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Abstract—The use of data science in the analysis of 

biomedical and physiological time series and spatial maps 

allows extracting reliable information about the dynamic states 

and functioning of the organism as a whole and of individual 

organs. In this paper, based on the Memory Function 

Formalism, one of the approaches of statistical physics, we 

analyze the signals of bioelectric activity of the human brain 

and the human neuromuscular system.  We perform transition 

from the study of global patterns revealed in human signals to 

the analysis of individual sections of time dynamics. Based on 

localized characteristics and parameters (time window plotting 

of power spectra and statistical memory measure), we establish 

changes in periodic patterns and correlations of dynamic 

modes. In the case of time series analysis, various localization 

procedures play the role of a “statistical microscope” that 

captures signal details or reflects the features of the local 

structure of an object. Generalized and localized parameters 

introduced within the framework of the Memory Function 

Formalism prove to be useful in searching for diagnostic 

criteria in cardiology, neurophysiology, epidemiology, and in 

studying the human sensorimotor and locomotor activity. 
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I. INTRODUCTION 

Today, one of the actively evolving areas of data science 
and complexity science is the analysis of temporary signals 
generated by open complex systems of animate and 
inanimate nature (physical, astronomical, chemical, 
biological, economic and social). On the one hand, this is due 
to the accumulation of large amounts of experimental data 
(Big Data) and the continuous improvement of recording 
equipment. On the other hand, this is facilitated by a variety 
of intensively implemented software tools and new 
developments in the field of computer hardware. Statistical 
methods are effectively used to theoretically describe 
dynamic patterns and structural features of complex systems: 
Fourier analysis (and wavelet analysis modifying it), 
correlation and regression methods, variance factor and 
covariance methods, fractal analysis methods, dynamic chaos 
theory (nonlinear dynamics methods), Flicker-Noise 
Spectroscopy, elements of mathematical statistics.  

Statistical methods are widely used in coding, filtering 
and processing of signals and images in radiophysics, 
electrical engineering, acoustics, seismology; in pattern 

recognition in optics and medicine; in studying the structural 
properties and defects of crystals; in the diagnosis and 
prediction of physiological conditions of a person, including 
cases of various diseases and pathologies. The main feature 
of most statistical methods is the fact that a detailed analysis 
of the investigated object properties requires the maximum 
possible set of recorded experimental data. The bigger 
statistics of time variations of recorded dynamic variables 
and parameters, the more complete and accurate the 
information will be extracted. Bifurcation properties 
associated with dynamic phase transitions, or global 
characteristics associated with averaging procedures over 
long time intervals and due to intermittency, fractality, self-
organized criticality and other unique properties of dynamic 
systems are studied. Localization procedures are used to 
study the local patterns of dynamics and structural features of 
complex systems. In this case, information about the 
individual dynamic modes of the evolution of a complex 
system or individual behavior of the recorded experimental 
data is extracted. Localization procedures allow conducting 
analysis with high speed rate and high accuracy degree [1]. 
Therefore, it may be beneficial to the development of new 
faster methods of analysis, e.g. for application in 
improvement of diagnostic devices that require high speed, 
accuracy and sensitivity [2–4]. 

In this work, in the framework of the Memory Function 
Formalism [5–7], the theoretical approach of statistical non-
equilibrium physics, a transition is made from generalized 
parameters characterizing the spatio-temporal structure of 
signals as a whole to localized parameters. The procedure of 
local averaging of various parameters allows to examine 
separate hidden properties of the studied objects.  Let us take 
a random process of complex dynamics as an example. This 
process consists of a sequence of alternating states. In this 
case the processing of the signals is necessary for separate 
local sites of the whole time series. It will allow to consider 
the properties of separate dynamic states of the system [6]. 

II. THE MAIN PROVISIONS OF THE MEMORY FUNCTION 

FORMALISM 

The temporal dynamics of an experimentally recorded 
parameter of a complex system of living nature can be 
represented as a discrete time series xj  of a variable X: 

  { ( ) , ( ) , ( 2 ) , . . . , ( ( 1) )} ,X x T x T x T x T N              (1) 
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where T is the initial time from which recording of 

experimental parameter started, (N–1)τ is the signal 

recording time, τ =Δt is the sampling time step. The average 

value of the dynamic variable 〈𝑋〉 , fluctuations δxj and 

absolute variance σ2  can be represented as follows: 
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For a quantitative description of the dynamic properties 
of the living system under study (correlation dynamics), it is 
convenient to use the normalized time correlation function 
(TCF): 
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where xj, xj+m are the values of variable X on steps j, j+m 
correspondingly, δxj, δxj+m  are fluctuations of values xj, xj+m, 
σ2  is the absolute variance of the variable X.  

