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Abstract—This study considers back propagation neural 

networks (NN) training for named entity recognition using 

multilayer NN architectures and various feature spaces on 

character strings. Experimental results showing the relation 

between the generalizing properties and the intersection of the 

training and test named entity sets while solving the 

conventional named entity recognition problem are presented. 

We also propose a method for improving the model predictive 

ability to recognize named entities not used in the training.   
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I. INTRODUCTION  

The paper proposes a new method and investigates the 
key disadvantages of the existing named entity (NE) 
recognition solutions. Named entity recognition is a well-
known problem, a part of the text mining domain [1]. 

Within the text mining domain, named entity recognition 
is used to locate and identify identical information objects 
contained in the text either directly, or indirectly. The general 
named entity recognition (NER) problem is the identification 
of words/word sequences in a text that belongs to a specified 
group, such as company names, geographic names, proper 
names, etc. The problem has many specific formulations and 
is significant for automated text processing systems. The 
common problems mentioned in the available references are 
proper name recognition, drug name recognition (bio-NER, 
drug-NER) [2], and chemical entity recognition (chem-NER) 
[3]. Since developing syntax rules and dictionaries for such 
problems is difficult, and proper names and formulas often 
contain errors, the problems are usually solved with machine 
learning [3,4]. For the last three to four years, more advanced 
named entity recognition methods emerged. The new 
methods use the most advanced long short-term memory 
neural network architectures [5] and are extensively 
investigated. An application of such a neural network 
architecture to the Russian language is presented in [6]. 

A commonly used optimization method for neural 
network training is the stochastic gradient descend (SGD) 
[7]. It is iteratively controlled by a numeric loss function 
value [8]. On one hand, the method is based on a random 
distribution of changes to the neural network coefficients. It 
means that the model parameter vector randomly oscillates 
around the common path since it is updated as a new entity 
enters the network (with some noise relative to the 

generalized pattern; it is a so-called “online update”, refer to 
[9]). With this, the expected global error minimum can be 
found faster [9]. On the other hand, the ground truth and the 
loss function should match the NN learning objective. 

The problem statement for this research is improving the 
quality of the models used for the recognition of named 
entities not presented at the NN training phase by using a 
multiclass loss function along with a probabilistic 
representation of the specific named entity strings. We also 
present the experimental results showing the relation 
between the generalizing properties and the intersection of 
the training and test named entity sets while solving the 
conventional named NE recognition problem, and the 
extremely poor generalizing ability of such conventionally 
trained models when applied to texts that contain new, 
unknown NEs which is common in actual (commercial) NE 
recognition applications. 

II. RELATED WORKS 

There are several approaches to the named entity 
identification problem: grammar templates [10]; a classifier 
based on support vectors [11], statistical models, namely, 
hidden Markov models [12], conditional random fields [13, 
14], and a range of deep learning NN models [15-18]. To 
overcome the limitations of using recurrent neural networks 
used for NE string prediction [15], neural network cells with 
long short-term memory (LSTM) were introduced [5]. 

The latest trend is combining various neural network 
architectures as layers of a top-level multilayer neural 
network [19]. Lately, it has been considered as deep learning. 
This is presented in [16]; the first results obtained with a 
convoluted network are shown in [17] as applied to advanced 
neural network architectures [18]. Despite the relatively NER 
solution high quality compared to the above-listed 
conventional methods, the researchers note a disadvantage 
attributed to random errors introduced to the features of an 
entity to be recognized. The paper [20] notes that expanding 
the feature space by introducing capital letters and part of 
speech attributes do not improve the quality. A solution that 
brings LSTM neural networks to a state-of-the-art level is the 
architectures that do not require manual feature engineering 
or pre-processing. Instead, they are end-to-end architectures 
that process character strings directly and generate a feature 
space with a sufficient dimensionality [20, 21, 22] for the top 
LSTM layers that recognize the string (containing a NE.) 
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The approach is supported by the paper [23]. It notes that the 
feature space generated by such a model can distinguish 
word suffixes, capitalized words, prefixes, and perform 
tokenization automatically. With such an approach, the NN 
training seems to be similar to the way people learn words: 
an explicit character string is matched to a test list of words 
hidden from the observer. It is abstract and not obvious at the 
initial phases of learning, but as the learning is completed, 
the word list contains a set of words and the rules of their 
usage. In this paper, we will experimentally verify if this 
approach is valid. We will also experimentally verify the 
controlled vertical addition of layers to a neural network. As 
the number of layers is determined by the architecture, there 
is a problem of representing the linear operator for multiple 
NN layers (applied to the NN layers considered as elements: 
as it would have been applied to the elements of a specific 
NN layer in the conventional problem formulation.) The 
problem is solved with such architectures as shown in [24, 
25] that resulted in the emergence of highway neural 
networks. 

