhancing the research of the search space, leading to 
solutions leading to a global minimum of the objective 
function [5]. 

E. Fast Local Search 

Fast Local Search (FLS) is an improved version of 
managed local search. Unlike GLS, a Fast Local Search 
breaks the container's fillable area into several smaller 
subdomains. Each such formed subdomain can be in one of 
two states: active or inactive. By default, all subregions are 
in an active state. According to a certain order (dynamic or 
statistical), the quick local search algorithm visits active 
regions of the container with the goal of packing boxes into 
them. Next, the subdomain is checked for subneighborhood: 
if there is no better option for the algorithm to move (packing 
boxes into neighboring subdomains), then the current 
subdomain is filled with boxes and becomes inactive, 
otherwise an improving move is performed - visiting another 
region. One of the advantages of FLS is the ability to 
reactivate subdomains. If we assume that a number of 
subregions previously converted to inactive status may 
contain improving moves, taking into account the just 
completed move, then such subregions can be reactivated - 
become active again. When all areas become inactive, the 
best solution to the three-dimensional packing problem will 
be found, i.e. the FLS algorithm will come to its global 
minimum [5]. 

F. Local search with alternating surroundings 

Local search with alternating neighborhoods (VNS) is 
one of the methods for solving discrete optimization 
problems. One of the differences between the VNS method 

and simple local search is the systematic change in the 
appearance of the surrounding area during local search. The 
basic algorithm for local search with alternating 
neighborhoods can be described as follows: for some 
preliminary solution to the three-dimensional packing 
problem (the supposedly optimal variant of packing boxes in 
a container), its many neighborhoods are determined: other 
slightly different options for packing boxes in a container. 
Then, from this set of neighborhoods, another type of 
neighborhood is randomly selected. The search for an 
improved solution for the selected neighborhood is carried 
out using the local search algorithm. At the next stage, the 
algorithm branches: if an improved solution is found, then 
the preliminary solution is replaced by the value of the new 
solution, the search continues in the same neighborhood. 
Otherwise, a new neighborhood is selected from the set of 
neighborhoods of the preliminary solution, and the algorithm 
continues to run. The stopping criterion for the VNS 
algorithm can be the number of iterations in which no 
improvement of the solution was achieved, a certain number 
of iterations, or the fact that the optimal solution was found 
[6], [7]. 

G. Greedy randomized adaptive search procedure 

The greedy algorithm with random adaptive search 
(GRAPS) improves combinatorial solutions obtained by 
constructing individual components. The GRAPS algorithm 
can be described in three steps. At the first step, the 
maximum space for filling is selected, i.e. the total volume of 
the container. The corners of the container are filled first, 
then the sides, and at the very end the interior space is filled. 
At the second step, from a set of boxes in a lexicographic 
order, boxes for packaging are selected. The choice is made 
taking into account two criteria: those that fit in the 
maximum space in the best way and which give the greatest 
increase in the total volume of boxes. In the third step, the 
list of maximum spaces is updated, since any packaging 
made of at least one box leads to changes in the maximum 
space. The change in the value of the current maximum 

space is calculated by the formula: 
m ax to ta l u se fu l

V V V  , 

where 
m a x

V  is the current maximum space, 
to ta l

V  is the total 

volume of the container, 
u se fu l

V  the useful volume occupied 

by the boxes, i.e. volume of the figure consisting of the 
closest points of the boxes to coordinate zero and the farthest 
points of the boxes from coordinate zero. After that, the 
algorithm cycle returns to the first step and continues the 
process of packing boxes until all boxes are packed into a 
container [8]. 