Using the technique of the Zwanzig-Mori projection 
operators [8, 9] introduced in nonequilibrium statistical 
physics allows to obtain a chain of finite difference 
equations of non-Markov type [5, 6] for the initial  and 
higher-order memory functions Mi(t) (i=1,2,…,n): 
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(3b) 

where λi are parameters that form the spectrum of 

eigenvalues of the Liouville quasi-operator 𝐿̂ , Λi are 
relaxation parameters: 
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(4) 

Dynamic orthogonal variables Wn in (4) are obtained 

using the Gram-Schmidt orthogonalization procedure: 
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where δn,m  is the Kronecker symbol. 

In earlier papers [5, 6], in order to quantify the effects of 

statistical memory, the authors proposed a frequency 

dependence of the non-Markov (non-Markovity) parameter: 
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where the frequency characteristics of μi(ν) power spectra 

are determined through the Fourier images of the memory 

functions Mi(t): 
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(6b) 

Non-Markov parameter ε=ε1(0) (for simplicity, the value 

of the statistical memory measure at zero frequency is 

selected) allows to distinguish Markov processes (with short 

or instantaneous statistical memory) and non-Markov 

processes (with long-range memory). At the same time, 

statistical memory refers to information about previous 

states of the system in terms of the original TCF and 

memory functions. An analysis of the non-Markov 

parameter values calculated for various biomedical data 

indicates that it also contains information on the 

physiological (or pathological) state of the living system [5–

7, 10]. The values of the parameter ε ~102 correspond to 

stable physiological states characteristic for the normal 

functioning of the system. The states are characterized by a 

high level of randomness and manifestation of Markov 

components. The occurrence of any deviations in the 

functioning of the living system, e.g. the appearance of 

pathologies or the presence of diseases, leads to a sharp 

decrease in the non-Markov parameter to the value ε ~100. 

The process is characterized by significant ordering or 

regularity and the presence of pronounced non-Markov 

components. Discovered pattern allows making assumptions 

about the physiological or pathological conditions of the 

living system. It should be noted that biomedical data is 

distinguished by a significant degree of individuality. An 

objective assessment is achieved by processing a large 

amount of statistical data (including heterogeneous ones). 

The manifestation of randomness or regularity effects in 

the stochastic dynamics of living systems can be 

characterized as follows. Any complex system has a 

significant number of freedom degrees. In real conditions, 

the corresponding variables are interconnected and are in 

close interaction. High dimensionality, the presence of 

strong nonlinear interactions and feedbacks determine the 

behavior of complex systems. As a rule, this behavior is in 

the nature of Markov random processes. Deviation from the 

normal functioning of a complex system leads to partial 

synchronization of recorded and hidden dynamic variables. 

Synchronization determines the forced organization or 

regularization of the structure of a complex system. Such 

dynamics is characterized by the manifestation of non-

Markov effects. 

III. LOCALIZATION OF STATISTICAL MEMORY FUNCTIONS 

POWER SPECTRA AND FREQUENCY DEPENDENCIES OF THE 

NON-MARKOV PARAMETER  

The algorithm of this procedure is as follows. At the first 
stage, it is necessary to choose the optimal length of the 
local window. With a small length of the local sample, the 
accumulated information will be insufficient for a 
qualitative analysis of time signals. With a long sample 
length, the “sensitivity” of localized parameters is lost, due 
to increasing errors (noise effects). The optimal sample 
length N is determined from the specifics of the studied 
object and the structure of the temporary signal. After 
choosing the optimal window length, the procedure of time 
window construction of spectral characteristics and 
parameters is carried out. The first N points (from 0 to        
N–1) are taken from the initial array of experimental data. 
For this sample, the frequency dependence of the calculated 
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characteristic is built. The following time window of N 
points (from N to 2N–1) is considered. The power spectrum 
of the statistical memory function or the frequency 
dependence of the non-Markov parameter is built. This 
procedure is repeated until the end of the array of 
experimental data. The presented procedure allows detecting 
local features in time signals. Localization of parameters can 
be carried out by moving the local window each time by one 
sampling step (another type of localization). Examples of 
application of the proposed procedure for the analysis of 
bioelectric activity of the human brain and human 
neuromuscular system are presented as follows. 

