
Copyright © 2020 for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0) 

Development of the heuristic method of 

evolutionary strategies for reinforcement learning 

problems solving 
 

Maksim Naumov 

Samara National Research University 

Samara, Russia 

blagov@ssau.ru 

Aleksandr Blagov 

Samara National Research University 

Samara, Russia 

blagov@ssau.ru 

Abstract—There are many methods for machine learning 

problems solving. Each of them is used depending on the solved 

problems. This article describes several classical algorithms of 

evolutionary strategies in the reinforcement learning problems. 

The authors propose the Heuristic method that has certain 

advantages over existing methods. The article also provides a 

comparative analysis of the solutions to problems, including 

the problems of error-correcting coding. 

Keywords—reinforcement learning, machine learning, data 

mining, heuristic method 

I. INTRODUCTION  

The article describes the research and development of 
methods of heuristic evolutionary strategies for solving the 
problem of training recurrent neural networks. Artificial 
neural networks are one of the most popular methods of 
machine learning They represent a mathematical model, as 
well as its software or hardware implementation, built on the 
principle of the organization and functioning of biological 
neural networks [1]. The formation and training of neural 
networks can be reduced to an optimization problem. The 
authors propose the improvement of the simplest 
implementation of evolutionary strategies using heuristic 
methods for training recurrent neural networks in the 
problem of error-correcting coding  

The practical value of improving existing algorithms lies 
in expanding the range of initial approximations from which 
the method will converge to a solution. It can also affect the 
change in the rate of convergence.  

Evolutionary strategy is an optimization method based 
on the ideas of evolution [2]. The relevance of their use is 
due to the high efficiency of solving optimization problems 
[3, 4]. Possible solutions are encoded as vectors of real 
numbers. This method has been successfully used to solve 
reinforcement learning problems [4-6]. 

Evolutionary strategies have the following features. 

1. They are able to optimize any models that can be 
expressed through the real numbers vectors (not dependent 
on optimized model). 

2. No calculation of the gradient of parameters of the 
optimized model required. 

3. It is not required to perform the back propagation 
of gradients, which avoids many problems when multiplying 
them. 

4. They are invariant with respect to the delay before 
the response of the system. 

5. They are invariant to transformations of the space 
of solutions that preserve angles. 

6. They are invariant to transformations of the 
objective function. 

7. A very high degree of concurrency, due to the very 
small amount of data sent. 

There are approaches that use evolutionary strategies not 
for optimization, but for the numerical calculation of the 
gradient of the optimized function. Thus, it is possible to use 
higher-level and more accurate methods, without the need to 
calculate the gradient of the function. 

II. TRADITIONAL METHODS OF EVOLUTIONARY 

STRATEGIES  

The main cycle of evolutionary strategy consists of two 
stages: mutation and selection. Let us consider these stages 

as an example of maximizing some vector function. 𝑓(𝑥): 

1. Choose the initial solution. After it make the initial 
solution for the current. 

2. Mutation step: from the current solution we create μ 
new ones by adding random vectors distributed over the 
multidimensional normal distribution to the current solution 
μ with the expectation equal to the current solution and the 
correlation matrix σI. 

3. Calculate the value of the function f in each of the 
possible solutions. 

4. The selection step: as the current solution, we take 
the best solution possible (or leave the current one if it is 
better), or calculate the weighted average of the possible 
solutions, given that more remote solutions have more 
weight. 

5. Repeat steps 2-4 until we get an acceptable solution. 

In step 4, the following formula is used 

𝑥 =
1

𝜇𝜎
∑ [𝑥𝑘

𝑓(𝑥𝑘) − 𝑓

𝑓~
]

𝜇

𝑘=1

, 
 

(1) 

where 𝑥  is the average solution, 𝑥𝑘  is the possible 

solution numbered 𝑘, 𝑓 is the sample mean 𝑓(𝑥𝑘), 𝑓~ is the 
sample variance 𝑓(𝑥𝑘). 

This algorithm does not cover all possible evolutionary 
strategies. However, it shows their distinguishing features: 

 the solution is represented as a vector of real 
numbers; 



Data Science 

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020)  20 

 at each step, one (or several) key decision is selected, 
which is used in the next step as the basis for new solutions; 

 selection takes place in a deterministic way, which 
means that it can be performed on the cluster without 
sending data; 

 the relative simplicity of the algorithm, which is 
reflected in the speed of the algorithm. 

High speed and large parallelism of the algorithm allows 
for a greater number of iterations compared to other methods 
that solve reinforcement learning problems.  

The above algorithm is also called a simple evolutionary 
strategy. Due to the fact that does not change the parameter 𝜎 
depending on the already known data. This impairs 
convergence, or makes finding a solution impossible. 