III. GENERAL ARCHITECTURE OF THE 

PROPOSED NEURAL NETWORK 

A. Encoder Architecture 

The features are represented with a convolutional 
encoder [9]. The encoder input is the letter features encoded 
by natural numbers [21]. Each word is encoded by a vector. 
Its length is equal to the length of the longest word (21 letters 
in our experiment). The vector elements are the letter 
sequential numbers in the alphabet. An empty position is 
coded as 1. 

As it is noted in [21], sequence convolutions (usually 
called ’time convolutions’) are used to process natural 
language texts in contrast to spatial convolutions used to 
process images. For this reason, a feature representation 

1
f

k l wR    of the neural network middle layer for the 

word k is generated as follows: where [*, : 1]C
k i i w   are 

columns of the C
k

 matrix from i  to 1i w  , 

 ,A B Tr AB
T  is the Frobenius scalar product. 

The most significant features for each word k  are to be 

selected from the feature vector f
k : max [ ]y f

k k

i
i   (max-

over-time) for k , located at the center of a letter window  

wide [21].  

The most efficient method to represent the generated n-
gram character sequences for a convoluted neural network is 
to use several such filters concurrently. The filters have 
various bandwidths proportional to the expected n-gram 
length (a word length expressed in characters.) We used the 
same parameters as in the paper [21]: seven filters with [50, 
100, 150, 200, 200, 200, 200] dimensions. As the authors 
note, the key concept is to identify the most significant 
features for a specific n-gram input and each filter with 
various dimensions. 

For the filters 
1, ,H HhK  ( 7h   in this case), the 

convoluted neural network output for a character 

representation is 
1 , ,y

k k k

hy y   K  for the input 

representation of the word k , max. length of 21 characters. 

As the paper [21] specifies, for many natural language 

processing applications  is the dimension of the output 
middle layer (usually between 100 and 1,000.) In our 
experiment, the value is 650. 

 
Fig. 1. The general arrangement of a char-cnn-lstm encoder based on the 
arrangement presented in [19]. 

As new sentences are supplied to the training window 
100 sentences long an internal covariance shift may occur 
[9]. To minimize it, and to accelerate the training, we used 
mini-batch normalization [26]. 

After normalization, the convoluted encoder output can 
be complemented by layers with linear transfer functions and 
a carry gate that excludes several linear layers based on the 
value of the function G  [24, 25]: 

       , , 1 ,y x W x W x WH G GH G x G     , 

where x  is the input,  ,x WHH  is the transform gate,  

 ,x WGG is the carry gate:  ( )x W xH HH b  , 

 ( )x W xG GG b  , where   is the sigmoidal function. 

We used two such layers in the experiments. 

LSTM cells were applied for the sequence recognition. A 
layer with LSTM cells [6] replaces the NN hidden layer 
coefficients ( W ) with a system of equations that connects 

the LSTM elements horizontally and enables short-term long 
memory (refer to Fig. 2). 

B. Decoder. Using the Estimated vs. Reference Mismatch 

Vector for Backpropagation 

A language model that estimates the next word 

probability 1tw   (a named entity or another word) from a 

character sequence  1,w tw w  was developed as 

follows.  

