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Abstract—In this paper, we consider super-resolution 

image reconstruction using the method of projections onto 

convex sets. We explore an influence of input image set size on 

the result of super-resolution reconstruction. We propose an 

indicator value as a ratio between the number of images in the 

set and the square of upscale factor of reconstruction. The 

method of convex projections was implemented using the 

Python programming language. The experiments were 

conducted on the Standard test images from TESTIMAGES 

project set. The results and future plan for improving the 

POCS method for super-resolution reconstruction are 

discussed in the final part of the paper. 

Keywords—super-resolution, the method of projections onto 

convex sets 

I. INTRODUCTION 

Super-resolution (SR) of an image provides a high pixel 
density and, therefore, more details about the object can be 
captured. The super-resolution problem is raised in computer 
vision in regard to pattern recognition and image analysis [1] 
[2], in the task of medical imaging [3] and the Earth remote 
sensing [4]. CNN-based super-resolution algorithms were 
successfully applied to image super-resolution problem [5], 
[6]. These algorithms learn representations from large 
training databases of high- and low-resolution image pairs or 
exploit self-similarities within an image [7]. Super-resolution 
imaging devices are expensive, and their usage is not always 
possible due to sensor limitations and optical technology 
(e.g., thermal imaging systems [8]). Image processing 
algorithms partially solve these problems by simplifying the 
system for obtaining images due to the greater computational 
load. Existing methods for improving image resolution fall 
into two large categories: linear [9] and adaptive [10].  

Linear methods, such as bicubic interpolation [11], are 
easy to implement but do not allow us to completely extract 
information from source images. The use of adaptive 
methods provides a better result. Among the technologies for 
improving image resolution from the set of images, super-
resolution technology is the most effective. 

Conventional approaches to generating super-resolution 
images require multiple low-resolution images of the same 
scene, which are aligned with sub-pixel accuracy [12]. In this 
paper, we study a method for constructing super-resolution 
image using projections onto convex sets (POCS) [13]. 

II. PROBLEM STATEMENT 

The problem of the super-resolution reconstruction can 
be formulated as follows. There is a set of N low-resolution 
images of the same scene. Each low-resolution image is 
obtained by downsampling of the high-resolution image 

(Fig. 1). In matrix form this observation model image is 
written as follows: 

[
𝒃𝟏
⋮
𝒃𝑵

] = [
𝑫𝟏 ∙ 𝑩𝟏 ∙ 𝑾𝟏

⋮
𝑫𝑵 ∙ 𝑩𝑵 ∙ 𝑾𝑵

] 𝑿 + [

𝒆𝟏
⋮
𝒆𝑵
] = [

𝑨𝟏
⋮
𝑨𝑵

] 𝑿 + [

𝒆𝟏
⋮
𝒆𝑵
] 

where 𝒃𝒊  (𝑖 = 1, 𝑛̅̅ ̅̅̅) are the low-resolution images with the 
size of 𝑀 ×𝑀 pixels, 𝑫 is a subsampling matrix  with the 
size of 𝑀2 × 𝑃2 pixels; 𝑩 is a blurring matrix with the size 
of  𝑃2 × 𝑃2 (the matrix is evaluated from the point spread 
function (PSF) [14]); 𝑾 is a geometric transfer matrix with 
the size of 𝑃2 × 𝑃2 pixels [15];𝑿 is a high-resolution image 
𝑃 × 𝑃; 𝒆 is a Gaussian noise. 

a) 

 

b) 

   

Fig. 1. a) Test image; b) Rotated, blured and downsampled low-resolution 

images. 

In this paper, we resample super-resolution image using 
the POCS method. The operator of the corresponding convex 
set of constraints projects points from the solution space onto 
the nearest point on the surface of this convex set. After a 
finite number of iterations, a solution to the set of 
intersections comes to a convex set of constraints.  
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The algorithm can be represented in the form of the 
following steps. 

