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Abstract—The article considers the problems of creating a 

tool for operational forecasting of quality indicators (assembly 

parameters) for knowledge-intensive products. The basis of 

forecasting is the creation and use of actual geometrical models 

of parts containing data on their geometrical deviations, and 

numerical models of part mating. Actual geometrical models are 

created based on the data on coordinate measurements of parts. 

The developed models have been validated using the example of 

an assembly unit composed of three parts of an aircraft engine 

turbine rotor. To reduce computing resources, the use of a 

radial-basis neural network to calculate assembly parameters 

has been considered. Training and test samples have been 

modelled, the network operating parameters have been 

optimized, and the obtained results have been generalized. 

Keywords—numerical model, actual geometry, assembly 

parameter, neural network 

I. INTRODUCTION 

The most critical quality indicator for engineering 
products is the geometrical accuracy of machines, which has 
a significant impact on the performance. The geometrical 
accuracy of products can be increased and their production 
cost can be decreased by developing and implementing digital 
technologies into product design and production processes. 
The new generation high-tech industry is based on data use. A 
promising approach to improve design processes and 
manufacture high-tech products provides for the development 
of digital counterparts of objects being digital analogues of 
actual objects [1]. In respect to assembly of engines and power 
plants, a digital counterpart represents related actual models 
of parts. 

Mathematical models [2] implemented in the form of 
computer models are used to forecast quality indicators (in 
particular, assembly parameters). The assembly model choice 
depends on the stiffness requirements. Some models are based 
on the solid state hypothesis, for example, the T-Map model 
[3]. Other models, such as the Skin form model and the 
Deviation Area Model (DD), canal so simulate a flexible part 
or assembly [4]. These models can be either point-based or 
feature-based. Compared to the features that simultaneously 
characterize position and direction information, the position 
of a point in space is described by its location rather than 
orientation, with variations that vary depending on the choice 
of different points [5]. 

Direct modelling of mating using numerical models of 
mating and finite element models of the assemblies requires 
significant computing resources [6] and often has decision 
coincidence problems. Artificial neural networks can be used 
to improve the forecasting efficiency for the assembly 
parameters. 

The article considers the option developed to solve the 
problem of the product geometrical accuracy based on the data 
on specific part measurements, neural network models, and 
digital counterparts of the assemblies. The goal of the article 
is to study the estimate of the assembly parameter calculation 
error with the help of the neural network model based on a lot 
of data obtained using a digital counterpart of the assembly. 

II. SUBJECT OF THE RESEARCH 

The assembly of three turbine parts is considered as the 

subject: shaft, retainer, and disc. Fig. 1 shows a sketch of the 

assembly unit under consideration. 

The bases A and B in Fig. 1 form a rotation axis (basic 

axis). The requirements for face runout 
t r

P of the discЗ 

surface, and radial runout 
r r

P of the disc surface П have been 

set in relation to the basic axis. Let’s consider models and 

algorithms that allow virtual forecasting of runouts. 

III. DIGITAL COUNTERPART OF THE ROTOR ASSEMBLY 

The digital counterpart of the assembly includes the 

following: digital models of parts including the actual 

geometry containing production deviations; calculation of 

mating states of parts [7, 8]; calculation of assembly 

geometrical parameters. 

A. Creation of part models with actual geometry 

Information about the actual geometry represented as data 

on the part surface measurements is required for the 

modelling. The assembly model accuracy mostly depends on 

the accuracy of the actual geometry measurements on 

coordinate inspection machines [9, 10] or scanning devices. 

Part surfaces were measured on a coordinate measuring 

machine (CMM) of DEA GlobalPerformance. 
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Fig. 1. Assembly unit and controlled surfaces, 1 – shaft, 2 – retainer, 3 – disc. 

The number of points measured on the planes and 
cylindrical surfaces was 200 points. Part ends were measured 
in cross-sections. In case of cylindrical surfaces, cross-
sections represent intersection lines of the surface and planes 
which are perpendicular to the rotation axes. For face surfaces, 
cross-sections represent intersection lines of the surface and 
cylindrical surfaces which axis and centre coincide with the 
normal plane vector. The coordinates of the measured points 
were saved as *.txt files for further analysis in the MATLAB 
system. 

After downloading the point coordinates on the surfaces, 
they are processed and brought to a specific structure for 
further creation of actual surfaces. Processing of the point 
coordinates lies in smoothing outliers and calculating point 
coordinates which are not enough to build the data structure.  
 The coordinates were smoothed with the moving average 
method. Calculation of the point coordinates lies in creating 
cross-sections of the part surfaces by approximating or 
interpolating the measured sets of surface point coordinates 
using spline functions in the form of profiles or surfaces [12]. 

