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Abstract—In this paper, we discuss several possible 

implementations of GPU-targeted gradient descent algorithm 

for dimensionality reduction. Four realizations of the gradient 

descent algorithm are created using HIP, a new framework for 
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improvement over a multithreaded CPU version using AMD 

Radeon RX Vega 56. 
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I. INTRODUCTION  

In the present days, data mining becomes more and more 
popular research area. Data mining techniques process 
enormous amounts of data in order to detect significant 
dependencies in data. In many cases, such data can be 
interpreted as points in some multidimensional space. 

Processing multidimensional data causes problems. The 
first problem is that multidimensional data requires more 
storage capacity. The second problem is that the time needed 
to process these data grows fast with the number of 
dimensions. But in many cases, multidimensional data 
contains substantial redundancy in terms of information. 
Therefore, one can map the data into the space of lower 
dimensionality without a major information loss.  This 
process can be referred to as dimensionality reduction. 

Dimensionality reduction techniques are often used in 
different problems of image analysis (see [1-4], for 
example).  

There is a variety of dimensionality reduction methods. 
The most famous methods are Principal component analysis 
(PCA) and Independent Component Analysis (ICA), which 
are linear methods. The major disadvantage of linear 
methods is that they can find only linear dependencies within 
data. The nonlinear dimensionality reduction methods are 
Curvilinear Component Analysis (CCA) [5], Curvilinear 
Distance Analysis (CDA) [6], nonlinear mapping (Sammon’s 
mapping [7]), etc. It was shown [4] that the latter technique 
can deliver better results compared to some other 
dimensionality reduction methods, for example, in 
hyperspectral image analysis.  

While there are GPU implementations for linear 
dimensionality reduction techniques [8, 9], the problem of 
the long running time is more related to nonlinear 
techniques. In this paper, we study the performance of the 
Sammon’s mapping dimensionality reduction method based 
on the gradient descent implemented for GPUs.  

II. DIMENSIONALITY REDUCTION USING GRADIENT DESCENT 

Let N denote the number of points, n denote the 
dimensionality of a high-dimensional base space and m 
denote the dimensionality of a low-dimensional target space. 
Our goal is to map points from the n-dimensional space into 

the m-dimensional space, minimally affecting inter-point 
distances. This task can be formulated as an optimization 
problem.  

At first, we should define a cost function. In the case of 
Sammon’s mapping the cast function is as follows: 

 

 

(1) 

where  dn
ij is the distance between points i and j in the base 

space, dm
ij is the distance between points i and j in the target 

space. In this case, the Euclidean distance was used. 

Gradient descent is a common iterative optimization 
algorithm. Its common definition is: 

 x(t+1) = x(t) - f, (2) 

where the x = {x0, …, xk} denotes the parameters vector, t 

denotes the iteration number, denotes the speed constant 

and f  denotes the gradient of the cost function f(x) in the 
current point. 

If we take the gradient of the Sammon’s error with the 
coordinates of all the points in the lower-dimensional space 
as a vector of parameters, we will get the following equation, 
describing the Sammon’s mapping procedure:  

 

 

(3) 

 
 

(4) 

where yi  = {y0
i, …, ym

i
-1} denotes the coordinates vector of 

the i-th point , t denotes the iteration number, dn
ij denotes the 

distance between points i and j in the base space, dm
ij denotes 

the distance between points i and j in the target space, and 

denotes the descent speed constant. 

The computational complexity of this algorithm is 
O(N2(n+m)). But it is worth noting that all points are updated 
independently during an iteration and therefore can be 
processed in parallel. This idea opens the possibility to use 
the graphics processing units (GPU).  

III. HIP 

HIP is a new framework for GPU programming. It is 
developed by the GPUOpen initiative [10]. The HIP is 
actually an abstraction layer based on C++ macros, which 
exposes a programming interface and programming language 
similar to NVIDIA CUDA. Programs written in CUDA can 
be converted to HIP using a special tool. Depending on a 
platform used, the HIP code can be compiled using HCC for 
AMD devices or NVCC for NVIDIA devices. 
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The terminology and programming model of HIP are 
inherited from CUDA. The interaction with a GPU is 
performed using API calls that perform data copy, 
synchronization, and execution launching. Each command is 
issued to some command stream. Commands in different 
command streams are executed in parallel if possible. 

A function that was dedicated to perform on a GPU is 
called a kernel. Each kernel is executed using many GPU 
threads. GPU threads are grouped into thread blocks, whose 
size and count are specified on a kernel call. Available 
memory regions are global memory and shared memory. The 
global memory is an equivalent of the RAM. The shared 
memory has very high throughput but also a very small 
volume, so it was not used in the current work. 

IV. IMPLEMENTATION OF GRADIENT DESCENT  

Equation 3 shows that points are updated independently 
from each other at one iteration. Therefore, several threads 
can be used to process points in parallel. The more threads 
used, the better performance may be obtained in theory. 
Since GPUs can process thousands of threads 
simultaneously, they may be used to accelerate the 
processing. 

To implement the iterative gradient descent, 3 buffers 
were used: 

1. the buffer to store the coordinates of points in the 
original space; 

2. the buffer to store the coordinates of points in the 
target space obtained at the previous iteration; 

3. the buffer to store the coordinates of points in the 
target space calculated at the current iteration. 

We discuss two approaches for the gradient descent 
implementation. The first approach (denoted below as a 
standard approach) is to process data according to (3), i.e. 
for each point all distances to other point was computed, and 
then the point was updated. The second approach (denoted 
below as a modified approach) uses a fact that dn

ij= dn
ji. 