Upon every neural network weights update as new 
features (character strings) are presented, an error function is 
estimated. The error function checks the match or mismatch 
of the class index (the word number in the dictionary) in the 
training set and the estimated class index (the word number 
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in the dictionary) for each character string that represents the 
word: 

 
( )

* argmax ( ; , )W
y Y z

y p y z b


 . 

A result of successful training is matching the character 
string segments being words as individual elements [23]. 

 
Fig. 2. A short-term long memory cell structure (from [4]). 

Estimating a word class (or a NE class) in a sentence 
(text representation hidden from the NN input) as a character 
string containing the word is presented, or, if the prediction 
is wrong, a set of characters not related to the expected word 
is as follows. Two extra layers are added to the recurrent 
neural network output: a dropout layer with a 0.5 dropout 
probability, and a so-called linear layer with its dimension 
equal to the dictionary size: 

 ( )x W xP PP b  . 

In other words, the neural network output as a S N  

matrix is multiplied by a N T P   matrix, where S  is the 

number of sentences (100), N  is the neural network output 

dimension, T  is the number of words in the sentence (35), 
P  is the dictionary size. 

The resulting matrix contains non-normalized values of 
the dictionary word degree of membership to the classes 
recognized in the array of sentences that the neural network 
(not receiving the “right” term numbers directly) gets as a 
sequence of characters. In the course of optimization the 
network is trained to recognize the sequences of characters as 
indivisible fragments (words) and to predict each such word, 
and also to predict (whether correctly or erroneously) the 
class of an index 0 named entity. 

To decrease the P  dimension, we can estimate the 
softmax index by assigning it to the respective element of the 
S T  array: the index is the expected word (class) index in 

the dictionary used to compare the current neural network 
output with the referenced one. 

The stochastic gradient descend (SGD) method is used to 
optimize the neural network layer coefficients. The SGD 
argument is the error value, i.e., the cross-entropy function 
value estimated for the probability of membership in each 
word of the language: 

 ( , ) ( ) log ( )
y

H p q p y q y  , 

that is to be transformed back (with some error) into the 
coefficients of an LSTM recurrent neural network. 

IV. EXPERIMENTAL PROCEDURE 

Two language corpora were used: Penn Treebank [27] 
and English NER task CoNLL2003 [28]. Refer to Table 1 for 
their summary data. For the CoNLL2003 corpus, NE-PER 
(Personal, person, human) were used. To estimate the named 
entity recognition quality we used conventional metrics: 
general accuracy for all the classes, accuracy, completeness, 
F1-score for the first class represented by the NEs [29]. Also, 
refer to [30]. 

TABLE I.  EXPERIMENTAL DATA SET STATISTICS 

Dataset Text  element type 
Penn 

Treebank 
CoNLL2003 

Training 

Sentences 42068 14987 

Words 887.521 204.567 

Validation 
Sentences 3370 3466 

Words 70.390 51.578 

Test 
Sentences 3761 3684 

Words 78.669 46.666 

 

V. EXPERIMENTAL PROCEDURE 

A. Experiment No.1: Standard NE recognition problem 

Refer to Fig. 3 for the test set recognition results achieved 
with the multiclass loss function. 

 
Fig. 3. CoNLL2003 test set recognition result. 

B. Experiment No.2: Random NE recognition 

Feature space for the CoNLL2003 corpus is constructed 
in such a way as to make the named entity character strings 
composed of 3 - 20 random characters for training and 
testing. Refer to Fig. 4 for the results. 

We will further check if the experimental result is a 
mistake. 

 
Fig. 4. The CoNLL2003 corpus test set recognition result with randomly 

misspelled NE character features during the training and the testing. 
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C. Experiment No.3: Unique NE recognition refined 

problem statement  

Using the information on Chem-NER [3], we can refine 
the NE recognition problem with the CoNLL2003 corpus as 
follows: first, the NN is trained; then, it recognizes NEs not 
present in the training set, only in the test one. The resulting 
problem is more complicated: the network will be trained 
with the NE character features not found in the test set NEs. 
For this, every corpus CoNLL2003 named entity is a string 
composed of 3 - 20 random characters. It is transfer learning 
[30] for named entity recognition. 