IV. SEARCH FOR DIAGNOSTIC CRITERIA BASED ON THE 

LOCALIZATIONOF FREQUENCY CHARACTERISTICS OF THE 

BIOMEDICAL SIGNALS 

Fig. 1 shows a temporary record of human 
electroencephalogram (EEG) and time window behavior of 
the frequency dependence of the second point of the non-
Markov parameter ε2(ν). Recording of brain bioelectric 
activity was carried out at different stages of an epileptic 
seizure [7]. The detected transition at the second relaxation 
level from the quasi-Markov scenario in the low-frequency 
region of the spectrum (1 and 2 time windows) to strong 
non-Markov ε2(ν)≈1 (3–6 time windows) is a peculiar 
harbinger of an epileptic seizure. At the time of an epileptic 
seizure (7–12 time windows), resonant vibrations are 
detected in the middle frequency region, which is associated 
with the appearance of abnormal activity of a large number 
of neuron ensembles. The end of the attack is characterized 
by a transition from the non-Markov regime (13 time 
window) to the quasi-Markov scenario (14 time window). It 
should be noted that the simultaneous registration of EEG 
signals according to the international electrode placement 
system “10–20” allows establishing a breaking of the 
correlation between different areas of the human cerebral 
cortex in the case of pathology. Since the number of 
electrode enumerations in this case will be significant, an 

autocorrelation analysis is performed in advance to establish 
meaningful electrodes. In order to search for diagnostic 
criteria, the authors conducted numerous studies of human 
electroencephalograms and magnetoencephalograms (MEG) 
for various brain pathologies (epilepsy, photosensitive 
epilepsy, Parkinson’s disease, Alzheimer's disease, 
Charcot’s disease) and mental disorders (obsessive-
compulsive, bipolar, schizophrenic) [5, 7, 10].  

Fig. 2 illustrates the time window behavior of the power 
spectrum of the initial temporal correlation function μ0(ν) 
calculated for the pathological tremor rate of a patient with 
Parkinson's disease, spectral bursts are noticeable at a 
frequency of ν=5.2 Hz [12, 13]. Parkinson's disease is 
known to be a progressive neurological disease 
characterized by tremors, muscle stiffness and patient 
apathy. Physiologically, this is primarily due to a significant 
decrease in dopamine neurons. The amplitude of the spectral 
bursts at the characteristic frequency reflects an increase or 
decrease in the rate of pathological tremor of patient. In 
particular, the most significant peaks in amplitude are 
noticeable in windows 1–3. In the initial time recording, 
these areas correspond to the highest tremor rate. The 
following picture is observed in the time window behavior 
of the first point of the non-Markov parameter ε1(ν). As the 
tremor rate increases, the parameter ε1(ν) value approaches 1 
(time windows 1–3, 8, 11, 13). In this case, a decrease in the 
non-Markov parameter occurs by 2.5–3 s earlier than an 
increase in the tremor rate. With decreasing of pathological 
tremor rate a quasi-Markov regime is observed in the time 
window behavior of the non-Markov parameter. The study 
of pathological tremor signals recorded during various 
medical measures, based on the analysis of the behavior of 
the non-Markov parameter, allows quantitatively 
determining the effectiveness of the medical effect on the 
patient (conservative drug therapy and/or deep stimulation 
of the cerebral cortex). The constructed characteristics are 
peculiar precursors of changes in the dynamics and local 
structure of signal of pathological tremor. 

 
Fig. 1. Recording of bioelectric activity of the human brain at different stages of an epileptic seizure and time window behavior (N=210 points) of the 
frequency dependence of the non-Markov parameter ε2(ν). 
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Fig. 2. Time window behavior (N=256 points) of initial  time correlation function power spectrum μ0(ν) (a) and the frequency dependence of the ε1(ν) 
parameter (b) for pathological tremor rate of a patient with Parkinson's disease (c). 

V. CONCLUSIONS 

The localization procedure proposed in this work allows 
extracting information about the local structure of a 
temporary signal and its periodic features.  Localization 
procedures are used to study local patterns in the dynamics 
of complex systems by grouping the effects of dynamic 
intermittency in separate sections of the initial time signal [14].  

During the analysis of human EEG at different stages of 
an epileptic seizure, the time window behavior of the 
frequency dependence of non-Markov parameter revealed a 
peculiar predictor of an epileptic seizure. Changes in the 
manifestation of the statistical memory effects characterize 
the pathological features of brain activity. 

During the analysis of the pathological tremor rate, the 
procedure of time window construction of the power 
spectrum of the initial TCF μ0(ν) and the frequency 
dependence of the non-Markov parameter ε1(ν) showed the 
dynamic features of the local sections of the initial time 
signal. In particular, a sharp transition to a non-Markov 
scenario indicates an increase in the pathological tremor rate 
in Parkinson's disease.  

Further prospects for the application of the localization 
procedure are related to its adaptation to the analysis of 
cross-correlations and synchronization effects in 
simultaneously recorded signals generated by spatially 
separated subsystems of complex systems. The combined 
use of MFF with machine learning methods [15, 16] for 
studying localization effects will allow to advance in 
understanding the phenomena, realized in complex systems. 
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