
Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

Experience of creating a library for testing C# and

C++ console applications

Vladimir Krotkov

Faculty of lnformation Technology

Samara National Research University

Samara, Russia
galaktikaonline@yandex.ru

Alexandra Danilenko

Software department

Samara National Research University

Samara, Russia

danilenko.al@gmail.com

Abstract—The present work provides a description of

functionality of library aimed at simplifying creation of console

applications in С# and C++ languages by granting

opportunities to use built-in adjusted menu of any level of

enclosure, special means for control over variables of the

program and tracking of a condition of program entities. The

library contains functions for manual and automatic testing

and the multilevel analysis of console application’s

performance. The library also includes auxiliary functionality

of random or sample generation of user-defined or standard-

typed test data and gives opportunities for exact identification

of mistakes made by programmer during development. The

library is powered with modern technologies of object-oriented

programming and developed according to the advanced

architectural and algorithmic concepts.

Keywords—library of tools, manual and automatic testing,

data generation, console applications, C#, C++, parser

I. INTRODUCTION

Modern goals of object-oriented programming include
universalization, algorithmization, increasing the abstraction
level of program and simplification of operating with
complex systems. Separate tools, add-ins and subroutines
(code debugging tools, Clang Power Tools, JUnit) are used
to test such systems, as well as to check their architecture for
correctness. However, it is not always possible to perform a
quick and easy check whether the algorithm works correctly,
nor to test the reaction of application or software component
to user actions [1]. The library described in present work
eliminates the need for the programmer to manually test each
functional element, allowing him to concentrate directly on
writing further interaction between software entities and
implementing algorithms [2].

II. MATERIALS AND METHODS

The C # language library offered by the authors differs
slightly from the C language library. This is due to some of
the functionality available in these languages, the specifics of
the implementation of some programming patterns, and the
challenges commonly faced by developers in the respective
languages.

General features provided by the library in both
languages include:

 using the built-in menu;

 automatically generating program data;

 carrying out controlled tests of the particular block of
the code;

 obtaining information about runtime errors;

 other opportunities.

A. General library capability

A.1. Built-in menu

The menu is the key feature of the library. When
launched, it allows the user to select one of its items
represented by lambda functions for execution. The menu
has protection from the incorrect selection of an item
(relevant for manual testing): if the user choses an incorrect
item, they will be asked to make a new choice. It is possible
to run a sequence of execution of several items (relevant for
automatic and semi-automatic testing). The menu works in
three main ways:

 manual - the programmer himself chooses what menu
item to start and what actions to make inside it;

 semi-automatic - the programmer enters the sequence
of commands which need to be executed, and then the
menu executes these commands;

 automatic - the menu itself generates the sequence of
commands and necessary data for their execution and
then starts the necessary points (currently under
development).

In the present library, the menu is represented by class
Menu and the menu items - by base class MenuItem. A menu
object contains a list of MenuItem and itself inherits from
MenuItem. In other words, executable menu items can either
be simple items (represented by class CommonMenuItem) or
other menus. The menu item list has a tree structure where
Menu objects can be treated as branches and
CommonMenuItem objects - as leaves. Thus, the Composite
design pattern was applied, and was achieved a goal of
making the behavior of menu items universal, regardless of
the particular class that inherits from MenuItem. This
architecture opens up an opportunity to extend the
inheritance hierarchy around the MenuItem without changing
the code interacting with menu items. Such architecture
simplifies the interaction with the tree of MenuItem objects:
the standardized interaction interface with menus or menu
items is represented by virtual (abstract) method execute(),
common to every tree object.

Since the creation of Menu object may be complicated,
the architectural solution was to implement the Builder
design pattern and write the appropriate class. The purpose
of this class is to simplify the creation of a complex Menu
object by splitting this creation into a chain of simple build
calls.

To make the interaction with menu and its components
easier for the developer, and to be able to further add and
encapsulate new interactions, Facade design pattern was
implemented. It controls access to the menu and its
components by providing a user with a convenient interface
to interact with the entire component bundle [3].

http://ssau.ru/english/education/institutes_faculties/it/
mailto:galaktikaonline@yandex.ru

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 281

A.2. Random data generation

The library includes pseudo-random data-generating
functions. They can generate both: standard data types (int,
double, string) and custom data types. Random numbers are
obtained by selecting a random value from the boundaries,
which can also be generated randomly or entered manually.
Random strings are obtained by generating random positive
integers and representing them as characters of a certain
encoding.

Generation of user-type random data is currently being
under development. This process depends on the library’s
language because C# and C++ provide different tools for
working with template (generic) classes and methods.

