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Abstract—The clinical classification of a person’s genetic vari-
ant can lead to conflicting classifications. The presence of conflicts 
is determined manually by laboratory methods. If there is a 
conflict, then there is a difficulty in interpreting the result. In 
this work, with the help of machine learning algorithms, it was 
possible to train the neural network to predict conflicts with an 
accuracy of 77%, and also to determine which parameters are 
most important in classification.
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I. INTRODUCTION

The constant discoveries in biology provide us with a huge 
amount of data for analysis, studying this data we can find 
more and more patterns and relationships between the various 
characteristics of living organisms, which leads us to a greater 
understanding of how the world works and how we can 
improve it. One of the studies that triggered a push in the 
development of genetics was done by the biologist Gregor 
Mendel. His works contain information on the established 
relationship between the presence of certain genes and various 
morphological and physiological characteristics of individuals, 
as well as on such a key property of organisms that the genetic 
code is able to be transmitted hereditarily, with preservation 
of signs from parents to descendants [1].

Starting with the study of simple organisms, research has 
reached the human genome. One of the directions in this 
environment is a genome-wide search for associations related 
to the study of associations between genomic variants and phe-
notypic characters. The main goal is to predict a predisposition 
to a disease by identifying genetic risk options, which is based 
on a comparison of the alleles of healthy people and people 
with diseases [2]. Thanks to such studies, genetic variants 
were obtained that affect the risk of complex cardiovascular 
diseases, autoimmune diseases, and cancer [3, 4, 5].

The studies mentioned above are carried out empirically 
by specialists in this field. T he d evelopment o f information 
technologies allows us to simplify and automate the same type 
of work, so using machine learning methods, the researchers 
in [6] built a model in which the relationship between many 
different single nucleotide polymorphisms and complex human 
diseases is determined. Researchers, using various methods 
of machine learning, received several qualitative phenotypes

that affect the interaction of genes. Also, based on models of
ensemble methods, the most important variables affecting the
genome were identified. But the authors led to the fact that
there were some limitations that allow us to consider the use of
machine learning methods as an addition to existing laboratory
tests to identify the basis of complex genetic diseases [6].

A study was conducted in [7], during which it was proved
that machine learning provides an additional look at the
analysis of multidimensional genetic sets in comparison with
standard approaches to testing statistical associations. It has
also been shown that approaches to multifactorial modeling
allow a better understanding of the genetic characteristics of
diseases, as was the case with atherosclerosis, coronary heart
disease, and elevated lipid levels. But the authors caution
future researchers that when using machine learning methods
in genetics, you need to carefully make sure that there is
no risk of retraining the model, which can lead to overly
optimistic forecasting results. The authors argue that in order
to solve the problem of predicting the risk of a genetic disease,
it is necessary to carry out effective regularization and strict
validation of the model [7].

As already mentioned, various genetic variations entail a
predisposition or development of various diseases. Modern
studies show that not everything can be established unambigu-
ously, speaking about genetics, since situations are possible
when a patient has a disease, but his genetic set does not
correspond to this disease, or vice versa. Such situations
are called conflict situations and, if they arise, additional
laboratory tests are required that require large investments to
determine if this combination can really be associated with the
disease. Data on such studies and their results are presented in
the public domain on the ClinVar portal. Due to the emergence
of a number of difficulties for solving the genetic conflict by
the laboratory method, this paper presents a different approach
based on the work of machine learning methods and data
generated on the basis of clinical results [8].

In this paper, using various methods of generating features:
Feature Hasher, One Hot Encode, Label Encoder, as well as
custom data, we prepare data for further processing using ma-
chine learning methods such as Random Forest and Gradient
Boosting. A detailed analysis is also carried out to identify the
best model for solving the classification problem of genetic
conflict.
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II. DATA PREPARATION FOR MODEL TRAINING

A. Feature engineering of the current issue

Machine learning methods can work only with data pre-
sented in numerical form. Also, based on work [9], it is
necessary to form a small subset of features from a large
set of source data that would be most effective for solving
the problem. It is also necessary to consider that due to the
fact that there are more patients without genetic conflict than
without them, hence, machine learning models will also tend
to this result.

Non-numerical features were processed. The number of
unique values in them influenced the choice of method for
processing.

The PolyPhen (Polymorphism Phenotyping) characteriza-
tion consists of several descriptions of the possible effects of
amino acid substitution on the structure and function of the
human protein. For this data set, the Label Encoder method
was applied, which assigns a certain number to each state.
Such a characteristic as EXON (Exon), a part of the gene
encoding amino acids, was presented in the source data as a
part of exons of their total number in the body, which required
additional processing using methods for working with strings
from the Python library.

