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Abstract—The issue of creating high-performance 

computing systems based on heterogeneous computer systems is 

topical, since the volumes of processed information, calculations 

and studies with large data sets are constantly increasing. The 

aim of the work is an experimental study of previously 

developed models for predicting the performance of 

heterogeneous computer systems in telecommunications. As a 

result, the study showed that the developed models allow us to 

obtain an adequate estimate of the possible time of the algorithm 

for various parameters of the GPU with some limitations. 
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I. INTRODUCTION 

One of the most dynamically developing areas in parallel 
programming at the moment is the use of computer systems 
with a heterogeneous architecture, in which there are 
computing devices with different architectures and, 
accordingly, with different methods of using parallel 
computing. The most common approach in the design of such 
systems was the use of graphic video cards or devices based 
on them as the main parallel calculator. This growing need for 
solving big problems stimulates research and innovation in the 
field of parallel computing in general and in the development 
of methods for graphic processors in particular. 

II. RESEARCH AND DEVELOPMENT OF MODELS OF 

HETEROGENEOUS COMPUTING SYSTEMS BASED ON GRAPHICS 

PROCESSORS 

Modern graphic processors (GPUs) are parallel 
processors. More precisely, they are known as stream 
processors because they are capable of performing various 
functions in the incoming data stream. They represent 
advanced architectures that are designed for parallel 
processing of data (primarily graphic). They are currently 
extremely powerful programmable processors, MIMD 
architecture capabilities with some limitations. 

As technology, languages, and hardware evolved, 
researchers were able to leverage the added flexibility of 
GPUs when deploying non-graphical applications to the GPU 
(GPGPU), especially when processing images. A more 
detailed history of the development of GPGPU is presented in 
[1]. 

A further development momentum was the emergence of 
CUDA, the NVIDIA C-based development environment for 
GPGPUs. CUDA allows developers unfamiliar with graphical 
programming to write code that can be executed on the GPU. 
CUDA provides the necessary abstractions for the developer 
to write multi-threaded programs with little or no knowledge 
of the graphics APIs. Since then, many implementations of 
parallelized applications have been developed for GPUs, 

many of which offer significant acceleration compared to 
sequential implementations on the processor. 

A model of the upper bound for the running time of an 
algorithm on a graphics processor in a CPU-GPU environment 
is presented in [2] and is based on an abstract PRAM model 
[3]. The upper estimate of the running time of the algorithm 
on a graphics processor in a CPU-GPU environment 
according to this model is calculated according to the formula 
below 
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This model does not account for certain features of the 
graphics processor, such as the size of a warp-to GPU memory 
access time, etc., however, the GPGPU performance 
prediction model, which is a combination of known parallel 
computing models, was given in [4]. Given the complex 
architecture of the GPU, none of these models is complete, 
and it takes a combination of them along with a few 
extensions. The following models were used during 
development: 

1) The PRAM model [3]. 

2) The BSP model [5]. 

3) The QRQW model [6]. 

The final equation of this model is: 
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All parameters of this model are shown in table 1. 

TABLE I.  THE LIST OF DEVELOPED MODEL PARAMETERS 

Parameter Description 

D The kernel pipeline depth 

Nc The number of cores per SM 

R GPU Clock 

Ct(K) The maximum number of ticks consumed by 
any thread in the kernel K 

Nt Number of threads in warp = 32 

Nw The number of warps per block 

NB(K) The number of blocks per kernel 

Ki i-th kernel on the GPU 

T(K) Time spent by kernel K 

T(P) Time spent by program P 

The performance of the CUDA kernel can vary greatly 
with slight changes depending on memory access strategies. 
Using shared memory can provide up to 20 times better 
performance than using global memory, and using shared 
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global memory access can lead to 5 times better performance 
compared to non-coalesced access. Arithmetic operations also 
require a different number of cycles to perform, for example, 
operations such as integer summation require 4 cycles, while 
calculating an integer module takes 48 cycles [7,8]. Any 
model that does not capture these changes is unlikely to be 
accurate. 

III. USING GPU MEMORY ACCESS PATTERNS TO IMPROVE 

HETEROGENEOUS COMPUTING SYSTEM PERFORMANCE 

Since the access delay when reading data from the global 
memory of the GPU is up to 200 times higher, than reading 
data from the registers, providing the most efficient way to 
access the GPU RAM is crucial to improve the performance 
of the GPU in particular and the heterogeneous system as a 
whole. Therefore, optimizing global memory access is 
becoming the single most important programming factor for 
the GPGPU architecture. 