H. Best Fit Decreasing (BFD) and First Fit Decreasing 

(FFD) 

The Best Matching Descending (BFD) and First 
Matching Descending (FFD) algorithms are the simplest 
polynomial algorithms used to solve packing problems. Both 
algorithms sort objects by not increasing their volumes and 
sequentially put them in containers. BFD and FFD differ 
from each other in the way they select the container into 
which the boxes will be packed. According to the best 
descending algorithm, the boxes will be packed in the 
container that will have the smallest free space after loading. 
In the algorithm of the first descending box, the boxes are 
loaded into the first container into which they fit in volume 
[9]. 
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I. Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization Method (PSO) is based 
on modeling the behavior of a flock of birds. The idea of 
PSO is that each particle is a possible solution to the 
optimization problem, as applied to the three-dimensional 
packing problem, a possible optimal option for packing 
boxes in a container. Particles “fly” over the solution space 
of the function and try to find its global minimum (the best 
solution to the packaging problem), taking into account their 
own knowledge and the experience of their neighbors. The 
principle of “flight” of particles is based on the gradient 
descent method, the method of finding a local minimum by 
moving the particle along the gradient, and the space of 
vectors indicating the path to the greatest decrease in the 
objective function [10]. 

III. ADAPTIVE GENETIC ALGORITHM (GA)  

The genetic algorithm is based on modelling the 
mechanisms of natural selection in nature. Its main operators 
are evolutionary methods such as inheritance, mutation, 
crossingover, and selection. At the initial stage of the 
algorithm, an initial population of X chromosomes 
(individuals) H is formed, consisting of a set of p genes. 
Then, two chromosomes Hn and Hn are randomly selected 
from the original population and two new chromosomes 

n ew

n
H  and 

n ew

k
H  are created by crossing (mutually 

exchanging chromosome regions) chromosomes Hn and Hn. 

At the next step of the algorithm, mutations of the 
n ew

n
H  and 

n ew

k
H  chromosome genes with a random probability 𝜌  

occur. Upon completion of the mutation process, the 

chromosomes 
n ew

n
H  and 

n ew

k
H  become a new part of the X 

population. After N steps of this algorithm, the best 
chromosomes that have the set of genes describing the 
optimal solution necessary for solving the optimization 
problem are selected from the population X extended by the 
methods of inheritance, mutation, and crossing over. The 
main problem of packaging problems is their complexity and 
the impossibility of solving such problems using 
deterministic polynomial algorithms due to the large time 
and computational costs, therefore, the search and 
development of new methods and algorithms for solving 
packaging problems do not lose their importance and 
relevance. The article discusses the use of a new modified 
genetic algorithm, the practical significance of which is 
shown by solving the problem of packing rectangular boxes 
in a container with maximum compactness, taking into 
account the priority of unloading at delivery points. As a 
container, we consider a part of three-dimensional space 
limited by a width W, a depth D, and a height H having a 
volume M. As boxes, we consider N blocks limited by our 
own parameters for the width, depth, and height that must be 
placed in the volume M. We describe the location of the 
container in space using eight points 

 0 0 0 7 7 7
, , , ..., , ,X Y Z X Y Z , where 

0 0 0
, ,X Y Z  are equal 

to zero, and 
7 7 7

, ,X Y Z  are respectively equal to W, D, N. 

The arrangement of blocks inside the container is also we 

describe eight points  0 0 0 7 7 7
, , , ..., , ,x y z x y z  according 

to three conditions:  

Blocks cannot go beyond: 

i j

i j

i j

x W

y D

z H

 

 
 

 


 

 0 , 7j  , 

1,i N  . 

The total volume of blocks may not exceed the volume of 

the container: 

1

N

i

i

V W D H



   , where 
i

V  is the volume of 

the i-th block. 

Blocks cannot overlap each other: 

( ) ( 1 )

( ) ( 1 )

( ) ( 1 )

i j i j+ k i+ j

ij i j+ k i+ j

ij i j+ k i+ j

x x x

y y y

z z z

  

 
  

 
 

 

 , 0 , 7j k  , 1,i N  , k j  . 

The collisions of blocks will be determined in accordance 
with the model’s limitations by checking the condition of 
overlapping blocks on each other by comparing the 
coordinates of the farthest corner of an already placed block 
and the nearest corner of the placed (new block). As an 
optimization target (objective function), we will use the ratio 
of the usable volume to the volume of the container, which 

we denote by 1
u se fu l

b o x

V
F

V
  . 

Its significance will seek unity with the disappearance of 
voids. The modified genetic algorithm (MGA) is based on 
the principles of the genetic algorithm, however, it has 
modified behavior patterns such as adaptive mutation and the 
LBFL model for generating the initial chromosome 
population. 