1. Evaluation of the interpolated low-resolution image. 

2. Calculation of the displacement (motion 
compensation) of pixels on each low-resolution. The 
correspondence between high and low resolution images is 
given as 

𝑔(𝑚1, 𝑚2, 𝑙) = ∑ 𝑓(𝑛1, 𝑛2)ℎ(𝑛1, 𝑛2; 𝑚1
′ , 𝑚2

′ 𝑙)

𝑛1,𝑛2
+ 𝑛(𝑚1, 𝑚2𝑙), 

where (𝑚1, 𝑚2) is a point of the interpolated low-resolution 
image, and (𝑛1, 𝑛2)  is a corresponding point into 
high-resolution image. 

3. Obtaining a pixel position on low- and high-resolution 
images. 

Then we evaluate the ℎ(𝑛1, 𝑛2; 𝑚1
′ , 𝑚2

′ 𝑙)  parameter 
which is a value of point spread function according to the 
pixel position. The obtained low-resolution image 
𝑔(𝑚1, 𝑚2, 𝑙)  can be constrained by a convex set С𝑛1,𝑛2,𝑘 . 

Therefore: 

С𝑛1,𝑛2,𝑘 = {𝑓(𝑚1, 𝑚2, 𝑙): |𝑟
(𝑓)(𝑛1, 𝑛2, 𝑘) ≤ 𝜕0(𝑛1, 𝑛2, 𝑘)|} 

0 ≤ 𝑛1, 𝑛2 ≤ 𝑁 − 1, 𝑘 = 1,… , 𝐿 

Projection 𝑃(𝑛1, 𝑛2, 𝑘)𝑥[𝑚1,𝑚2, 𝑙]  onto 𝐶(𝑛1, 𝑛2, 𝑘)  in 
arbitrary point 𝑥(𝑚1, 𝑚2, 𝑙) can be represented as: 

𝑃(𝑛1, 𝑛2, 𝑘)𝑥[𝑚1, 𝑚2, 𝑙] =

{
 
 
 
 

 
 
 
 𝑥(𝑚1, 𝑚2, 𝑙) +

𝑟(𝑥)(𝑛1,𝑛2,𝑘)−𝜕0(𝑛1,𝑛2,𝑘)

∑∑ℎ2(𝑛1,𝑛2;𝑚1
′ ,𝑚2

′ 𝑙)
ℎ(𝑛1, 𝑛2;𝑚1 , 𝑚2 𝑙)

𝑟(𝑥)(𝑛1, 𝑛2, 𝑘) > 𝜕0(𝑛1, 𝑛2, 𝑘)

𝑥(𝑚1, 𝑚2, 𝑙)

−𝜕0(𝑛1, 𝑛2, 𝑘) < 𝑟
(𝑥)(𝑛1, 𝑛2, 𝑘) < 𝜕0(𝑛1, 𝑛2, 𝑘)

𝑥(𝑚1, 𝑚2, 𝑙) +
𝑟(𝑥)(𝑛1,𝑛2,𝑘)+𝜕0(𝑛1,𝑛2,𝑘)

∑∑ℎ2(𝑛1,𝑛2;𝑚1
′ ,𝑚2

′ 𝑙)
ℎ(𝑛1, 𝑛2;𝑚1 , 𝑚2 𝑙)

𝑟(𝑥)(𝑛1, 𝑛2, 𝑘) < −𝜕0(𝑛1, 𝑛2, 𝑘)

  

We estimate a residual between the test image and the 
reconstructed using the described algorithm. The residual 
formula can be written as: 

𝑟(𝑓)(𝑛1, 𝑛2, 𝑘) =  𝑔(𝑛1, 𝑛2, 𝑙)

−  ∑𝑓(𝑚1, 𝑚2, 𝑙) ·  ℎ(𝑛1, 𝑛2; 𝑚1
′ , 𝑚2

′ 𝑙) 

where ℎ(𝑛1, 𝑛2; 𝑚1
′ , 𝑚2

′ 𝑙) is an impulse response coefficient, 
𝜕0  is a confidence level for the observed results. These 
parameters define high-resolution images that correspond to 
low-resolution images within a confidence interval. 