For characteristics such as cDNA position (position of the
gene pair in the sequence of additional DNA), CDS position
(position of the base pair of genes in the coding region),
Protein position (position of the amino acid in the protein), the
data presented as ranges of positions; therefore, their median
values expressed scalar.

Characteristics: REF (comparison allele), ALT (alternative
allele), CHROM (chromosome variant), Allele (allele), Con-
sequence (consequence type) contain a number of different
values from 24 to 866. Because of this, we can consider
the applicable encoding method for these values The Feature
hasher method, which vectorizes features into a certain number
of columns that can represented as elements of Boolean
algebra.

Such characteristics as: CLNVC (variant type), IMPACT
(impact modifier for the kind of consequence), BIOTYPE
(biotype) have a relatively small set of different values. There-
fore, the One Hot Encode method is well applicable for them,
creating a vector for each characteristic value.

Studies also conducted on the remaining columns; in some
of them, there were no values, which would only complicate
the work of the Random forest method.

In some, like CLNHGVS (a characteristic containing a
description of the level of genome location), all values were
unique, it follows that the correlation between them is zero.
The establishment of relationships that play a role for the
classifier is impossible. Therefore, part of the information has
been removed.

III. SELECTED MACHINE LEARNING METHODS

This forecasting problem can be solved using binary classi-
fication methods [10]. The ensemble methods applied to this

task are: Random forest, whose ensemble consists of simple
models called the Decision tree (Decision tree), as well as
Gradient boosting, which has an exceptionally different way
of interacting with the base models.

A. Description of the mathematical model of the selected
methods

The decision tree described as follows: let the training
vectors xi ∈ Rn, i = 1, . . . , l , and the label vector y ∈ Rl
given: the decision tree divides the space recursively so that
the samples with the same labels grouped. Let the data at
node m represented by Q. For each candidate, the sepa-
ration θ = (j, tm), consisting of the characteristic j and
the threshold tm, divides the data into subsets Qleft(θ) and
Qright(θ), where Qleft(θ) = (x, y)|xj ≤ tm, Qright(θ) = Q\
Qleft(θ). Then, the function G(Q, θ) =

nleft

Nm
H(Qleft(θ)) +

nright

Nm
H(Qright(θ)) is calculated, where H(θ) is the measure

of entropy given by the formula: H(Xm) =
∑
k pmklog(pmk).

Next, the parameters selected according to the following cri-
terion: θ∗ = argminθG(Q, θ). The subsets Qleft = (θ∗) and
Qright = (θ∗) are determined until the maximum available
depth is reached:Nm < minsamples or Nm = 1 [11].

B. Difference between Random Forest and Gradient Boosting

The interaction of decision trees in the Random Forest algo-
rithm carried out using the bagging approach - the creation of
independent models for assessment, and then the averaging of
their forecasts using the following formula: Sl = 1

l

∑L
l=1 wl,

where L is the number of independent base models, and wl is
the received dataset by each model [12]. This approach leads
to less dispersion.

In the Gradient boosting method, interactions between de-
cision trees carried out according to the principle of boosting,
based on the fact that the family of models is combined to
create the strongest of the basic ones. Several weak models
are adaptively selected, and based on their results. A stronger
value is attached to those objects in the dataset that were
poorly processed by previous models, thus reducing the bias
of the estimate even with a decrease in the spread [13].

Gradient boosting considers additive models of the fol-
lowing form:F (x) =

∑M
m=1 λmhm(x), where hm() are the

basic models, and λm is the step size calculated by the
one-dimensional optimization process. This method, like the
Random Forest, uses the decision tree as a simple model.
Thanks to such features of the ”tree” as processing mixed-type
data and modeling complex functions, it is ideal for optimizing
the step. GB constructs the additive model in a ”greedy” way:
Fm(x) = Fm−1(x)+λmhm(x), where the recently added tree
hm tries to minimize the loss of L, given the previous en-
semble Fm−1: hm = argmin

h

∑n
i=1 L(yi, Fm−1(xi) + h(xi))

[14].