The LBFL model (Late-Botton-Front-Left, Late-Lower-
Front-Left) is an imperfect algorithm for arranging (sorting) 
blocks according to 4 priority levels: unloading time (late-
early), height (lower-upper), depth (front-back), width (left-
right) [11]. 

This algorithm generates the order of packing blocks into 
a container according to the priority list. The latest block at 
the time of unloading is always placed at the origin. All 
subsequent blocks, sorted by the time of unloading, are 
sequentially moved to the upper rear right corner, and then 
with the help of movement and rotation in 6 variants fill the 
entire lower level, then the front, then the left [13]. Filling 
these levels as evenly as possible, the blocks fill the 
remaining container volume in the same way as a separate 
empty container, limited by the maximum width, depth and 
height available for it, continuing the algorithm of the LBFL 
model. This will continue until all the blocks are laid in a 
container and the objective function is maximized. Fig. 1 
shows the result of the generation of the initial chromosome 
population using the LBFL model of the arrangement of 
blocks according to the priority list in three-dimensional 
space of width W, depth D and height H. 

As an algorithm for mutating chromosomes, the adaptive 
probability of mutation was used. This allowed us to 
overcome the high probability of population convergence at 
a local optimum. 
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Fig. 1. The result of the algorithm of the LBFL model.  

When using it, the degree of mutation for each individual 
varied depending on the average indicator of the objective 

function u se fu l

b o x

V
F

V
  obtained from each of the crossing 

chromosomes. 

The closer this indicator was to the global optimum (the 
best solution to the three-dimensional packing problem, at 
which 1F  ), the less the mutation probability. And, on the 
contrary, the farther the indicator was, the more likely the 
chromosome mutation was.  

In mathematical form, the adaptive probability of 

mutations of the chromosomes 
1

k
x  and 

2

k
x  of the k-th 

population can be expressed through the eq. (1): 



1 1

1 2
( ) F ( )

1
2

k k
F x x



 


 

 
To test the effectiveness of this modification of the 

MGA, a test of the operation of the MGA algorithm was 
carried out on ten canonical independent sets of source data 
consisting of 50 boxes of 5 different types. During testing, 
changes in the adaptive probability of a mutation were 
evaluated. In Fig. 2. The test results are presented in the form 
of a graph of the dependence of the mutation probability on 
the time of the algorithm operation. 

As applied to the packaging problem, MGA is a 
collection of H chromosomes (individuals) consisting of p 
genes. Where each chromosome Hi is an imperfect algorithm 
of the i-th arrangement of blocks (boxes), and the pj  gene 
are parameters (a tuple of coordinates of all eight points) of 
the j-th block [11]. The course of the algorithm is a sequence 
of operations (mutations) over a set of chromosomes, 
oriented towards achieving the maximum indicator of the 
optimization function (in relation to the task of three-
dimensional packaging - achieving the maximum indicator 
of the objective function of the ratio of usable volume to the 

volume of the container 1
u se fu l

b o x

V
F

V
   at least one of the 

chromosomes. 

For a more detailed consideration of the algorithm, it can 
be structurally divided into six stages: generation of 
individuals, formation of chromosomes, calculation of the 
objective function, selection of chromosomes, crossing and 
detection of mutations.  

 
Fig. 2. The dependence of the adaptive probability of a mutation on the 

time of the algorithm.  

At the initial stage, the generation of individuals of the 
population occurs (the creation of many blocks, the sizes of 
which are randomly selected from ranges that satisfy the 
given conditions).  

The next step is the formation of chromosomes - various 
sequences of arrangement of blocks. The number of 
chromosomes is selected in the range from 2 to 2 ∙ N, where 
N is the number of blocks. 

Next, the main process of the modified genetic algorithm 

begins - the calculation of the objective function u se fu l

b o x

V
F

V
   

for each chromosome, where Vuseful is the net volume 
occupied by the blocks, i.e. the volume of the figure, 
consisting of the closest points of the blocks to coordinate 
zero and the farthest points of the blocks from coordinate 
zero, and Vbox is the volume of the container.  