 
Fig. 5. The result of the CoNLL2003 corpus test recognition with the NN 
trained on NEs with randomly misspelled character features. 

 
Fig. 6. The result of the CoNLL2003 corpus validation set recognition with 

the NN trained on NEs with randomly misspelled character features. 

The results of this experiment and the previous one are 

controversial. 

 
Fig. 7. The result of the CoNLL2003 corpus test recognition with the NN 

trained on NEs with randomly misspelled character features. The NN 
modified the prediction and loss functions. 

D. Experiment No.4: The algorithm adaptation for unique 

NE recognitions 

Using the feature space building conditions from 
Experiment No. 3, we will change the predictive function 
from the softmax class as follows: if the confidence factor in 

favor of at least one class is less than 50%, then class 0 
(named entity) would be predicted. It means that the NN 
cannot recognize the unique string with a high probability: 

 
( )

* ROUND argmax ( ; , )W
y Y z

y p y z b


 
  

 
 

In this case, while in the training the error function skips 
the recognition errors associated with the randomly changed 
NE characters. 

E. Experiment No.5: Solution verification with the Penn 

TreeBank corpus 

Experiment No. 4 is repeated with the Penn TreeBank 
corpus. The hypothesis is: with each named entity misspelled 
we will avoid the well-known <UNK> (unknown) character 
recognition problem. Every named entity is encoded by these 
characters. The text corpus (stock reports and financial news) 
is huge and homogeneous; that is why it is suitable to learn 
the unique named entity recognition accuracy with the 
method proposed in Experiment No. 4. 

 
Fig. 8. The result of the PennTreeBank corpus test recognition with the NN 
trained on NEs with randomly misspelled character features. The NN 
modified the prediction and loss functions. 

F. Experiment No.6: The method improvement and the 

comparative metrics estimation 

During the experiments, we identified and confirmed the 
existence of the problem that was reviewed in [32]. 
Unfortunately, our team found it out too late, when 
experiments 1-5 had been completed. It is an independent 
confirmation that the problem does exist in the industry. 
Initially, we introduced a more radical problem statement 
and offered an EN representation-agnostic solution, even if 
the recognition quality is not perfect. Thus, to estimate the 
comparative characteristics, the loss function will be left as 
in experiments 5-6, and the convolutional encoder will get 
NE character strings as input. The NEs that were used in 
training are deleted from the test set for the quality 
assessment as proposed in [32]. Since gazetteers are used in 
[32], we also used them for this experiment. Refer to Table 2 
for the comparative characteristic of this method with and 
without gazetteers. There are 1,500 training epochs for this 
model. The NE recognition target classes are Person, 
Organization, Location, as in [32]. 

TABLE II.  THE QUALITY CHARACTERISTICS OF THE METHOD 

Corpus 
no gazetters with gazetters 

Prec. Recall F1 Prec. Recall F1 

CONLL 

test A 

0.56 0.78 0.649 0.59 0.75 0.657 

CONLL 

test B 
0.43 0.87 0.571 0.57 0.85 0.579 
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The recognition quality is higher if a NE generalized 
pattern is generated through training. Refer to Table 3 for the 
comparison of the results with [32]. Refer to Table 14 for a 
comparison of the results. (Table 14: Out of domain 
performance: F1 of NERC with different models). 

TABLE III.  RESULTS COMPARED TO [29] 

The results 
Precision

 Recall F1-score 

Proposed method 

CONLL test B 0.59055 0.75364 0.6537 

CONLL test A 0.44853 0.85251 0.57881 

Memorization 

CONLL test B 0.5314 0.2236 0.3148 

CONLL test A 0.5585 0.2249 0.3207 

CRF Suite 

CONLL test A 0.6712 0.3857 0.4899 

CONLL test B 0.6794 0.3641 0.4741 

SENNA 

CONLL test A 0.6862 0.5868 0.6326 

CONLL test B 0.6461 0.5194 0.5758 

 

The experimental numerical results are presented in 

Table 4. The specified natural language models quality 

refers to the epoch indicated in the Table. 