Therefore we may compute each distance only once and then 
perform an atomic update of points i and j. This approach 
reduces the number of inner cycle iterations from N(N-1) to 
N(N-1)/2, but also adds an overhead caused by the atomic 
operations.  In this case, the linear indexing of the virtual 
distances matrix was used to exclude the conditional 
operators in the program code, which should be avoided in 
GPU programs.  

We also discuss two possible memory layouts of data 
points. The points set can be stored as a 2D data matrix. The 
question is how to place the coordinates of one point. The 
first layout (denoted below as a flat layout) places the point 
coordinates in rows. This layout allows us to compute the 
distances between points faster since in this case we are able 
to use the vector load and store instructions. The second 
layout (denoted below as a transposed layout) places the 
coordinates of points in columns of the data matrix. This 
allows the neighboring threads to read the neighboring 
memory cells when accessing the data. This facilitates 
memory caching and allows the memory controller to merge 
many small memory access requests to one (memory 
coalescing).  

V. EXPERIMENTAL RESULTS 

Two implementation approaches and two memory 
layouts give 4 implementations: 

1. a standard approach with a flat layout; 

2. a modified approach with a flat layout; 

3. a standard approach with a transposed layout; 

4. a modified approach with a transposed layout;  

Proposed implementations were tested using a dataset 
with random points with coordinates from the range [0, 255]. 
We measured the average execution time for various thread 
block sizes and datasets sizes. The time of the data transfer 
from RAM to GPU was not accounted, only the kernel time 
was measured. 

 

Fig. 1. Time of One Iteration. *TBP means Threads Per Block. 

The experiment parameters are: 

 Number of points, N: 1’000, 2’000, 10’000, 50’000, 
10000; 

 Base dimensionality, n: 200; 

 Target dimensionality ,m: 3; 

 Learning constant, : 0.5; 

 Thread blocks count: 1024; 

 Thread block sizes: 16, 32,64; 

 The number of iterations: 5. 

We compared the experimental results with the results of 
CPU implementation. This implementation was created 
using an OpenMP as a parallel framework and was compiled 
with the AVX cycle vectorization allowed. We measured 
execution time for both single-threaded and 16-threaded 
versions of this realization.  

The experiments were run on the following 
configuration: 

 CPU: AMD Ryzen 7 3700X; 

 GPU: AMD Radeon RX Vega 56; 

 RAM: 8 GB DDR4-3200; 

 OS: Ubuntu 18.04 LTS. 

The experimental results are shown in Fig. 1 and Fig.2. 
The best results along with used parameters are shown in 
Table I. The comparison of CPU and GPU results can be 
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found in Table II. The comparison of CPU and GPU final 
error values is shown in Table III. 

  
Fig. 2. Time of One Iteration for CPU and GPU. 

Let us analyze the results. It is clear that performance 
improvement grows along with the task size. The most 
effective implementation is implementation 2 (a modified 
approach with a flat memory layout). In our case, the ability 
to compute distances faster was more important than 
advanced caching and memory coalescing. The data given by 
the profiler shows that the main performance limiting factor 
is the HBM memory performance. 

TABLE I.  THE BEST RESULTS FOR GPU IMPLEMENTATION:  
RUNNING TIME PER ONE ITERATION 

Number 

of Points 

GPU Time, 

ms 
Implementation 

Thread Block 

Size 

1 000 7.61 2 16 

5 000 88.36 1 32 

10 000 279.33 1 64 

50 000 6 342.90 2 16 

100 000 25 245.20 2 16 

TABLE II.  THE COMPARISON OF CPU AND GPU:  
RUNNING TIME PER ONE ITERATION 

Number 

of Points 

CPU Time (1 

thread), ms 

CPU Time (16 

threads), ms 
GPU Time, ms 

1 000 142.46 16.33 7.61 

5 000 3 556.06 398.08 88.36 

1 0000 14 251.50 1 497.72 279.33 

50 000 370 820.00 38 433.20 6 342.90 

100 000 1 462 767.20 152 011.00 25 245.20 

TABLE III.  THE COMPARISON OF CPU AND GPU:  
DATA MAPPING ERROR 

Number 

of points 
Initial Error CPU Final error 

GPU Final 

Error 

100 000 0.785323 0.110451 0.110452 

The HBM (High Bandwidth Memory) features the very 
wide data bus along with relatively low clocks. Since in our 
case threads access memory cells located relatively far from 
each other, the caching is ineffective, and the memory 
requests often cause delays in execution. The use of atomic 

operations adds an additional load to the memory system. 
This partially explains why the thread block size of 16 
threads was the best. Since threads of one thread block are 
executed in groups of 64 threads on the AMD GPU, the 
thread block of only 16 threads causes only 25% occupancy 
but also reduces the number of simultaneous memory 
requests. The results from GPUs with different memory 
types, such as GDDR5/6, probably will be different.  

VI. CONCLUSION 

In this paper, we have discussed different approaches to 
implement the dimensionality reduction method based on 
gradient descent for GPUs. Several experiments were taken 
using an AMD Radeon Vega 56 GPU. The experimental 
results show approximately 6 times performance 
improvement in comparison to the multithreaded version 
executed on the 8-core CPU, and almost 60 times 
improvement over single-threaded implementation.  

Future work will be devoted to the comparison of the 
proposed implementations using NVIDIA and AMD GPUs. 
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