In addition to the objective function, the density function 

is calculated as 1

N i

b o xi

u se fu ll

V
P

V



 , where 

i

b o x
V  is a volume of 

the i-th block, Vuseful is an occupied space after decoding 
(usable volume). The density function describes the ratio of 
the total volume of all blocks to the usable volume and tends 
to 1 with a decrease in the gaps between the blocks. The next 
step after completing the first cycle of the main GA process 
is the selection of chromosomes (selection of chromosomes 
with the best values of the objective function from the total 
number of chromosomes in the population). In this work, we 
used the selection method based on the tournament table: the 
total number of chromosomes is divided into subgroups with 
the number of individuals from 2 to 4, and then a 
chromosome with the best objective function is selected from 
each subgroup. This method allows you to create a new and 
objectively better population for the next cycle of the main 
GA process. 

After chromosome selection, their crossing follows - the 
process of creating two new descendant chromosomes by 
combining parts of the parent chromosome genes. For this, a 
random gene is selected in the gene chain of each of their 
parent chromosomes 𝑝𝑟, first descendant chromosome 𝐻𝑖1 is 

made up of genes 𝑝𝑘  ∀𝑘 = 1, 𝑟̅̅ ̅̅  of the first parent and genes 
𝑝𝑚 ∀𝑚 = 𝑟, 𝑗̅̅ ̅̅  of the second parent, second chromosome 
descendant 𝐻𝑖2 made up of genes 𝑝𝑘  ∀𝑘 = 𝑟, 𝑗̅̅ ̅̅  of first parent 

genes and genes 𝑝𝑚 ∀𝑚 = 1, 𝑟̅̅ ̅̅  of the second parent, where j  
is a total number of genes in parent chromosomes (number of 
blocks). 
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The next step after crossing is to add mutations - rare 
changes in the gene values at random with an adaptive 
probability value 𝜌. The probability 𝜌𝑖𝑗  of the mutation of the 

gene 𝜌𝑗of the chromosome 𝐻𝑖   depends on the fitness of the 

individual (chromosome 𝐻𝑖), expressed by the value of the 

objective function u se fu l

b o x

V
F

V
  for this chromosome. The 

worse the individual is adapted, i.e. the further the value of 
the objective function is from unity, the higher the 
probability of mutation of its genes becomes, so that it can 
optimize the current value of the objective function. In the 
packaging problem under consideration, the adaptive 
mutation of the 𝑝𝑗  gene is to move the j-th block to the 

beginning of the priority list, regardless of its size and initial 
priority of unloading. 

IV. COMPARISON OF METHODS 

A comparison of methods for solving the three-
dimensional packing problem showed the following results. 
The BFD algorithm proved to be the most resource-intensive 
algorithm, having slightly lost in performance to the FFD 
algorithm. These algorithms are the simplest heuristic 
approaches to solving the problem of three-dimensional 
packaging, therefore, are at the end of the performance list. 
The annealing simulation algorithm (SA) showed the most 
expression regarding the FFD algorithm, however, it lost in 
performance to the following search algorithms: VNS, TS, 
GLS, FLS, whose indicators are also sorted in order of 
improving performance, however, they differ slightly from 
each other. Search algorithms can quickly converge to a local 
minimum in the neighborhood of solutions, choosing both 
from the full version (TS, GLS), and segmented (VNS, FLS). 
The performance of FLS bypassed the ant colony 
optimization (ACO), which works on the principle of an ant 
colony, with a large gap, followed by the PSO, which 
describes the simulation of the life of a "swarm of particles", 
in its behavior similar to a bee swarm. GA, GRASP (a 
greedy algorithm with random adaptive search, which allows 
to find a multitude of local minima of the objective function 
and based on them to suggest the optimal solution) and MGA 
(a modified genetic algorithm that allowed to increase the 
speed of the standard genetic algorithm and get around in 
GRASP performance). 

To numerically evaluate the effectiveness of the 
packaging methods, special test data sets have been 
developed depending on the type of problem being solved. In 
this work, ten canonical sets were used, consisting of 1000 
boxes of 50 types and a single container of constant sizes, 
but different among the examples. Two performance 
indicators were evaluated: the running time of the algorithm 
and the density of the resulting packaging in decimal units. 

