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Abstract—This paper proposes an algorithm for verifying 

the stability of a solution to the inverse problem of separating 

individual signals from an additive mixture of several signals. 

The algorithm is designed for objects whose characteristics 

vary depending on a certain parameter vector. The paper also 

considers a version of the algorithm for objects whose changes 

in characteristics are described by deterministic functions. A 

feature of the proposed algorithm is preliminary learning, 

which can help reduce by far its computational complexity and 

the stability verification time by building a singularity 

boundary to separate the spaces of stable and unstable 

solutions. This paper also presents the computer modeling 

results for the proposed algorithm. 
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I. INTRODUCTION 

Signal separation involves solving the problem of 
extracting individual signals from an additive mixture of 
several signals that come to measurement points from 
various sources inaccessible for direct measurement. 

The problem of signal separation relates to the class of 
inverse problems, which may be ill-posed, generally. From 
that it follows that a solution to the problem may be unstable 
[1]. For a stable solution to exist, parameters of the object 
described by the signal formation model (parameters of the 
mixing matrix H  [1]) must satisfy several prior restrictions 
[2,3]. 

 Under real operating conditions, the prior restrictions 
assumed in developing signal separation algorithms may fail 
to be satisfied. This leads to solutions that are unstable and 
therefore unsuitable for practical applications. 

At present, the stability of a solution to the inverse 
problem of signal separation is verifiable by using the 

condition numbers  c o n d H  [4] and the matrix norm 

2
ΔH  [5] of the mixing matrix ;H  the singular-direction 

method [6]; and the algorithm for calculating singular 
intervals, as well as through comparison with given intervals 
of stable separation [7].  

These methods and the algorithm are effective for static 
objects, the parameters and characteristics of which virtually 
do not change during operation or slowly change because of 
unstable environmental conditions, wear, and the like. 

But for dynamic objects whose characteristics vary 
during operation, applying the methods and the algorithm 
[7] is inefficient because of their high computational 
complexity. Indeed, in this case, for each of the many 
varying states of objects, complicated and time-consuming 
calculations are necessary to verify stability, and this 

constrains the application of the methods and the algorithm 
in real-time systems. 

Therefore, developing algorithms to verify the stability 
of solutions to the signal separation problem in objects with 
varying characteristics is a relevant problem. 

II. RESEARCH AREA 

To state the problem formally, we will consider a 
mathematical signal formation model presented as a linear 

multivariable system that has N  inputs and M  outputs. The 

model’s input signals are  n
s k  and 1 2n , , ..., N ;  output 

signals,  m
x k  and 1 2m , , ..., M .  

The mathematical model of signal formation is described 
by equations of discrete convolution type (1), where the 

m th observed signal is an additive mixture of channel-

distorted source signals [1]: 
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where  
m n

h g ,I  is the element N M    of the mixing matrix 

 g ,h I  for the impulse characteristics of channels; and 

0 1g , ...,G -  and 0 1k , ..., K -  are the counts for the 

impulse characteristics of channels and signals, respectively. 

Generally, the solution to the inverse problem of 
separating source signals is the solution to (1), and it can be 
expressed as 

     
1

1 0

M G

n n m m

m g

s k w g , I x k g



 

   ,   (2) 

where  n m
w g , I  are the impulse characteristics of the 

separating filters that form the separating matrix  gw ,I , 

which is equal or close, by a given criterion (in the case of 

ill-posedness), to the matrix inverse to the matrix  g ,h I .  

In the frequency domain, equation (2) can be written as 

     ,  S W I X , 

where    
-1

, , W I H I . 

We propose using the singular intervals for the 

parameters of the mixing matrix  ,H I , whose 
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calculation algorithms are given in [7], as parameters that 
make the solution stable. 

We assume that the current state of the mathematical 
model is unequivocally determined by the state vector l , 
whose parameters are set by the current characteristics of 
the object.  

For example, in mobile communication systems, the 
parameters l  specify the distance between mobile receivers 
and base transmitters; in vibroacoustic diagnosis systems, 
these parameters specify the relative positions of 
mechanisms, such as those determined by the rotation angle 
of a shaft. Thus, the impulse characteristics of channels 

 m n
h g ,l  in the signal formation model change depending 

on a certain vector, l  [1,7]. The parameters of this vector 
are determined by on-site sensors measuring displacements, 
rotation angles, distances, coordinates, and the like. 

Therefore, the states of the object (its characteristics) 
vary during operation as shown in Fig. 1, and they take 
values corresponding to those of the state vector 

0 1
, , ,

d
l l lK . 

 
Fig. 1. Graphical representation of an object with varying characteristics. 

The region of possible states for the mathematical model 

is described by the discrete set    0 0
, , , ,

g d g d
ω ωH l H lK , 

which we assume is bounded and finite. We also assume 
that the matrix of the maximum allowable variation intervals 

for the parameters  Δ ,
m a x g

ωH l  is known beforehand for each 

state of the object set by the parameter vector .l  In Fig. 1 

the area highlighted in gray represents the maximum 
allowable variation interval for object parameters set by 
prior restrictions. 