This algorithm was implemented in this paper. The 
computational complexity of one iteration is 𝑂(𝑁)  with a 
small constant, where 𝑁– task dimension. 

There are many algorithms to solve the problem of 

constant parameter 𝜎. This article discusses a method called 
CMA-ES (covariance matrix adaptation evolution strategy) 
[7] as the most popular. As an implementation, a library for 
Python called Pycma is used. Consider a simplified version 
of this algorithm (reflecting the main ideas of the algorithm), 
with the dimension of the problem equal to N: 

1. Choose the number of possible solutions at each 
step μ. Typically, a value greater than four is selected. 
Choose an initial solution and make it current (𝑚). Choose 
the initial parameter vector 𝜎  of length N, which is 
responsible for the step length in each direction. Set the 
correlation matrix C equal to the identity matrix, with 𝑁 × 𝑁 
dimension. 

2. Generate 𝜇  random vectors 𝑥𝑘 , corresponding to 
possible solutions. The generation comes from a 
multidimensional normal distribution with a correlation 
matrix C and a mathematical expectation of m. 

3. Calculate the value of the function f in each possible 
solution. 

4. Sort possible solutions by the value of the function 
f. 

5. Update the value of the correlation matrix C, taking 
as a basis the data on the distribution of possible solutions. 
The calculations are made according to the formula: 

𝑥 =
1

𝜇𝜎
∑ [𝑥𝑘

𝑓(𝑥𝑘) − 𝑓

𝑓~
]

𝜇

𝑘=1

, 
 

(2) 

where 𝑥𝑘 is the 𝑘 random vector, 𝑁𝑏𝑒𝑠𝑡 is the number of 
best solutions to consider; 𝑥  is the average 𝑁𝑏𝑒𝑠𝑡  vectors, 
matching the best possible solutions 

6. Update the value of the current solution m, 
according to the formula:  

𝐶𝑖𝑗 =
1

𝑁𝑏𝑒𝑠𝑡

∑ (𝑥𝑘𝑖
− 𝑥�̂�)

𝑁𝑏𝑒𝑠𝑡

𝑘=1

(𝑥𝑘𝑗
− 𝑥�̂�), 

 

(3) 

7. Repeat steps 2-6 until you get the right solution. 

This algorithm performs steps 2-6 in 𝑂(𝑁2) (due to the 
fact that 𝑁𝑏𝑒𝑠𝑡  is a constant), where   𝑁 – task dimension. 
There are approaches that reduce complexity to 𝑂(𝑁)with a 
large constant. This article uses the most complete and 
correct implementation of the algorithm from the Pycma 
library for Python. 

III. DEVELOPMENT AND IMPLEMENTATION OF THE 

METHOD OF HEURISTIC EVOLUTIONARY STRATEGIES 

The above algorithms were either inaccurate (simple 
evolutionary strategy) or slow (adaptive evolutionary 
strategies). Is it possible to build an algorithm with 
computational complexity 𝑂(𝑁) with a small constant and at 
the same time more accuracy than a simple implementation 
of evolutionary strategies?  

Consider the following modification of a simple 
evolutionary strategy: 

1. Choose the initial solution. After it make the initial 
solution for the current. 

2. Mutation step: from the current solution we create 𝜇 
new ones by adding random vectors to the current solution 𝜇 
distributed over a multidimensional normal distribution with 
a mathematical expectation equal to the current solution and 

the correlation matrix 𝜎𝐼. 

3. Calculate the value of the function f in each of the 
possible solutions. 

4. Selection step: as the current solution, we take the 
best solution possible (or leave the current one if it is better), 
or calculate the weighted average of the possible solutions, 
given that more remote solutions have more weight. 

5. Calculate the new value of 𝜎  using one of the 
heuristic functions, which will be considered later. 

6. Repeat steps 2-5 until we get an acceptable solution. 

At step 5, instead of calculating the parameter 𝜎, we can 
calculate the entire correlation matrix. However, this will 
increase the computational complexity of the algorithm from 
𝑂(𝑁) to 𝑂(𝑁2). 

Under the heuristic understand the totality of techniques 
and methods that facilitate and simplify the solution of 
cognitive, constructive, practical problems. 

In this article, heuristic functions are understood to mean 
functions that improve the accuracy of calculations without 
increasing the asymptotic complexity. 

Consider at some examples of such functions: 

 
ℎ1(𝑓𝑥, 𝑖, 𝑁) =

1

1 + 𝑒−𝑓𝑥
; 

(4) 

 ℎ2(𝑓𝑥, 𝑖, 𝑁) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑓𝑥) +
𝜋

2
; (5) 

 
ℎ3(𝑓𝑥, 𝑖, 𝑁) =

𝑁 − 𝑖

𝑁
; 

(6) 

 
ℎ4(𝑓𝑥, 𝑖, 𝑁) = 1 − 𝑠𝑖𝑛2 (

𝑖

𝑁
10𝜋), 

(7) 



Data Science 

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020)  21 

where (4) - (7) are heuristic functions; fx is the value of the 
optimized function at the point of the current solution; i is the 
number of the current iteration; N is the  limit number of 
iterations.  

