
Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

A Multiclass Words Classification by the Recurrent

Neural Network with Memory (LSTM) as

Applicable to the Named Entity Recognition

Problem

Vladimir Vakurin

Tula State University

Tula, Russia
vakourinvl@yandex.ru

Andrey Kopylov

Tula State University

Tula, Russia
and.kopylov@gmail.com

Konstantin Mertsalov

 Rensselaer Polytechnic Institute

Troy, NY, USA

 kmertsalov@gmail.com

Oleg Seredin

Tula State University

Tula, Russia
oseredin@yandex.ru

Abstract—This study considers back propagation neural

networks (NN) training for named entity recognition using

multilayer NN architectures and various feature spaces on

character strings. Experimental results showing the relation

between the generalizing properties and the intersection of the

training and test named entity sets while solving the

conventional named entity recognition problem are presented.

We also propose a method for improving the model predictive

ability to recognize named entities not used in the training.

Keywords—recurrent neural network, character feature

spaces, long short-term memory architecture

I. INTRODUCTION

The paper proposes a new method and investigates the
key disadvantages of the existing named entity (NE)
recognition solutions. Named entity recognition is a well-
known problem, a part of the text mining domain [1].

Within the text mining domain, named entity recognition
is used to locate and identify identical information objects
contained in the text either directly, or indirectly. The general
named entity recognition (NER) problem is the identification
of words/word sequences in a text that belongs to a specified
group, such as company names, geographic names, proper
names, etc. The problem has many specific formulations and
is significant for automated text processing systems. The
common problems mentioned in the available references are
proper name recognition, drug name recognition (bio-NER,
drug-NER) [2], and chemical entity recognition (chem-NER)
[3]. Since developing syntax rules and dictionaries for such
problems is difficult, and proper names and formulas often
contain errors, the problems are usually solved with machine
learning [3,4]. For the last three to four years, more advanced
named entity recognition methods emerged. The new
methods use the most advanced long short-term memory
neural network architectures [5] and are extensively
investigated. An application of such a neural network
architecture to the Russian language is presented in [6].

A commonly used optimization method for neural
network training is the stochastic gradient descend (SGD)
[7]. It is iteratively controlled by a numeric loss function
value [8]. On one hand, the method is based on a random
distribution of changes to the neural network coefficients. It
means that the model parameter vector randomly oscillates
around the common path since it is updated as a new entity
enters the network (with some noise relative to the

generalized pattern; it is a so-called “online update”, refer to
[9]). With this, the expected global error minimum can be
found faster [9]. On the other hand, the ground truth and the
loss function should match the NN learning objective.

The problem statement for this research is improving the
quality of the models used for the recognition of named
entities not presented at the NN training phase by using a
multiclass loss function along with a probabilistic
representation of the specific named entity strings. We also
present the experimental results showing the relation
between the generalizing properties and the intersection of
the training and test named entity sets while solving the
conventional named NE recognition problem, and the
extremely poor generalizing ability of such conventionally
trained models when applied to texts that contain new,
unknown NEs which is common in actual (commercial) NE
recognition applications.

II. RELATED WORKS

There are several approaches to the named entity
identification problem: grammar templates [10]; a classifier
based on support vectors [11], statistical models, namely,
hidden Markov models [12], conditional random fields [13,
14], and a range of deep learning NN models [15-18]. To
overcome the limitations of using recurrent neural networks
used for NE string prediction [15], neural network cells with
long short-term memory (LSTM) were introduced [5].

The latest trend is combining various neural network
architectures as layers of a top-level multilayer neural
network [19]. Lately, it has been considered as deep learning.
This is presented in [16]; the first results obtained with a
convoluted network are shown in [17] as applied to advanced
neural network architectures [18]. Despite the relatively NER
solution high quality compared to the above-listed
conventional methods, the researchers note a disadvantage
attributed to random errors introduced to the features of an
entity to be recognized. The paper [20] notes that expanding
the feature space by introducing capital letters and part of
speech attributes do not improve the quality. A solution that
brings LSTM neural networks to a state-of-the-art level is the
architectures that do not require manual feature engineering
or pre-processing. Instead, they are end-to-end architectures
that process character strings directly and generate a feature
space with a sufficient dimensionality [20, 21, 22] for the top
LSTM layers that recognize the string (containing a NE.)

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 294

The approach is supported by the paper [23]. It notes that the
feature space generated by such a model can distinguish
word suffixes, capitalized words, prefixes, and perform
tokenization automatically. With such an approach, the NN
training seems to be similar to the way people learn words:
an explicit character string is matched to a test list of words
hidden from the observer. It is abstract and not obvious at the
initial phases of learning, but as the learning is completed,
the word list contains a set of words and the rules of their
usage. In this paper, we will experimentally verify if this
approach is valid. We will also experimentally verify the
controlled vertical addition of layers to a neural network. As
the number of layers is determined by the architecture, there
is a problem of representing the linear operator for multiple
NN layers (applied to the NN layers considered as elements:
as it would have been applied to the elements of a specific
NN layer in the conventional problem formulation.) The
problem is solved with such architectures as shown in [24,
25] that resulted in the emergence of highway neural
networks.