The general view shows the complex part surfaces in a 
portion way, like a patchwork quilt. Complex curves and 
surfaces in CAD systems and metrology software of 
measuring equipment are described using spline equations. A 
3rd degree normalized cubic spline, namely the Hermite curve, 
was used for mathematical representation of spatial curves 
[13]. The surfaces created on the basis of the bicubic portions 
were used to describe the part surfaces with geometrical 
deviations of the forms (Coons portions [13]). 

So digital models of the parts represent a set of the 
interconnected part surfaces involved in the assembly and 
control. 

B. Virtual calculation of the part assembly, result saving 

To solve the contact task using the surface models, an 
iterative algorithm has been developed; it allows calculating 
the parts mating without taking into account deformation of 
the parts in the process of assembly detailed in [7]. The 
algorithm for determining the mated state assumes iterative 

movement of one mating surface in relation to the other one, 

with the stress application vector of the surface assembly.
1

D  

To ensure the best adjustment, the iterative algorithm of 
nearest points (ICP) is used [14, 15]. According to this 
algorithm, the rotation and movement angles along the 
coordinate axes are calculated at each iteration with the non-
linear optimization search methods. The system of inequalities 
presented in the work [16] limiting the gap function is used to 

exclude the intersection of two surfaces ( )G V . The use of the 

algorithm results in calculating a rotation matrix and moving 
part movement vector that determines the conversion of its 
initial coordinate system into the coordinate system in the 
assembled state. 

C. Calculating the assembly geometrical parameters 

 The radial runout between the control surface P and bases 
A and B (Fig. 1) is calculated in the following order: 

 The main axis of the coordinate system coincides 

with the normal vector of the 
с

a  rotation axis 

set using the bases А and B. 

 The distances from the measured points P to the 
rotation axis are calculated. 

 The value of the radial runout rr _  is 

calculated as the difference between maximum 

m ax
d  and minimum 

m in
d  from the measured 

points of the surface P to the rotation axis. 

The face runout of surface 3 is calculated as the difference 

of maximum and minimum distances from the measured 

points of face 3 to the plane perpendicular to the rotation axis.  

The coincidence of the modelling results with actual 

parameters obtained during the assembly was estimated by 

calculating absolute deviations: 

a m eas m
P P   ,   (1) 

and relative deviations: 

/ 100%
rel a

T   ,  (2) 

where 
m

P  – is the parameter calculated as a result of 

modelling; 

m e a s
P  is the measured parameter. 

IV. NEURAL NETWORK MODEL OF GEOMETRIC ACCURACY 

FORECASTING 

To obtain an adequate forecast using the neural network, 
the following is required: determine the composition of the 
network input parameters; create a sufficiently large quantity 
of training samples; select an appropriate architecture of the 
neural network. The sufficient volume of the training sample, 
as a rule, exceeds the available statistics on measurements. In 
addition, the parts obtained in a certain batch may not cover 
all the potential cases, and the next batch will have 
combinations of deviations absent in the previous one, which 
will have an effect on the forecast quality. This caused the 
selection of artificial modelling of the training set of actual 
models based on the data of the available production statistics. 

A. Creating a set of actual part models 

The measured points were modelled using production 
statistics on geometrical deviations of cylindrical and flat parts 
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of the assembly parts to create training and test data sets. The 
cylindrical and flat ends of the parts are considered. The point 
coordinate can be set by formula: 

 m n f
p р п t    R , (3) 

where 
m

p
n

р  is the vector of (х, у, z) point coordinates of the 

measured (modelled) and nominal (CAD) surfaces, 
respectively; 

п


 is the normal vector in point 
n

р ; 

f
  is the form deviation value in point 

n
р ; 

R , t


 is the turn matrix and the vector of coordinate 

transposition for point 
n

р  characterizing the arrangement 

deviation. 

 The Fourier’s series were used for the form deviation 
f

  

[8]. 

B. Training the neural network, assessing the forecasting 

errors 

A widely used architecture was selected as the neural 
network for forecasting tasks, namely fully connected radial 
basic networks [17]. The architecture of the generalized 
regressive neural network (GRNN) has two layers – hidden 
radial basic layer and output linear layer. A radial basic neuron 
converts the distance from this input vector into the “center” 
corresponding to it by a certain non-linear law (generally, the 
Gaussian function). The influence parameters that have an 

effect on displacements 
s p

P  in neurons and are an adjusted 

neuron parameter is the changed parameter of the network. 
The number of neurons in the radial basic layer is equal to the 
number of elements in the training set. Figure 2 shows the 
network architecture when the training sample number is 
9,500. 