Function (6) implements an idea similar to temperature in 
the simulated annealing method [8]. At the beginning of 
optimization, the algorithm considers more distant points, 
and then gradually “cools down” and proceeds to a more 
accurate search for a solution. This approach allows the 
optimization process to go to more promising solutions at the 
very beginning, and then refine them. 

The heuristic function (7) is a rather interesting case. It 
goes through several full periods during the optimization 
function. This allows the optimization process to go out of 
local optima, speeding up the solution. 

Not all heuristic functions are similar to those listed, 
however, this list gives some starting point for finding a 
suitable kind of function. 

From the above functions, you can make a linear 
combination using positive coefficients and get a new 
heuristic function. 

IV. EXPERIMENTAL COMPARISON OF IMPLEMENTED 

METHODS  

As a problem, on the solution of which the 
implementations of the above algorithms will be compared, 
the problem of error-correcting coding was taken. 

One of the most famous cyclic codes is the code (7; 4; 3). 
This code converts messages from k = 4 bits into code words 
of length n = 7, using for this a generating polynomial of 
degree r = 3. This code allows us to correct a single error, or 
detect double errors.  

If we assume that the cyclic code (7; 4; 3) is used to 
correct single errors, then the probability of correctly 
decoding the message is  

  (1 − 𝑝)7 + 7𝑝(1 − 𝑝)6.                      (8) 

A combination of two LSTM networks was taken as an 
optimized model. The first network encrypts 4-bit messages 
into 7-bit messages. The second produces the inverse 
transformation.  

This choice of architecture has several features: 

1. The authors gave an example of a working cyclic 
code (7, 4, 3). The possibility of solving this problem with 
this architecture was confirmed. Theoretically, a system of 
two neural networks can, after the optimization process, use 
a cyclic code. 

2. Due to the use of LSTM nodes at the core of the 
architecture, the system has some internal memory. This can 
positively affect the quality of encoding and decoding (if 
there is some relationship between messages). 

Neural networks were implemented on Pytorch, which 
allowed to significantly speed up the calculations, as well as 
simplify the source code. 

As an optimized function, we take the standard error 
between the original and decoded message. 

For further comparison, we calculate the upper estimate 
of the mean square error for the cyclic code (7, 4, 3). 

To do this, suppose that when a fatal error occurs, all 4 
bits are decoded incorrectly. Using (8), we obtain the 
following value for the expected number of errors among n 
bits: 

𝑛 (1 + (1 − 𝑝)7 − 7𝑝(1 − 𝑝)6), (9) 

For experimental evaluation  𝑝 = 0,01, 𝑛 = 1000.  

Substituting the values in (9), we obtain the expected 
number of error bits: 2. Which leads to an estimate of the 
mean square error for the cyclic code (7, 4, 3): 0.002. 

The plan of the experiment: 

1. we will change the maximum number of iterations 
for the optimization process N from 100 to 300, in 
increments of 100; 

2. we will carry out a significant number of iterations 
(more than 30), using each implementation to solve the 
problem; 

3. we write out the average values of the simulation 
results and the optimization time. 

V. COMPARATIVE ANALYSIS OF THE RESULTS 

The data obtained as a result of the experiment are shown 
in table 1. In the table, the average values of the mean square 
errors obtained after the optimization are used as the results. 
In other words, the smaller the result, the better the algorithm 
works. 

TABLE I.  OPTIMIZATION VALUES FOR DIFFERENT NUMBERS OF 

ITERATIONS 

Number 

of 

iterations, 

N 

Simple ES Heuristic ES CMA-ES 

result 
time 

(s) 
result 

time 

(s) 
result time (s) 

100 0.2582 101.5 0.2477 101.8 0.2334 373.6 

200 0.2414 204.1 0.2303 210.7 0.2171 739.7 

300 0.2485 293.7 0.2273 290.4 0.2103 1128.3 

As can be seen from table 1, evolutionary strategies have 
solved the problem, but with a convergence rate not 
applicable to practical problems. The problem posed 
belonged to the class of instruction with a teacher. It is 
known that the speed of evolutionary strategies for such 
problems is not high [1].  

There is an assumption that such a slow convergence 
could indicate that: 

1. network architecture and / or number of nodes were 
not suitable for solving this problem; 

2. the task was quite complex and most of the 
solutions were be bad, which did not allow the algorithm to 
find a relatively good solution in an acceptable time; 

3. the task was unstable in the sense that a small 
change in a good solution dramatically worsens the result. 