A.3. Monitored Code Tests

At the current stage of development, the concept of
controlled tests plays a major role. It declares that the
programmer should be protected from errors while entering
test data so that he can quickly, reliably and conveniently test
necessary blocks of code. Therefore, menu and other library
items are supervised by the data entry control system. In
most cases of incorrect input, the program will continue to
work, and the user will receive a warning about incorrect
input and/or a re-enter request. The programmer can use
built-in checks or determine which input is considered
correct. For this purpose, the library has the functionality of
entering a line according to a predefined template, so that
this line may be used to create a specified object. The
developer can use pre-built templates or write his own ones.

However, such functionality might not always be enough.
In order to check the data for correctness as fully as possible,
a system of matching with additional conditions currently
lays under development. The programmer will be offered to
use the corresponding function of the library and send to it a
checking lambda expression or signature of the additional
check function.

In order to complete the concept of controlled tests and
fully transfer the retrieval of correct data to automatics, a
template (generic) class Parser has been written. Its purpose
is to directly retrieve objects of the required types from
entered string. The specifics of this class also depend heavily
on the language of the library. Parser is used in the library
itself to convert strings to numbers. One of the advantages of
this approach is a more flexible adjustment of line
conversion into objects and the possibility of further
configuration of converter classes.

A.4. Obtaining test results

The programmer can configure the menu to run a series
of tests for some piece of code. Test results can be obtained
as information in the console. If a menu is configured to
execute a command sequence, it receives each command
from internal command buffer and prints it to the console
before execution, thus creating a visibility that the command
was entered by user itself. So, a chain of all executed items
and results of their work will have been built by the time
when the buffer becomes empty. Currently new ways of
obtaining test results are being developed. Among the rest
functionality, these tests will be able to include information
on the number of successful (and not so successful) tests that
a block of code has been put through.

A.5. Getting runtime error information

When an error occurs within a menu block, information
about the location, time, specifics, and description of the
error will be available to the user. The user will also be asked
whether to stop the program or continue running it.

A.6. Other opportunities

The library offered by the authors also provides ancillary
capabilities dependent on the language for which it is made.
For example, in C# version of the library conversion of some
containers to a string is one of such capabilities, and for C++
version it is a template function getter of a strictly typed
object from the string and a function that allows you to add
counter of custom objects in some vector while printing. For
more information on the possibilities and differences of this
library in C# and C++, see paragraphs B and C.

B. Features of C# version of the present library

The library in C# is more object-oriented and its classes
better conform to OOP principles such as SOLID, KISS,
DRY, YAGNI. This is the result of the fact that in modern
C# it is common to write programs using simpler and easier
to adapt concepts than concepts of C++ language by authors
opinion. Real tasks set for C# developer include creation of
an easy-to-manage open to modifications universal system
using simple methods. The present C# library will help the
developer solve these problems.

B.1. Features of the menu

The C# menu is more customizable. This was achieved
by the universal implementation of the builder: it differs
from other builders (and from the C++ builder) in such way
that it allows to simultaneously create Menu objects directly
in place of items of the current menu. This possibility has
been opened by transferring the current constructing menu
into a stack and placing a new menu under construction
instead of the old one. The top of the stack will be popped in
place of the current constructing menu afterwards [4]. As the
parent class for any menu item StorageDependentMenuItem
has an internal list of arguments represented by the
LocalStorage object. This object stores the arguments
required to run this item, all of which are wrapped in generic
class FlexibleArgument<T>. This wrapper allows you to
access wrapped argument by both: reference and value,
depending on user's choice. Because of some C# specifics,
only functions with signature void func(params Object []
objects) are supported. Referred objects within the function
can be manually converted to desired types via default
converters, which is not very convenient. It is a disadvantage
of the menu in this language. However, for the moment, this
is the only possible implementation of such functionality in
C# known to the authors.

The menu in C# also passes arguments from the outer
layer of the menu to the inner layer in its own way. Each
StorageDependentMenuItem object has an array of two
tuples, hereinafter referred to as the ArgumentScroll. It
contains information on the indexes of objects from the
external menu item’s LocalStorage which should be passed
to internal LocalStorage as well as information on how they
should be passed: by reference or by value. When passing
from the outer layer (main menu) to the lower layer (one of
the menu items), chosen wrapped arguments move along the
chain to the lower layer, and their change, at user's choice,
will affect only the local copy of these arguments or the
entire chain until the first LocalStorage where these
arguments have appeared by reference.

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 282

This approach allows developer to change the
information in ArgumentScroll and in LocalStorage during
the execution of the program and to monitor the behavior of
the program. In this way, the desired flexibility in menu
usage is achieved.