TABLE IV.  EXPERIMENTAL RESULTS 

Exp 
No. 

Fig 

No. 
Trainin
g epoch 

General 
accuracy 

NER 

precisio

n 

NER 
recall 

F1 
score 

1 3 150 0.849 0.7859 0.8495 0.81 

2 4 44 0.9214 0.8825 0.9950 0.934 

3 5 250 0.8174 0.3921 0.0302 0.054 

3 6 250 0.8401 0.4003 0.0346 0.061 

4 7 250 0.8466 0.2681 0.9023 0.39 

5 8 54 0.9852 0.7708 0.9943 0.866 

6 -- 1500 -- 0.5637 0.7809 0.649 

VI. RESULTS AND DISCUSSION 

Interpreting Experiment No. 2 results as a success is a 

mistake because it contradicts Experiment No. 3 results. A 

possible reason for the contradiction is a feature of the 

tensorflow softmax software package function that 

processes the NN output: 

- the class occurrence probability P is estimated from the 

NN output values with the class 0 features. The standard 

class index for NER-Person class is 0. The estimated 

probability is low, but still, it is higher than for the other 

n classes representing the words. 

- or it assigns class index 0 (Person) if the probabilities 

of the term being a member of each class in the set are 

equal. 

Nevertheless, as the classifier finds a non-random NE 

representation in a character string (refer to Experiment No. 

3), it will assign to it an index of the class (word) that differs 

from the NE class but is more similar to that of another non-

random word. A trivial example is: we need to recognize the 

proper noun: the Snowball dessert name. The NN model 

was trained with the names of other desserts. It was also 

trained with fairy tales used as counterexamples where the 

word Snowball represents a ball of snow for the winter 

game, but not the dessert. 

This problem shows that the existing named entity 

recognition training methods have a significant 

disadvantage: the recognition quality depends on whether 

the NE lists for the training and recognition sets intersect or 

not. In this case, the contradiction is between the possible 

uniqueness of the NE representation and the statistical 

method of recognition applied. 

These results mean that it is possible to formulate the 

problem of NE recognition by searching the character string 

that was not used while in training. 
The most obvious solution for this contradiction is 

increasing the classifier sensitivity threshold to, e.g., 50% 
probability of accurate identification of previously known, 
standard words in a sentence. As experiments 4 and 5 show, 
this aim is achievable. For a big training set (Experiment 5) 
the recognition quality is equal to that of the non-unique NE 
recognition. 

VII. CONCLUSIONS AND FURTHERRESEARCH 

The experiments show that multilayer neural networks 
can be applied to named entity recognition even if the NEs 
greatly differ from the training set. The unique NE 
recognition for the CoNLL2003 corpus complex text is 
possible with accuracy 0.5637, completeness 0.7809, and F1-
score 0.6492. 

Nevertheless, the researchers should consider two 
different problems: the recognition of known or similar NEs, 
and the recognition of unknown NEs not similar to those 
used for the training. The paper [32] also confirms that the 
problem exists. Our results are comparable to those presented 
in [32]. Our experiments showed that the conventional 
substitution or a substitution refined with extra statistical 
data (gazetteers and additional features) can just significantly 
improve the recognition of known NEs (e.g., included in the 
dictionaries.) It is the case for the more complex, advanced 
accuracy improvement algorithms. The extra statistical data 
used in Experiment No. 6 increased F1-score by 0.7%...0.8% 
through reducing the recognition completeness. The 
achievable metrics of any new method for the conventional 
problem depends on the amount of intersection between the 
NE training set and the testing one. The recognition of 
general text patterns located between NEs is a more natural 
problem statement. We also identified an issue with the 
softmax function (particularly tensorflow tf.nn.softmax) as 
applied to NN output layer factors that represent NEs since it 
leads to lower accuracy. 
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