We considered each hypothesis separately. 

The results of solving the problem using the Adam [9] 
method are shown in table 2. 

As a result, the mean value of the mean square error was 
used. Table 2 shows that this model can solve the problem, 
though not as good as the cyclic code. It is worth paying 
attention to the fact that the error obtained using Adam is 



Data Science 

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020)  22 

almost two orders of magnitude smaller than the error of 
evolutionary strategies. 

TABLE II.  OPTIMIZATION VALUES FOR DIFFERENT N OBTAINED 

USING ADAM 

N Result Time (s) 

100 0.2415 174.7 

200 0.1383 334.5 

300 0.1027 515.1 

600 0.0094 1036.8 

Consider the second hypothesis. We randomly selected 
500 000 solutions. Each net weight was taken from the 
normal distribution with zero mean and standard deviation 
equal to 1.5. This covered most of the possible solutions, 
since optimization started from the zero point and takes no 
more than 300 steps of length of the order of 10−3. The 
obtained values allowed us to calculate the mean and 
standard deviation of 0.3086 and 0.0207, respectively. This 
suggested that most of the possible solutions are 
unsatisfactory. 

To consider the third hypothesis, we took the solution 
obtained at step 600 of optimization by the Adam method. 
Added to this solution a Gaussian noise with zero 
mathematical expectation and a standard deviation of 10−3. 
This allowed us to check how sustainable the solution was. 
After generating 500 000 solutions from a given area, we got 
the following results: the expected value is 0.1622 and the 
standard deviation is 0.01526. This allowed us to talk about 
the instability of the obtained solution. 

Thus, based on the data obtained, the following 
conclusion was made. Evolutionary strategies have an 
impressive list of advantages, however, if it is possible to 
calculate the gradient of the optimized function and the task 
is unstable, then it is reasonable to think about using first or 
second order methods. 

On the other hand, evolutionary strategies make it 
possible to use the computing resources of an entire cluster 
without significant overhead, this can even out the difference 
in speed, and sometimes even surpass classical methods. 

VI. CONCLUSION 

In the course of this work, methods of evolutionary 
strategies and their application to the solution of the problem 
of error-correcting coding were considered. Several different 

methods and the environment for their experimental testing 
were implemented. Conclusions are drawn on the 
applicability of this approach to solving machine learning 
problems with a teacher. 

Many experiments have been conducted. Based on the 
data obtained, an analysis of the effectiveness of the methods 
was carried out, and three hypotheses describing the results 
were constructed and tested. 

An important result of this work is testing the 
applicability of evolutionary strategies for solving various 
problems. Moreover, the study confirmed the limitations of 
evolutionary strategies for the class of problems.  

It is concluded that evolutionary strategies solve well 
reinforcement learning problems and worse solve more 
traditional problems. However, their disadvantages can be 
eliminated by connecting more computing resources. 

REFERENCES 

[1] S. Khaikin, “Neural networks: full course,” M.: Williams, 2008, 1104 
p. 

[2] H.G. Beyer and H.P. Schwefel, “Evolution strategies. A 
comprehensive introduction,” Natural computing,  vol. 1, no. 1,  pp. 
3-52,  2002. 

[3] T. Salimans, J. Ho, X. Chen, S. Sidor and I. Sutskever, “Evolution 
Strategies as a Scalable Alternative to Reinforcement Learning,” 
arXiv preprint arXiv:1703.03864, 2017. 

[4] J. Lehman, J. Chen, J. Clune and K. O. Stanley, “ES Is More Than 
Just a Traditional Finite-Difference,” Proceedings of the Genetic and 
Evolutionary Computation Conference, pp. 450-457, 2018. 

[5] E. Conti, V. Madhavan, F. Petroski Such, J. Lehman, K. O. Stanley 
and J. Clune, “Improving Exploration in Evolution Strategies for 
Deep Reinforcement Learning via a Population of Novelty-Seeking 
Agents,” Advances in neural information processing systems, pp. 
5027-5038,  2018. 

[6] A.N. Kovartsev, “A deterministic evolutionary algorithm for the 
global optimization of morse cluster,” Computer Optics, vol. 39, no. 
2, pp. 234-240, 2015. DOI: 10.18287/0134-2452-2015-39-2-234-240. 

[7] N. Hansen, “The CMA Evolution Strategy: a Tutorial,” 2009. 

[8] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by 
simulated annealing,” Science, vol. 220,  no. 4598, pp. 671-680, 
1983. 

[9] D. P. Kingma and J. Ba. Adam, “A method for stochastic 
optimization,” arXiv preprint arXiv:1412.6980, 2014. 

 


