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Abstract—Nowadays machine learning methods play an 

important role in many industries. However, the effectiveness of 

the predictive models depends on the quality of data sets used to 

train the model.  In practice, the imbalanced datasets are quite 

common. For example, in the problems of lithotypes 

classification via whole core photos, some lithotypes often 

predominate the training dataset while some of the other 

lithotypes can be underrepresented. The significant imbalance 

in the dataset can affect the quality of the classification. In this 

case it is difficult to obtain good generalization for poorly 

represented classes. First, some characteristics of a given minor 

lithotype may be absent. Second, some features of a minor class 

can be ignored due to imbalance. In this paper, we analyze the 

oversampling of a minor class as one of the possible options to 

obtain the balanced dataset within the framework of the 

problem of speeding-up the geological core description.  We 

considered examples with different dataset sizes and imbalance 

characteristics to study the effect of applying the oversampling 

approach on the quality of predictive models. 
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I. INTRODUCTION  

The lithological description of whole core specimens is a 
time-consuming process. Using whole core photos to classify 
rocks and mark depth intervals corresponding to these rock 
classes can significantly reduce the time required for such 
description. Modern methods for automating the description 
of rocks by core photographs are based on machine learning.  
The most informative features for machine learning are the 
color characteristics of core image fragments [1,2]. In this 
paper we build predictive machine learning-based models 
using color characteristics of whole core photos. We consider 
an important factor that largely determines the quality of rock 
classification, namely, the influence of data imbalance, on 
which the predictive model is trained, and one of the 
approaches to compensate the imbalance.  

The aim of our study is to determine the parameters of data 
samples that can significantly affect the quality of predictive 
models, as well as to assess the degree of such influence. 
Analyzing characteristics of sample imbalances in a wide 
range of values, we want to understand the limitations of the 
dataset parameters at which such imbalance can be corrected 
to improve the quality of predictive models. 

II. OVERVIEW OF TECHNIQUES FOR PROCESSING 

IMBALANCED DATA 

Real datasets often lack any data due to the difficulty of 
obtaining them. Different methods are used to compensate for 
missing data depending on the data type and the type of task 
[3-11]. We consider the case of imbalance of classes in the 
classification problem, when the data are presented in the form 
of numerical features. 

In the classification problem, it is preferable that the 
training examples are evenly distributed among the classes. 
Some classifiers take into account the errors for different 
classes with same weights and in case of imbalance they 
become more focused on the overrepresented classes. The 
reason for such behavior of classifiers is that identifying the 
characteristics of the majority class contributes stronger to the 
target value (quality functional or error function) than 
identifying the characteristics of the minority class. However, 
the imbalanced classification data sets are often observed in 
applied problems [4-11]. Data sets for the lithological 
description of core are no exception. The imbalance of classes 
is associated with different rock occurrence. The following 
methods can be used to train a model on imbalanced data [9-
11]: 

1. Balancing, that is changing the ratio of classes in the 
sample by increasing the number of instances of the minority 
class (oversampling) or reducing the number of instances of 
the majority class (undersampling). 

2. Making adjustments to the learning algorithm. For 
example, setting different penalties for classes in the support 
vector machine, changing the probability threshold for 
classifying an example as a class in trees. 

3. Establishing different error rates for classes. The cost 
of errors can be taken into account both when changing the 
ratio of classes in the sample, and when making adjustments 
to the learning algorithm. 

4. The use of boosting. Several classifiers that correct 
each other's errors can improve the quality of model 
predictions based on examples of a minority class. 

For lithological description based on full-size core 
photographs, we investigate the oversampling. This approach 
balances samples by increasing the number of examples of the 
minority class. Some of the existing oversampling techniques 
are as follows: 

1. Random oversampling: Copies of randomly selected 
elements of the minority class are created until the required 
ratio is reached. 

2. SMOTE (Synthetic Minority Oversampling 
Technique) [12]: New examples are generated by 
interpolating the examples of the minority class — some i-th 
example and one of its k-nearest neighbors. There are several 
options for choosing the i-th example. One can make a random 
selection (Regular SMOTE), select an example depending on 
the classes to which the surrounding examples (Borderline 
SMOTE) belong, depending on the constructed support 
vectors or on the constructed clusters. 

3. ADASYN (Adaptive Synthetic) [13]: It works 
similarly to the SMOTE method but selects the i-th example 
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of a minority class depending on the coefficient ri, which 
shows the proportion of examples of other classes around the 
i-th example. The greater the coefficient ri, the more examples 
are generated in the vicinity of the i-th example. 