The GPU global memory reads and writes data in half 
warp threads (16 threads), which are optimized by the device 
in just one global memory transaction if certain access 
requirements are met. For the GTX 280 video card, the 
following protocol is used to determine the number of 
transactions used by the halfwarp: 

1) Implemented search memory segment, which contains 
the address inquiry from the active thread with the lowest 
number. The segment size is 32 bytes for 8-bit data, 64 bytes 
for 16-bit data, and 128 bytes for 32-, 64- and 128-bit data. 

a) if the transaction size is 128 bytes and only the upper 
or lower half of the segment is used, the transaction size is 
reduced to 64 bytes; 

b) if the transaction size is 64 bytes and only the lower 
or upper half is used, the transaction size is reduced to 32 
bytes. 

2) A transaction is in progress, serviced threads are marked 
as inactive. 

3) Repeated until all threads in the halfwarp are serviced. 

When more than one thread requests data from addresses, 
that fall into the same segment, one transaction can satisfy all 
such threads. This service of multiple requests in a single 
transaction is called coalescing. Thus, it is obvious that certain 
GPU memory access patterns will necessarily have a positive 
effect, while others will gradually increase the delay as the 
memory addresses requested by the halfwarp threads diverge. 

The shared memory of the GPU is divided into memory 
modules of the same size, called banks, which can be accessed 
simultaneously by several threads. Thus, any request to read 
or write to the memory, consisting of n addresses, that fall into 
n separate memory banks, can be carried out simultaneously, 
which gives an effective throughput that is n times higher than 
the throughput of one module. However, if two memory 
request addresses fall into the same memory bank, a bank 
conflict occurs and access must be serialized. The GPU 
divides memory access requests with bank conflicts into as 
many individual requests without conflicts as necessary, 
reducing the effective bandwidth by a factor equal to the 
number of individual memory requests. For GTX280, the size 
of the warp is 32, and the number of banks is 16. Access to 
shared memory for warp is divided into one request for the 
first half of warp and one request for the second half of warp. 
As a result, there can be no conflict of the bank between a 

thread belonging to the first half of the warp and a thread 
belonging to the second half of the same warp. 

Shared memory also has a broadcast mechanism that 
allows you to read a 32-bit word and broadcast it to multiple 
threads at the same time with one transaction to read from 
memory. This reduces the number of conflicts in the bank 
when several threads of the halfwarp are read from the address 
within the same 32-bit word. More precisely, a memory read 
request made to several addresses are served in several stages 
over time – one step every two cycles, serving one conflict-
free subset of these addresses per step, until all addresses are 
served. At each step, a subset is constructed from the 
remaining addresses that have yet to be served using the 
following procedure: 

1) Select one of the words indicated by the remaining 

addresses as the translated word. 

2) Include in a subset: 

a) all addresses that are within the broadcast word; 

b) one address for each bank indicated in the remaining 

addresses. 

The space of constant memory is cached, so reading from 

constant memory is delayed as in the case of reading from 

global memory only if there is no cache, otherwise a 

transaction from constant cache is performed. For all threads, 

halfwarp reads from the constant cache as fast as reads from 

registers if all threads read the same address. Access time 

scales linearly depending on the number of different 

addresses read by all threads. 

Texture memory allows to cache data present in global 

memory. If a cached item is requested, then it is served in a 

single request. The lack of a cache results in a global memory 

read operation, which takes much longer. 

To compare the access time to different types of memory, 

1,000,000 read operations from each type of memory were 

performed. Access was performed both sequentially and 

randomly. Tests were performed using the NVIDIA GTX280 

GPU. The results are presented in Table 2. As you can see, 

shared memory provides the best performance, followed by a 

constant cache, and then a texture cache. Global memory 

shows the highest latency. 

TABLE II.  COMPARISON TABLE OF ACCESS TIMES FOR DIFFERENT 

MEMORY TYPES  

Memory type Serial access, ms Random access, ms 

Global 969 21777 

Shared 51 86.6 

Constant 35 192 

Texture 140 247 

IV. EXPERIMENTAL MODELING OF GPU MEMORY ACCESS 

PATTERNS 

For most parallel computing platforms, modeling memory 
access patterns and their associated costs is the most complex 
and most important part. The following algorithm is used to 
experimentally verify statements about the process of 
accessing memory on the GPU: 

Algorithm 1 Global Memory Access Benchmark 

Input data: number of elements N, step stride, offset offset, 
array A in global memory. 