4. Iterative repetition of the second step until the stop 
condition is met. 

With the use of a projection operator, the estimated value 
𝑓(𝑚1, 𝑚2, 𝑙) of the high-resolution image can be found using 
all low-resolution images by performing some iterations: 

𝑓(𝑖+1)(𝑚1, 𝑚2, 𝑙) =  𝑇𝜆�̃�[𝑓
(𝑖)(𝑚1, 𝑚2, 𝑙)]  𝑖 = 0,1, …, 

where �̃�  is a combination of all projection operators 
associated with 𝐶(𝑛1, 𝑛2, 𝑘) . The initial approximation 
𝑓0(𝑚1, 𝑚2, 𝑙) is obtained by bilinear interpolation. 

We conducted a research about super-resolution image 
reconstruction using the method of POCS. An influence the 
parameters of image set formation and parameters of an 
above algorithm to the super-resolution reconstruction was 
investigated. 

III. EXPERIMENTAL RESULTS AND ANALISYS 

In this paper, an experimental study of the influence of 
the number of input images on the result of image 
reconstruction was carried out for different image scaling 
parameters. 

Images from the TESTIMAGES project set [16], [17] 
were used as test images. Rotation, translation, blurring and 
downsampling were performed to generate low-resolution 
raw images for the experiment. The size of the blurring 
window was the same as the downsampling scale. The SURF 
algorithm was used to align the images. The method of 
convex projections was implemented using Python 
programming language with libraries OpenCV [18] and 
NumPy[19]. 

The value of the relative "information completeness" has 
been proposed as a universal measure of the number of 
images in a set. This indicator was calculated as 

𝑝 =
{𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡}

{𝑖𝑚𝑎𝑔𝑒 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟}2
=
𝑁

𝑆2
 

This value allows us to assess the degree of 
"completeness" of information. Evidently, in a randomly 
generated set, an indicator value equal to 1 does not 
guarantee sufficient information to restore an absolutely 
accurate original image. However, it will be further shown 
that this indicator is quite meaningful. 

Also, to assess the effect of the matching stage on the 
result, a test reconstruction was carried out using the same 
algorithm (POCS), but under the assumption that the image 
matching parameters are known (these parameters were 
stored at the low-resolution image generation stage). Fig. 2 
shows dependence of the peak signal-to-noise ratio (PSNR) 
and the structural similarity index (SSIM values on propose 
for different scale values for both experiments. 

In Fig. 3, we demonstrate the results of described 
algorithm for the scale factor rate equal to 0.85. 

The reconstructed image shows that the quality of super-
resolution image is better than the quality of the low-
resolution image. 

IV. DISCUSSION 

The experiment showed that in a perfect scenario (when 
the matching parameters are known) it is best to set the 
resolution upscaling parameter S so that the size of the set of 
images N satisfies the following constraints: 

0.4 ≤
𝑁

𝑆2
. 

Second experiment showed that in a realistic scenario 
(for unknown estimated matching parameters), values of 
PSNR and SSIM are less than in the perfect scenario. 
Moreover, adding images above the 𝑝 = 0.85  impair the 
result further. This is due to the fact that the matching itself 
does not always provide quite accurate result and POCS 
algorithm is not robust and requires additional procedures to 
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filter erroneously matched images. So we add another 
restriction: 

0.35 ≤
𝑁

𝑆2
≤ 0.85, 

or, equivalently, 

1.08√𝑁 ≤ 𝑆 ≤ 1.69√𝑁. 

We plan to investigate POCS robustness later in our 
further research. 

 

  

a) PSNR values for known matching parameters b) SSIM values for known matching parameters 

  
c) PSNR values for estimated matching parameters d) SSIM values for estimated matching parameters 

Fig. 2. PSNR and SSIM values for different scale values for both experiments. 

   
Fig. 3. Results of described algorithm. From left to right: Test image (original data), Low-resolution image (synthetically degrading the original data),  

Reconstructed image (p=0.85). 
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V. CONCLUSION 

In this work, we have discussed the influence of  the 
parameters of image set formation and the parameters of an 
algorithm on reconstruction. We have developed the 
recommendations for the super-resolution reconstruction 
problem using the method of POCS. 
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