III. SETTING UP AN EXPERIMENT 

There are a lot of lithotypes. In general, lithology 
classification is a multiclass problem. For our study we 
simplify the problem at this stage, considering a binary solver 
that is the one-vs-rest classifier. To study the influence of the 
imbalance on the quality of classification the depth intervals 
were selected in the manner to obtain balanced and variously 
represented target lithotype data, reflecting the typical color 
features of this lithotype as well. We denote the data obtained 
after processing all of the images the initial sample. To study 
the effect of imbalance on the quality of classification, we 
form different size subsamples of the initial sample, which act 
as minority class with different imbalance. We train predictive 
models on such subsets and try to compensate the imbalance. 

We tested 4 initial data sets with different sizes of minority 
and majority classes: 2330:4075, 1165:2038, 583:1019, 
292:510, where the first value is the number of examples of 
the minority, the second is the number of examples of the 
majority class (other lithotypes). To create subsamples with 
different class ratios and study the influence of the initial ratios 
on the further complement of the sample, the minority class is 
reduced by randomly choosing a subset of it of size m. The 
value of m corresponds to some new proportion p relative to 
the size of the majority class. Such subsamples are denoted as 
p(m). To reduce the influence of a random factor on the 
classification results, for each subsample p(m), examples are 
selected 10 times and the results are averaged.  

While training sets have different levels of imbalance, the 
test set is not changed and has the class ratio inherited from 
the initial sample. To assess the quality of models, a 5 folds 
cross-validation is used [14]. The training data sets consist of 
4/5 of the initial data sets and have sizes of minority and 
majority classes: 1864:3260, 932:1630, 466:815, 234:408. 
Testing is performed 5 times on each of the folds and the 
results are averaged. 

To balance the training set, we use SMOTE with random 
selection of examples. After balancing and training, the 
classification accuracy is estimated. We apply the linear 
classification algorithm (logistic regression) and the tree-
based algorithms (gradient boosting and random forest) to 
train the classifier. We employ F1 score to evaluate the quality 
of models. F1 is the harmonic mean of Precision and Recall: 
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where TP (True Positive), TN (True Negative) are the number 
of correctly predicted objects of the positive and negative 
classes correspondingly; FN (False Negative), FP (False 
Positive) are the number of objects incorrectly assigned to 
negative and positive classes correspondingly. The positive 
class is the minority class corresponding to the target rock, and 
the negative class is the majority class, corresponding to other 
rock types. 

IV. RESULTS 

The quality of models for determining the "silty-clay rock" 
lithotype, trained on imbalanced subsamples without using 
oversampling, increases with the growth of the proportion p 
and their number m of examples of the minority class (Fig. 1). 
At the same time, the quality reaches an acceptable level only 
in subsamples where the level of imbalance is very small.  
Therefore, it becomes necessary to correct the imbalance, as 
well as to study the influence of parameters p and m on the 
operation of the classifier. After applying oversampling to 
balance classes, the quality of the models improves. 

a)  

b)  

c)  
Fig. 1. The effect of oversampling on classification quality for training set 

1864:3260: (a) logistic regression, (b) gradient boosting, (c) random forest 

Fig. 2 shows plots of the dependence of the F1 score on 
the proportion of minority class examples after oversampling 
for the two training sets. The plots for training sets 932:1630 
and 466:815 are not shown, because they look similar. One 
can see the proportion p and the number m in the legend of 
plots.  

By comparing of Fig. 2(a) and Fig. 2(b), for the 
classification of the target lithotype, we conclude the 
following: 
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a)  

b)  

Fig. 2. The effect of proportion of minority class examples after 
oversampling on classification quality for training sets (a) 233:408, (b) 
1864:3260. 

1. The quality of the model depends on the number of 
examples m in the minority class before oversampling. The 
dependence on p is not significant. 

2. The quality of the model grows with the increasing 
number of examples representing the minority class before the 
oversampling. 

3. The quality of the model increases when the fraction of 
minority class examples increases due to the use of 
oversampling. 

4. There is the threshold for the number of examples m, at 
which the quality of the initial sample can be reached if 
oversampling is applied.  

Fig. 3 shows plots of the F1 score dependence on the 
proportion of minority class samples after oversampling for 
random examples extracts from the initial sample at p = 0.002 
(m = 5), p = 0.005 (m = 15), and p = 0.015 (m = 50). With a 
small number of examples of the minority class, the random 
factor in choosing these examples has a significant impact on 
the accuracy of classification. If the initial training set 
1864:3260 is trimmed to an imbalance p = 0.002 (m = 5), then 
when the minority class is oversampled to balance with the 
majority class, the average F1 score is 0.62, but the deviation 
from the average reaches 0.09. As the number of examples 
increases, the average value of the F1 score increases, and its 
dispersion decreases. This is not true for all m, but in general 
this trend persists. For a subsample with p = 0.015 (m = 50), 
the average value of the F1 score after balancing is 0.85 and 
the deviation is 0.01. 