In Fig. 3-4 are comparative graphs of the results of the 
assessment of both performance indicators. The indicators 
were evaluated as follows: each of the 12 packaging methods 
was tested on ten canonical sets independent of each other, 
during testing, two performance indicators were evaluated: 
the time the algorithm worked in minutes and the density of 
the resulting package in percent. Then, for each algorithm, 
the total packing time in minutes was calculated from the 
total packing time of all ten sets and the average packing 
density by the average packing density among all ten sets. 

 
Fig. 3. Algorithm runtime evaluation results. 

For an objective assessment of three-dimensional 

packaging methods, it was proposed to introduce a new 

variable (2): 



0

0 .0 1

n

i

i i






 
 

where 
i

  packing time of the i-th set, 𝜌𝑖 is the density of the 

obtained packaging of the i-th set, and n is the number of sets 

in the experiment, which mathematically illustrates the 

degree of effectiveness of the three-dimensional packing 

method (the lower its value, the higher the efficiency of the 

algorithm). 

Comparison of three-dimensional packaging methods 

was carried out according to three objective performance 

indicators: the total preparation time, average packing 

density and the value of the variable  . The results of the 

comparison of three-dimensional packaging methods are 

presented in table 1. 

 
Fig. 4. The results of the assessment of the density of the resulting 

packaging. 

TABLE I.  3D COMPARISON RESULTS 

Method Total packing 

time (minute) 

Average 

packing density 

(%) 

Value φ 

MGA 1015 94.56 1073.3926 

GRASP 1059 91.03 1163.3527 

GA 1109 92.48 1199.1782 

PSO 1181 89.54 1318.9636 

ACO 1209 88.73 1362.5606 

FLS 1432 80.25 1784.4237 

GLS 1481 82.68 1791.2433 

TS 1587 88.31 1797.0785 

VNS 1545 85.93 1797.9751 

SA 1584 84.19 1881.4586 

FFD 1650 86.17 1914.8195 

BFD 1714 81.56 2101.5204 
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V. SOFTWARE IMPLEMENTATION 

For the software implementation of the developed MGA, 
a C # language application was written in Microsoft Visual 
Studio 2017 for a user of 32-bit and 64-bit versions of 
Windows XP and higher, which solves the three-dimensional 
packaging problem and graphically illustrates the final result 
as a three-dimensional container model with rectangular 
boxes located in it optimally. 

In the simulated example, the task of packing 50 different 
types of boxes in a 40-pound cargo container of ISO standard 
was considered. 

The algorithm of modified genetic algorithm: 

1. Variables Initialization: 
2. chr is a number of chromosomes (population size) maxiter  

is a maximum number of iterations (parameter for while 
loop) 

3. Begining: 

4.   1k   
5. Creating an initial population k

X   {𝑥1
𝑘 , 𝑥1

𝑘 , . . . , 𝑥𝑐ℎ𝑟
𝑘 } using 

LBFL model  

6. The calculation of the objective function ( )
k

i
F x  for  

1, ,i c h r    

7. Loop while(𝑥∗ = true): 
8. The cycle beginning: 

9.  1k k   
10. 𝐿𝑜𝑜𝑝 for(iter = 1;  iter ≤

chr

2
; 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1): 

11. The cycle beginning 
12. Random selection of two chromosomes 𝑥𝑝 and 𝑥𝑞 of 𝑋𝑘−1 

13. Two new chromosomes creation 
14. 𝑥𝑝

𝑛𝑒𝑤 и 𝑥𝑞
𝑛𝑒𝑤as crossingover 𝑥𝑝 и 𝑥𝑞  with probability 𝑝𝑐 

15. The calculation of the adaptive probability of chromosome 
mutations 𝑥𝑝

𝑛𝑒𝑤 и 𝑥𝑞
𝑛𝑒𝑤 

16. 𝑝𝑚 = 1 −
𝐹(𝑥𝑝)+𝐹(𝑥𝑞)