B.2. Specifics of random data generation

In C#, it is not possible to correctly implement an
interface with a template non-static method GetRandomData,
because the implementation of such interface goes against
some principles of modern object-oriented programming [5].
At the moment the search for solutions that would allow
correct and convenient generation of user-type random data
in C# is being held.

B.3. Specifics of obtaining test results

The menu is able not only to send a sequence of items to
a chain execution, but also to act correspondingly when it
receives a request from functions contained within menu
items that are not related to the library. In particular these
requests are console data input requests. The user can
manually write (or generate) a chain of commands including
commands about entering data into the console and transfer
this chain to the menu for execution. This will create the
appearance of a completely live interaction with the console.
Currently, the functional of coloring console output for better
visualization is being under development.

C. Features of the C++ language library

Library in C++ is more flexible and better geared towards
non-trivial tasks. It will be useful to the developer who
solves optimization problems [6]. The C++ language library
can be assembled for use on any UNIX-like system
(including Linux), Microsoft Windows, macOS, and on some
other systems. This was achieved by using a cross-platform
project build system CMake.

C.1. Features of the menu

The menu in C++ has richer inheritance hierarchy: the
menu is further divided into a single-run menu Menu and a
multirun menu MultiLaunchMenu. MultiLaunchMenu
allows the programmer to mark some MenuItem as an exit
item and terminate the menu after this item is ran. The menu
itself has no flaws of C# menu - CommonMenuItem items
are designed to work with lambda functions of the standard
library, as are C# menu items, but the standard C++
functional of flexible external context capture in lambdas has
made it possible to exclude the storage of argument from
menu item, because the user can specify the desired context
and call the function they need inside the lambda with
captured context [7]. Due to lambda’s versatility, it is also
possible to create a non-trivial lambda and tweak the
behavior of the program.

For user convenience, the present C++ library provides a
basic set of functions for building certain types of MenuItem,
such as a confirm selection menu. These functions return a
builder with a half-built object so that the user does not have
to write the same build chain manually.

Builders of the entire inheritance hierarchy do not have a
base class, which is a disadvantage. Polymorphic behavior
while building a MenuItem object is impossible to organize.
Solutions to this problem are currently being sought.

C.2. Code Testing Features

The library namespace contains a globalDataInputMode
variable that is responsible for the current global input mode
for the entire program. In the future, it will allow to adjust

the behavior of library’s functions at different settings more
qualitatively. At the moment, it can be used to tweak the
behavior of the program directly within the tested functions.
This variable allows a unique transfer of the library 's testing
functionality into the function. This can be used to link the
library to the insides of the tested code.

III. RESULTS AND DISCUSSION

Fig. 1. Diagram of the main relationships between library elements and

their composition at particular development stage.

Fig. 2. Process of menu construction on the client side at particular

development stage.

Fig. 3. Working console menu.

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 283

IV. CONCLUSION

The present library developed by authors gives developer
an opportunity to significantly reduce the time needed to
write monotonous code, as well as to simplify the task of
testing applications. The main advantages of this library are
the possibility of performing automated tests of functions
and the possibility of obtaining results from these tests. The
library was integrated and tested on real tasks.

The functionality of the library is currently being
expanded.

REFERENCES

[1] F. Horváth, B. Vancsics, L. Vidács, Á. Beszédes, D. Tengeri, T.
Gergely and T. Gyimóthy, “Test Suite Evaluation using Code
Coverage Based Metrics,” CEUR Workshop Proceedings, vol. 1525,
pp. 46-60, 2015.

[2] B. Oliinyk and V. Oleksiuk, “Automation in software testing, can we
automate anything we want?” CEUR Workshop Proceedings, vol.
2546, pp. 224-234, 2019.

[3] E. Freeman, B. Bates, K. Sierra and E. Robson, “Head First Design
Patterns: a Brain-Friendly Guide,” Saint-Petersburg, 2018, 656 p.

[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns
Elements of Reusable Object-Oriented Software,” Addison-Wesley,
1994, 395 p.

[5] “How to write Regular Expressions?” Geeksforgeeks [Online]. URL:
https://www.geeksforgeeks.org/write-regular-expressions/.

[6] A.S. Yumaganov and V.V.Myasnikov, “A method of searching for
similar code sequences in executable binary files using a featureless
approach,” Computer Optics, vol. 41, no. 5, pp. 756-764, 2017. DOI:
10.18287/2412-6179-2017-41-5-756-764.

[7] Lambda expressions [Online]. URL: https://en.cppreference.com/w/
cpp/language/lambda.