1: Calculate the number of elements in the thread, Nthread; 
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2: Calculate the data range of this thread, using stride and 
offset; 

3: while index is in the range do 

4:  Reading A[index] to variable R; 

5:  Increment R and save back to A[index]; 

6:  index = index + stride; 

7: end while 

Using the above algorithm, the experiment was simulated, 
that shows how much gain from sharing depends on the 
number of threads in the warp. This is controlled by the stride 
variable. Stride denotes the gap between elements, that are 
accessed sequentially by a single thread. Consequently, 
threads in halfwarp can take advantage of coalesced access, if 
the stride value is large. For example, when stride = 32, each 
warp thread receives consecutive elements, which ensures 
complete union. When stride is 1, each thread reads one 
element that is offset by 32, so they are not completely merged 
and require 16 memory transactions that will be serviced for 
halfwarp. To ensure a fair comparison, in the above code the 
number of hits on the stream does not depend on stride. 

In the code shown in algorithm 1, the number of 
calculations per iteration is very small compared to the 
memory access delay for stride = 1. However, as the stride 
value increases, memory access and calculations take 
approximately the same number of clock cycles. Using the 
MAX model, we can assume the runtime of this kernel and 
compare it with the actual one in Figure 1. The program 
execution graph is shown for various stride values. It should 
be noted that the basic access code only for memory, that is, 
with a small number of calculations, differs from the model, 
due to limited information about the hardware [9,10]. 

 

Fig. 1. The results of experimental studies of modeling access to global 
memory using the MAX model. 

As can be seen from Figure 1, the value of stride 
significantly affects the execution time of the algorithm. 
Because the amount of operations of the actual calculations in 
the algorithm is very small, then from the graph you can see 
that to increase the performance of the parallel algorithm it is 
necessary to read the array elements located at a distance from 
each other by no less than the value of warp to take advantage 
of the combined access to memory. It can also be seen from 
Figure 1 that although the graph of the predicted lead time 
does not coincide with the graph of the actual time, it also 
allows the predicted lead time to obtain enough information 
about the decrease in performance while decreasing the 
distance between the read elements. This suggests that the 

model presented above adequately describes the performance 
of GPGPU. 

V. EXPERIMENTAL VERIFICATION OF THE IMPACT 

OF ACCESS CONFLICTS WHEN USING SHARED MEMORY 

In this experiment, while maintaining the general structure 
of global memory accesses, as in the previous experiment, 
each thread writes an element to the shared memory. The 
shared memory access pattern is controlled by the bank 
variable, which can be set to a value from 0 to 16. With a larger 
bank value, we can thus increase the number of access 
conflicts. 

Algorithm 2 Shared Memory Access Benchmark 

Input data: number of elements N, step stride, offset offset, 
control variable bank, array A in global memory, array B in 
shared memory. 

1: Calculate the number of elements in the thread, Nthread; 

2: Calculate the data range of this thread, using stride and 
offset; 

3: while index is in the range do 

4:  for i = 0 to 10000 do 

5:  Reading A[index] and save it back; 

6: B [IDthread × bank (mod sizeblock)]; 

7:  end for 

8: end while 

The kernel in this algorithm has about 16 cycles of 
calculation per iteration, and there are 64,000 iterations. The 
number of clock cycles required to access the memory is about 
bank × 4 per iteration [11,12,13]. Actual lead time and lead 
time predicted by the developed model are shown in Figure 2.  

 

Fig. 2. The results of experimental studies of the access conflicts impact, when 
using shared memory. 

As can be seen from Figure 2, there is a linear dependence 
of the number of conflicts on the execution time of the 
program. Thus, to increase the performance of parallel 
algorithms, it is necessary to exclude the intersection of the 
read data for different threads [14]. Also from Figure 2 we can 
conclude that the presented model allows us to adequately 
estimate the execution time of the algorithm in the presence of 
memory conflicts, although it does not provide accurate 
information due to the closed hardware platform. 
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VI. CONCLUSIONS 

This paper presents an experimental study of previously 
developed models for predicting the performance of a 
heterogeneous computer system in telecommunications. The 
study showed that the developed models allow us to obtain an 
adequate estimate of the possible time of the algorithm for 
various parameters of the GPU. However, it is worth noting 
that the estimate obtained using the developed models is not 
accurate, because average access time is used for all levels of 
the memory hierarchy. In the future, it is planned to finalize 
the models taking into account the use of the amount of 
memory access time, obeying a rank distribution, for example, 
Pareto or Zipf. 
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