2
 

17. Mutation operation 𝑥𝑝
𝑛𝑒𝑤 and  𝑥𝑞

𝑛𝑒𝑤 with probability 𝑝𝑚 

18.  Objective functions calculation 𝐹(𝑥𝑝
𝑛𝑒𝑤) and 𝐹(𝑥𝑞

𝑛𝑒𝑤) 

19. Adding 𝑥𝑝
𝑛𝑒𝑤 and 𝑥𝑞

𝑛𝑒𝑤 into 𝑋𝑛𝑒𝑤 

20. The cycle end. 
21. Selecting of the best chromosomes from 𝑋𝑘−1 and 

𝑋𝑛𝑒𝑤 for 𝑋𝑘 
22. 𝑥∗ = the best chromosome in 𝑋𝑘  
23. The cycle 𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 and 𝐹(𝑥∗) < 1):  
24. The cycle beginning: 
25. Return 𝑥∗ 
26. End of cycle. 
27. End of cycle. 

The result of the MGA: a three-dimensional model of the 
best individual (the best option for packing boxes in a 
container) is shown in Fig. 5.  

 
Fig. 5. The result of MGA work of  with input data from the 1st set. 

As a result of the MGA’s work on the first set, 1000 
boxes of 50 types were packed into a 40-foot container, the 
packing density was 93.96%, and the total algorithm running 
time was 99 minutes. The best result for the packing density 
criterion was obtained by the MGA with input data of the 6th 
set, which amounted to 95.16%. The best result for the total 
operating time criterion was obtained by the MGA with input 
data of sets No. 5 and No. 9, which amounted to 98 minutes. 

The worst operating time of the MGA was 108 minutes with 
input data of set No. 8. The worst packing density was 
93.87% with set 9 input. 

To objectively prove the effectiveness of the modified 
genetic algorithm with respect to 11 standard evolutionary 
approaches to solving the three-dimensional packaging 
problem, we will carry out a correlation analysis of the best 
and worst values of the two criteria for the algorithm's 
efficiency: total operating time and packing density among 
11 standard methods and MGA. 

Let 𝜏𝑖𝑗  is a packing time i-th set j-th method, 𝜌𝑖𝑗  is a 

density of the resulting package of the i-th set by the j-th 

method, 
i j

i j

i j





  is the resultant performance indicator of 

the j-th method on the i-th set. 

Correlation analysis showed a high level of data 
correlation between sets, i.e. with a change in the method for 
solving the three-dimensional packing problem in the i-th set, 
the resulting performance indicators in the remaining sets 
with a change in the method to the same will change 
proportionally. This dependence can be clearly seen in Fig. 
6. 

 
Fig. 6. Dependence of the distribution of 

i j
  values on the packaging 

method and the set of boxes.  

Thus, a change in the set practically does not affect the 
efficiency of the method for solving the three-dimensional 
packing problem; therefore, the effectiveness of the method 
can be taken as an objectively independent value. 

Thus, the effectiveness of the developed modified genetic 
algorithm for solving the problem of three-dimensional 
packing of goods in containers based on a mathematical 
model constructed according to optimal conditions is proved 
by a series of simulation experiments using a software 
application in C #, as well as a correlation analysis of 
simulation results obtained as a result of experiments data.  

VI. CONCLUSIONS 

In this paper, we proposed one of the options for 
developing a new evolutionary heuristic approach for solving 
the three-dimensional packing problem called BPP (Bin 
packing problem), as applied to the variation of this problem 
with a single container and a set of boxes of various 
dimensions, called the SKP (Single knapsack problem), and 
The comparison of 11 basic evolutionary heuristic 
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approaches to solving the problem of three-dimensional 
packing of BPP (Bin packing problem) variations SKP 
(Single knapsack problem) with the developed new 
evolutionary heuristic approach to solving BPP using modi 
cited genetic algorithm (MGA). By performing correlation 
and statistical analysis using 10 randomly created sets of 
input data for solving BPP, the effectiveness of MGAs was 
proved in comparison with 11 basic evolutionary algorithms 
for solving BPP. Thus, it was confirmed that MGA and 
similar algorithms can be effectively used to solve such 
logistic NP-difficult problems. The produced methodology 
of model analysis also has interest for using in different areas 
[14-24]. 
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