Let us consider objects for which the elements of the set 

   0 0
, , , ,

g d g a
 H l H l , which defines the possible 

states of the mathematical model for the object, and the 
parameters of the vector l  are linked by a functional 
relationship. For purposes of further discussion, we will 
divide objects into two groups. In group 1 objects, variation 
in characteristics is described by deterministic functions, as 
in radio communication systems in which mobile receivers 
follow routes such as roads or railways. In group 2 objects, 
variation in characteristics is described by random functions. 

The purpose of this paper is to develop an algorithm to 
verify the stability of solutions to the problem of signal 
separation through calculating singular intervals—an 
algorithm differing from the known one [1,7] in that it offers 
extended functionality, allowing signal separation to be 
verified in objects with varying characteristics. 

III. ALGORITHM TO VERIFY THE STABILITY OF SIGNAL 

SEPARATION FOR OBJECTS WHOSE CHANGES IN 

CHARACTERISTICS ARE DESCRIBED BY DETERMINISTIC 

FUNCTIONS 

The algorithm consists of two stages—learning and 
verification—which include the following steps. 

Step 1. Identify the possible path of variation in the 
object’s state corresponding to the values of the state vector 

0 1
, , ,

d
l l lK —that is, describe the region of possible model 

states with the discrete set    0 0
, , , ,

g d g a
ω ωH l H lK . 

Step 2. Calculate the norms  ,
g

Е

ωH l  of mixing 

matrices for various object states, and determine the 
parameters of vector l  for which the matrix norms differ by 
the given value γ .  

Thus, a list of object states is compiled for which 
variation in characteristics is substantial, calling for stability 
to be verified. 

Step 3. For the object states determined in step 2 and the 
selected type of perturbation (absolute, relative, critical, or 
their combinations), calculate the following parameter 
matrices using the algorithm proposed in [1,7]: 

 The singular matrices  
g

H , which set a singularity 

boundary for the region of stable solutions 

Matrices of singular intervals for model parameters, 

 g
H , which determine the intervals of model 

parameters from the initial (  g
H ) to the singular 

(  g
H ) state 

The threshold matrices    0
, , , ,

th g th g a
ω ωH l H lK —

mixing matrices for each of which the condition number 

 g
co n d ,H l  exceeds a given threshold 

The matrices  R g
H  and  Δ ,

S g
ωH l%  for the 

intervals of model parameters corresponding to stable and 
unstable separation of signals 

The parameters of these matrices and the parameters of 
the associated state vectors l  are written to a database. 

Step 4. For each object state determined in step 2, verify 
the condition 

   Δ , Δ ,
m a x g R g

ω ωH l H l% . (3) 

This verifies whether the model with the preset matrix 

 Δ ,
m a x g

ωH l  for maximum allowable parameter variation 
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intervals falls into the stability region determined by the 

matrix  Δ ,
R g

ωH l% . If condition (3) is not fulfilled, a 

message is displayed that a stable separation of signals in 
the object is impossible and that the given mathematical 
model cannot be used. 

In step 4 the algorithm completes learning, resulting in 
the parameters for singularity and stability boundaries being 
calculated and stored in the database according to the 
parameters of the vector l .  

Thus, a function is calculated that determines the 
stability boundary for signal separation when the object’s 
characteristics vary. 

Learning is completed in free time and involves 
averaging the measured parameters of the mixing matrices 

 ,H I , allowing a diagnostic model to be obtained for the 

object. This model is then used at the second stage, 
described in step 5, to monitor in real time whether signal 
separation is stable during object operation. 

Step 5. For each object state identified in step 2, verify 
the following condition for stable separation: 

   Δ , Δ ,
p e r g R g

ω ωH l H l% .  (4) 

Under this condition, the matrix  Δ ,
p er g

ωH l  for 

parameter perturbation intervals is determined from 

     Δ , , ,
p er g va r g g

ω ω ω H l H l H l , 

where  ,
g

ωH l  and  ,
va r g

ωH l  correspond to the 

parameter matrices for the model and the object at a 

frequency of 
g

ω  for the given state vector l . For the same 

state vectors l , the matrices  Δ ,
R g

ωH l%  of parameter 

intervals for stable separation are retrieved from the 
database for verification under condition (4).  

If condition (4) is not satisfied, then stable separation of 

signals for the frequency 
g

  is not guaranteed. 

The condition for the stable separation of signals can 
also be expressed as 

     m ax
Δ , Δ , Δ ,

p e r g g m n g
ω ω <  m in H ωH l H l l% , (5) 

where  Δ ,
m n g

m in H ω l%  is the module of the minimum 

singular interval for the matrix  g
H . 

A graphical interpretation of the proposed algorithm is 
shown in Fig. 2. 

 
Fig. 2. Graphical interpretation of the algorithm for verifying the stability 
of signal separation. 

Thus, in the proposed algorithm, time constraints (real-
time requirements) are only imposed in step 5. This step is 
simple and comes down to comparing the intervals of 
perturbations for the object parameters and the parameter 
intervals for stable signal separation—that is, to verifying 
conditions (4) or (5). 