To assess the similarity of the subsamples balanced by the 
SMOTE method with the initial sample, we used histograms 
and cross-plots constructed for the most significant features. 

a)  

b)  

c)  

Fig. 3. Graphs showing the scatter of the F1 score for 10 random versions of 
subsamples from the training set 1864:3260 with parameters (a) p = 0.002 
(m = 5), (b) p = 0.005 (m = 15), (c) p = 0.015 (m = 50). 

For 10 versions of subsamples with the parameter m = 50, 
balanced to an equal ratio of classes, the distribution of 
features on histograms and cross-plots is visually similar to 
the distribution of the initial sample (Fig. 4 (c), (d)). For 
subsamples with the parameter m = 5, balanced to an equal 
ratio of classes, the feature distributions may be close to the 
distribution of the initial sample, but in most cases, they have 
significant differences (Fig. 4 (a), (b)). 

V. IMBALANCE IN THE MULTICLASS CLASSIFICATION 

PROBLEM 

 We consider a multiclass lithology classification and try to 
verify if the approach we applied for the binary classification 
can also improve predictive models for the multiclass 
problem. As well as for binary classification, to study the 
effect of imbalance, we change the size of the target class until 
the equality with the largest class is achieved. We use random 
forest classifier and consider nine class model. One of these 
nine classes - carbonate sandstone, is underrepresented in our 
dataset and we consider it as a target minority class. 
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a)  

b)  

c)  

d)  
Fig. 4. Scattering diagrams and histograms for (a) - (b) balanced subsample 

at m = 5, (c) - (d) balanced subsample at m = 50. Subsamples are balanced 
to equal class sizes. 

To establish different levels of imbalance, we randomly 
select 10, 30, and 100 examples from 1249 labeled ones. 
Similar to our previous experiments, an increase in the number 
of examples selected from the initial sample and increase of 

the minority class fraction after oversampling led to growing 
the F1 score (Fig. 5). The quality of the model is evaluated by 
cross-validation. 

Fig. 6 (a, b) illustrates the difference of prediction 
confidence of the two predictive models – before and after 
oversampling. The first 3 columns show day light (DL), 
ultraviolet (UV), and gamma corrected ultraviolet (UV 
gamma corrected) photographs. Fig. 6 (a) contains depth 
intervals which were involved in training, and Fig. 6 (b) 
contains depth intervals which were not be involved in the 
training process. 

 
Fig. 5. Assessment of the classification of the target lithotype relative to the 
rest. 

a)  

b)  

Fig. 6. The predicted probabilities of the presence of the target lithotype in 

the corresponding core sections (a) areas involved in training, (b) areas that 

were not involved. 

The cases A, B, C, and D correspond to the following: 

A: The predictive model is trained on the initial sample, 
containing 1249 target examples; 

B: The predictive model is trained on the initial sample 
oversampled to equality with the majority class and contained 
4884 target examples; 
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C: The predictive model is trained on a sample of 100 
randomly selected target examples; 

D: The predictive model is trained on a sample of 100 
randomly selected target examples, oversampled to equality 
with the majority class. 

Cases A, B, C, and D contain in red the gaussian smoothed 
curves of probability (confidence level) for the core specimens 
to belong to the target class. 

Fig. 5 as well contains labels A, B, C, and D which are 
related with corresponding cases 

Thus, it is seen that applying the oversampling technic can 
improve the quality of the predictive model for the multiclass 
problem, both in terms of F1 score and in terms of confidence 
of the prediction. 

VI. CONCLUSION 

The paper considers the influence of data imbalance on the 
quality of lithotypes classification by the whole core 
photographs. It is shown that the quality of predictive models 
trained on imbalanced data may depend on the degree of 
imbalance and for some samples the imbalance can 
dramatically affect the quality of classification. 

 The level of imbalance at which it is possible to obtain a 
predictive model that is close in quality to the model trained 
on a balanced sample is not constant and depends on the size 
of the data sample, as well as on the quality of the data sample. 
Quality here refers to how fully the sample reflect the 
characteristics of the target lithotype. 

Applying the oversampling technic of data balancing by 
SMOTE method can increase the quality of the lithology 
classification for binary problem (detection of silty-clay 
rocks), and for the multiclass problem.  

The quality of predictive models, close to the quality of the 
model built on the entire balanced data set, was achieved for 
those imbalanced samples which let us restore the distribution 
of the entire data set with the least influence of the random 
factor. 

There is a minimum acceptable number of specimens, 
weakly depending on the size of the entire sample, at which 
we can claim the reproducible quality of model training (with 
an acceptable variance of the quality criterion). As the number 

of specimens available for training decreases, the variance of 
the model quality criterion increases. 
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