Fig. 2. GRNN architecture for parameter forecasting. 

The data that has a direct correlation dependence on the 
assembly parameters shall be entered into the network. The 
following derived parameters were used as these inputs: 
parameters of the harmonic series describing the form 
deviation for all the surfaces; radius deviations in case of 
cylindrical ends; parameters of surface parallel alignment; 
displacement of cylindrical end centres. A total of 128 
parameters were used for the assembly of three parts under 
consideration. The input data was adjusted within the range 
[0; 1]. 

Forecasting errors should be estimated to assess the results 
of the assembly parameter forecast and update the structure of 
the selected neural network model. The parameter forecasting 
errors are estimated by two criteria: 

 Share of predicted values within the allowable 

accuracy 
a d d

 . 

 Root-mean-square error (RMSE) of predicted and 
actual parameters. 

Let's specify the order of these values calculation: 

 Calculate the error between the predicted and actual 
parameters: 

п pr a
P P   .  (5) 

 The number of errors is counted within the allowable 

area 
a d d

N


. The allowable area of errors is calculated 

as a percent of the maximum value of the predicted 
parameter, namely 10 %. 

 The forecast accuracy is calculated as the quantity 

a d d
N


 to total sample volume ratio: 

/
a d d a d d co m

N N


 . (6) 

 The root-mean-square error value is calculated by 
formula: 

2
/

co m
R S M E N  . (7) 

V. WORK RESULTS 

The required data on the assembly part deviations were 
obtained as a result of the part measurement. The rotor was 
assembled. The assembly was installed in a special tool and 
the measurement was made on the CMM. This stage of 
assembly is performed for four shaft positions. The shaft is 
rotated at an angle of 90 ̊for each new position. The points of 
the surfaces Z and P are measured (Fig. 1) in relation to the 
shaft bases. The radial and face runouts are calculated. The 
measured data of certain parts were processed and the 
assembly parameters were calculated virtually in the 
MATLAB system. The results of the assembly parameters 
measured in the experiments and resulted from the virtual 
modelling are given in Table 1. 

TABLE I. COMPARISON OF THE ASSEMBLY PARAMETERS OBTAINED IN THE 

PROCESS OF MODELLING AND MEASUREMENT 

Paramet

er 
Angle, ° 

m eas
P  

m
P  

a
 , mm 

от н
 , % 

r r
P  

0 0.133 0.13 0.003 2.31 

90 0.139 0.14 -0.001 -0.71 

180 0.150 0.15 0.000 0.00 

270 0.111 0.13 -0.019 -14.62 

t r
P  

0 0.078 0.10 -0.022 -22.00 

90 0.107 0.09 0.017 18.89 

180 0.109 0.10 0.009 9.00 

270 0.090 0.09 0.000 0.00 

Based on the results in Table 1 it may be concluded that 
the modelling results are mostly sufficiently close to the 
experimental data when the developed digital counterpart is 
used. The differences are explained by the following: 
measurement errors and creation of the part surface models; 
necessity of part stiffness consideration; assumptions made in 
the process of the assembly model development. Elimination 
of the above reasons to reduce the number of deviations is the 
task of further development of the digital model. 

Various cases of the assembly under consideration were 
modelled to make a forecast using neural networks. A total of 
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10,000 cases were modelled. Their calculation lasted 72 hours 
of machine time, in the computer with AMD Ryzen 7 2700 
Eight-Core processor, clock rate of 3.2 GHz, and RAM 32 Gb. 
128 parameters of geometrical deviations of the surfaces and 
resultant runouts are saved for each case. The allowable error 
field is calculated as a percent of the maximum value of the 
predicted parameter and is accepted as equal to 10 %. As to 

the parameter
r r

P  , the error tolerance (on the basis of 10 % of 

the maximum parameter value for the assembly) is 

± 0.047 mm; as to the parameter 
t r

P , the tolerance is 

± 0.049 mm. The value of the parameter 
s p

P  was selected so 

that the total value of the parameter R SM E  is minimum and 

the value of the parameter 
add

  is maximum. The parameter 

s p
P  was selected within a range of 0.001–3. The test sample 

was not changed and amounted to 500 cases. Different 

volumes of training samples were 
v

N  were considered: 500, 

1,000, 2,500, 5,000, and 9,500 cases. 