This expands the possibilities of applying the algorithm 
to objects with dynamically changing characteristics. 
Complicated calculations of matrix intervals for the 
parameters of stable signal separation are removed from 
real-time constraints and are performed instead in free time 
at the learning stage as part of building an object model, 
which is updated rarely (when major changes are made to 
the object). 

IV. COMPUTER MODELING RESULTS 

Let us consider monitoring a railroad infrastructure 
facility by using specialized mobile laboratory cars, with the 
facility including a track, a contact network, a train radio 
communication system, and the like. 

We assume that the signal generation model for a 
communication system with two transmitters (mounted at 
stations) and two mobile receivers (in cars) is described by 
the mixing matrix 2M N   with frequency-dependent 

channels. Signals from the two transmitters as well as 
reflected signals that form an additive mixture of signals can 
enter the mobile receivers. Therefore, to make messages 
encoded in signals accurate, the system should provide 
stable separation of signals according to their source. 

The frequency response of the channels changes when 
the receivers are moving on the rail-track in relation to the 
transmitters. An example of the measured frequency 
response of communication channels for a specific track 
coordinate (the state parameter l  is the distance) is shown in 
Fig. 3(а). 

For certain track coordinates of the receivers, a change 
in the frequency response of the channels simulates a stable 
and unstable separation of signals, and the separation is 
confirmed by the condition number of the mixing matrix 

 ,
g

co n d ωH l  (Fig. 3(b-1) and 3(b-2), respectively). 
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Fig. 3. a) Frequency response of the channels of matrix  ,
g

ωH l ; b) the 

relationship between the condition number  ,
g

co n d ωH l  of the mixing 

matrix and the frequency. 

At the learning stage, the parameters of singularity and 
stability boundaries for a 75 km track section were 
calculated and stored in the database according to the track 
coordinate changed in 1 km increments. Thus, a function 
was determined that set a stability boundary for signal 
separation. 

Next, at the verification stage, condition (5) for stable 
separation was verified for all values of track coordinates 
for the channels’ randomly perturbed frequency responses. 

The modeling showed that the time taken to monitor the 
stability of signal separation for each of the coordinates 
(object states) did not exceed 6 s. This time makes 
monitoring possible when the receivers are moving at a 
speed up to 100 km/h, as opposed to static monitoring with 
algorithm [7].  

This enhances the algorithm’s functionality and 
therefore reduces monitoring times. The receivers’ speed 
was modeled on the speed of data transfer to a program that 
used the stability verification algorithm. 

The reliability of the verification results obtained from 
the proposed algorithm was confirmed by comparing them 
with those of the known algorithm [7], shown in Fig. 4 and 
Fig. 5. tability was verified for two track coordinates for 
which the conditions of stable and unstable signal separation 
were simulated.  

If condition (5) is fulfilled as shown in Fig. 4, then the 
solution to the problem of signal separation is stable, and 
triangular test signals are separated from the additive 
mixture. Otherwise (Fig. 5), the solution is unstable, and no 
signal separation takes place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Modeled stable signal separation [7]. 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
Fig. 5. Modeled unstable signal separation [7]. 

The modeling also showed that the verification results 
for the coordinates of stable and unstable signal separation 
in [7] (at rest) and the verification results for the same 
conditions obtained in the proposed algorithm (in 
postlearning motion) are virtually identical.  

This provides a proof of continuity of the algorithm’s 
proposed generalized version with its earlier published 
version [7]. 



Data Science 

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020)  259 

The proposed algorithm is effective for verifying 
whether solutions to the signal separation problem are stable 
when object characteristics change anomalously.  

The computational complexity involved and the time 
spent on learning are substantial and require special 
individual operating modes. As a result, the diagnostic 
model is only updated when major changes are made to the 
facility. 

Therefore, the learning process (building a diagnostic 
model) should run when the facility is operating. One of the 
methods used to follow this approach is the adaptive 
parametric identification method [8]. Fig. 6. shows a block 
diagram for it. 

 

 

 

 

 

 

 

Fig. 6. Block diagram of adaptive parametric identification. 

 When information is incomplete, optimization problems 
are most efficiently solved through stochastic algorithms 
since the efficiency of deterministic algorithms largely 
depends on the conditions of the problem at hand [9]. 

The model calculated with the identification method is a 
digital twin of the object. This model can be used not only 
to verify the stability of solutions to the signal separation 
problem but also for predictive maintenance. 

Using forecasting methods—for example, [10]—one can 
calculate variation trends for stability boundaries and predict 
the evolution of the diagnostic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. PRIMARY CONCLUSIONS 

We developed an algorithm to verify the stability of 
solutions to the problem of signal separation through 
calculating singular intervals. The algorithm is characterized 
by extended functionality that allows the stability of signal 
separation to be verified for objects whose characteristics 
are described by deterministic functions. 

With learning incorporated in the proposed algorithm, it 
takes far less time to verify stability, making the algorithm 
suitable for use in real-time systems. 

Our computer modeling results confirmed the efficiency 
of the solutions proposed. 
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