IV. THE RESULT OF TRAINING MODELS

For the search of the best models of Random Forest and
Gradient boosting, it was necessary to identify the parameters
that give the best result. As the metrics, basic ones were
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used, such as: Precision, Recall, F-score. These metrics are
calculated based on the following criteria: True Positives (TP)
- the correctly predicted positive value of the source class;
It is worth noting that for binary classification, the positive
result is one, and the negative is zero; True Negatives (TN)
- the correctly predicted negative value of the source class,
False Positives (FP) - the case when the result in the original
class is represented by negation, while the classifier returned a
positive result; False Negatives (FN) - the case is the opposite
of FP. Precision is the ratio of correctly predicted values to the
total number of attempts to give a positive result, presented by
the formula: TP

TP+FP . Recall is the ratio of correctly predicted
values to their total number: TP

TP+FN . F-score is the most
accurate measure, which contains the two scores listed above,
given by the formula: 2Recall x Precision

Recall+Precision [15].
Consider how the results of the models depend on the num-

ber of trees. For Random Forest, the result of the dependence
of F-score, Precision, Recall on the number of trees in the
ensemble is clearly shown in Figure 1. As you can see, the
Precision value actively increases with the number of trees.
Still, after 64, the result remains practically unchanged in the
Recall, and The F-score also has such a tendency with a large
number of trees. However, the graph also shows that they take
the most excellent value with five trees, in which case the
Precision, Recall, F-score measures take the following values,
respectively: 0.46, 0.37, 0.41. But, unfortunately, a model with
so many trees is not suitable for correction using the predict
proba method, since the essence of this method is that you
can control the adoption of the tree’s voice by increasing the
weights, then with a small number of trees the result of such a
change is rather weak. Therefore, it will be entirely objective
to take a model with 128 trees.

Fig. 1. The dependence of the result of metrics on the number of trees in
Random Forest.

The result of such a model recorded in table 1; the table
also contains the result after applying predict proba.

The same study done for Gradient boosting, the metrics for
a different number of trees shown in Figure 2. Because each of
the following trees of this method is trained based on previous

TABLE I. RANDOM FOREST RESULTS WITH A MODEL OF 128 
ESTIMATORS

Without modification Precision Recall F-score
0 0.79 0.93 0.85
1 0.57 0.28 0.38

With modification
0 0.9 0.62 0.73
1 0.41 0.8 0.55

results, it found experimentally that less than 14 trees are not
enough to predict results. But after 14, an apparent increase in
the classification accuracy is visible, so it would be reasonable
to take the one that has the largest number of trees as the main
model and modify it by changing the weights. Still, practical
measurements have shown that for this task, the classifier
models based on Gradient boosting with the number trees 128,
256, 512 have the same result after applying the predict proba
method. In this case, for a more objective comparison with
the Random Forest method, we take a model with 128 trees.

Fig. 2. The dependence of the result of metrics on the number of trees in 
Gradient Boosting.

The result of the best classifier m odel b ased o n Gradient
boosting presented in Table 2. Comparing the results from

TABLE II. GRADIENT BOOSTING RESULTS WITH A MODEL OF 128 
ESTIMATORS

Without modification Precision Recall F-score
0 0.79 0.93 0.85
1 0.56 0.28 0.37

With modification
0 0.87 0.75 0.8
1 0.47 0.66 0.55

Tables 1 and 2, it becomes clear that the results of the metrics
before modification are identical for the two classifiers; after
applying the predict proba method, the Precision and Recall
metrics are different, but for a positive case, the F-score metric
is the same. For an additional comparison of methods, to find
the optimal one, Table 3 shows the time during which the
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classifiers a re t rained a nd a lso p redict t he v alues o n t he test
sample.

TABLE III. GRADIENT BOOSTING AND RANDOM FOREST TIME COMPARISON 
RESULTS WITH THE MODELS OF 128 ESTIMATORS

Training time, sec. Classification time, sec.
Random Forest 11.0 0.55

Gradient Boosting 8.36 0.05

The training time for the two methods turned out to be
comparable, while the classification time for the model based
on Gradient Boosting is ahead of the model based on Random
Forest by order of magnitude. Thus, the Gradient Boosting
classifier is most preferred for determining whether a patient
has a genetic conflict.

Also, Figure 3 shows a graph of the ROC-curve for two
models, which allows one to evaluate the quality of the binary
classification [11].

Fig. 3. ROC-curve for determining the quality of binary classification.

Based on Figure 2, the reading area is estimated at 0.77, 
the quality of the classifier i s d etermined b y h ow m uch this 
indicator is high.

V. SUMMARY

In this paper, we studied the effectiveness of machine 
learning algorithms for the task of establishing genetic conflict 
in clinical analysis. It also found that the Gradient Boosting 
method is preferable for this task, since the trained model 
copes with forecasting ten times faster than the model based 
on Random Forest. The obtained accuracy result of 79% shows 
that the use of machine methods for the tasks of genetic 
classification a nd c onflict re solution is  po ssible, de spite the 
difficulty i n i nterpreting t he i nitial p arameters f or humans. 
The introduction of trained models will reduce the cost of 
additional medical research, and will also predict the need for 
screening for patients with suspected illness.
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