128 parameters of the measured surfaces, which assembly 
parameters are given in Table 1 for four positions, were 

entered after selecting the parameter 
s p

P  and network 

training. Table 2 contains the results of the network operation 
related to forecasting parameters of radial and face runouts for 
the measured assembly. 

TABLE II. RESULTS OF THE NEURAL NETWORK MODELLING 

s p
P  1 1 0.5 0.5 1 

v
N  500 1000 2500 5000 9500 

Angle, ° 
r r

P , mm 

0 0.117 0.115 0.122 0.116 0.116 

90 0.113 0.114 0.119 0.111 0.111 
180 0.117 0.121 0.125 0.111 0.119 

270 0.125 0.123 0.123 0.119 0.121 

Angle, ° 
t r

P , mm 

0 0.111 0.110 0.106 0.109 0.115 

90 0.109 0.112 0.109 0.112 0.115 

180 0.114 0.115 0.108 0.106 0.113 

270 0.115 0.112 0.107 0.108 0.113 

 

The values of relative deviations 
re l

 of the data in Table 

2 are considered in Table 3. The measurement results in Table 

1 are taken as the basis. Besides, Table 3 includes the 

arithmetical means of the parameter deviations (overall 

average M , 
r r

M  average for 
r r

P , and 
tr

M  average for 
t r

P

). 

Generalizing the results in Tables 2 and 3 it may be noted 

that the highest accuracy is achieved when the volume of the 

training sample amounts to 2,500 cases. Based on the average 

and limit values 
re l

  in Table 3, the number of radial runout 

forecast errors is less than the number of face runout forecast 

errors. At the same time the absolute values of the limit errors 

in forecasting with the help of direct modelling and neural 

network are close (results in Tables 1 and 3): for 
r r

P  – (-

14.62 %) and (-16.67 %), respectively, in case of direct 

forecast and forecast with the help of the neural network; for 

tr
P  – 21.11 % and (-22 %). 

TABLE III. VALUES 
re l

  FOR THE FORECAST 

v
N  500 1000 2500 5000 9500 

Angle, 

° re l
 for 

r r
P , % 

0 -10.00 -11.54 -6.15 -10.77 -10.77 

90 -19.29 -18.57 -15.00 -20.71 -20.71 

180 -22.00 -19.33 -16.67 -26.00 -20.67 

270 -3.85 -5.38 -5.38 -8.46 -6.92 

Angle, 

° re l
 for 

tr
P , % 

0 11.00 10.00 6.00 9.00 15.00 

90 21.11 24.44 21.11 24.44 27.78 

180 14.00 15.00 8.00 6.00 13.00 

270 27.78 24.44 18.89 20.00 25.56 

M  16.13 16.09 12.15 15.67 17.55 

r r
M  13.78 13.71 10.80 16.49 14.77 

tr
M  18.47 18.47 13.50 14.86 20.33 

 

None of the deviations has exceeded the tolerance by 10 % 
of the maximum parameter value. The results show that the 
selected neural network architecture allows achieving the 
same accuracy, when the training sample value is 2,500 cases 

and the parameter is 
s p

P =0.5, as the developed digital model 

based on the direct modelling of the part surfaces and 
assembly process. 

VI. CONCLUSION 

The article contains the research results that allow 
forecasting the resultant assembly geometrical parameters on 
the basis of the measured data. The problem of creating the 
digital counterpart of the rotor assembly that allows 
reproducing the part assembly process on the actual surfaces 
has been solved. The tasks of modelling the actual surfaces 
using small statistics and modelling the measurement data 
itself have been solved. The relative deviations of forecasting 
the assembly of three parts of the turbine rotor do not exceed 
22 % and allow speaking about the adequacy of the proposed 
decision. A total of 128 affecting parameters of geometrical 
deviations have been selected. The radial basic neural network 
appropriate for forecasting the assembly parameters, which 
accuracy is comparable to the direct modelling performed 
using the digital counterpart of assembly, has been created and 
trained. The use of the trained neural network to forecast the 
assembly parameters of the assembly under consideration 
allows significantly reducing the labor intensity of 
calculations and using the developed decision immediately 
after the part measurement and measured data processing. In 
addition to the solved tasks, there is a number of other tasks 
(labor intensity of measurements, consideration of the part 
stiffness during assembly modelling) which will be the focus 
of further researches. 
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