III. GENERAL ARCHITECTURE OF THE

PROPOSED NEURAL NETWORK

A. Encoder Architecture

The features are represented with a convolutional
encoder [9]. The encoder input is the letter features encoded
by natural numbers [21]. Each word is encoded by a vector.
Its length is equal to the length of the longest word (21 letters
in our experiment). The vector elements are the letter
sequential numbers in the alphabet. An empty position is
coded as 1.

As it is noted in [21], sequence convolutions (usually
called ’time convolutions’) are used to process natural
language texts in contrast to spatial convolutions used to
process images. For this reason, a feature representation

1
f

k l wR   of the neural network middle layer for the

word k is generated as follows: where [*, : 1]C
k i i w  are

columns of the C
k

 matrix from i to 1i w  ,

 ,A B Tr AB
T is the Frobenius scalar product.

The most significant features for each word k are to be

selected from the feature vector f
k : max []y f

k k

i
i (max-

over-time) for k , located at the center of a letter window

wide [21].

The most efficient method to represent the generated n-
gram character sequences for a convoluted neural network is
to use several such filters concurrently. The filters have
various bandwidths proportional to the expected n-gram
length (a word length expressed in characters.) We used the
same parameters as in the paper [21]: seven filters with [50,
100, 150, 200, 200, 200, 200] dimensions. As the authors
note, the key concept is to identify the most significant
features for a specific n-gram input and each filter with
various dimensions.

For the filters
1, ,H HhK (7h  in this case), the

convoluted neural network output for a character

representation is
1 , ,y

k k k

hy y   K for the input

representation of the word k , max. length of 21 characters.

As the paper [21] specifies, for many natural language

processing applications is the dimension of the output
middle layer (usually between 100 and 1,000.) In our
experiment, the value is 650.

Fig. 1. The general arrangement of a char-cnn-lstm encoder based on the
arrangement presented in [19].

As new sentences are supplied to the training window
100 sentences long an internal covariance shift may occur
[9]. To minimize it, and to accelerate the training, we used
mini-batch normalization [26].

After normalization, the convoluted encoder output can
be complemented by layers with linear transfer functions and
a carry gate that excludes several linear layers based on the
value of the function G [24, 25]:

       , , 1 ,y x W x W x WH G GH G x G     ,

where x is the input,  ,x WHH is the transform gate,

 ,x WGG is the carry gate:  ()x W xH HH b  ,

 ()x W xG GG b  , where  is the sigmoidal function.

We used two such layers in the experiments.

LSTM cells were applied for the sequence recognition. A
layer with LSTM cells [6] replaces the NN hidden layer
coefficients (W) with a system of equations that connects

the LSTM elements horizontally and enables short-term long
memory (refer to Fig. 2).

B. Decoder. Using the Estimated vs. Reference Mismatch

Vector for Backpropagation

A language model that estimates the next word

probability 1tw  (a named entity or another word) from a

character sequence  1,w tw w was developed as

follows.

Upon every neural network weights update as new
features (character strings) are presented, an error function is
estimated. The error function checks the match or mismatch
of the class index (the word number in the dictionary) in the
training set and the estimated class index (the word number

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 295

in the dictionary) for each character string that represents the
word:

()

* argmax (; ,)W
y Y z

y p y z b


 .

A result of successful training is matching the character
string segments being words as individual elements [23].

Fig. 2. A short-term long memory cell structure (from [4]).

Estimating a word class (or a NE class) in a sentence
(text representation hidden from the NN input) as a character
string containing the word is presented, or, if the prediction
is wrong, a set of characters not related to the expected word
is as follows. Two extra layers are added to the recurrent
neural network output: a dropout layer with a 0.5 dropout
probability, and a so-called linear layer with its dimension
equal to the dictionary size:

 ()x W xP PP b  .

In other words, the neural network output as a S N

matrix is multiplied by a N T P  matrix, where S is the

number of sentences (100), N is the neural network output

dimension, T is the number of words in the sentence (35),
P is the dictionary size.

The resulting matrix contains non-normalized values of
the dictionary word degree of membership to the classes
recognized in the array of sentences that the neural network
(not receiving the “right” term numbers directly) gets as a
sequence of characters. In the course of optimization the
network is trained to recognize the sequences of characters as
indivisible fragments (words) and to predict each such word,
and also to predict (whether correctly or erroneously) the
class of an index 0 named entity.

To decrease the P dimension, we can estimate the
softmax index by assigning it to the respective element of the
S T array: the index is the expected word (class) index in

the dictionary used to compare the current neural network
output with the referenced one.

The stochastic gradient descend (SGD) method is used to
optimize the neural network layer coefficients. The SGD
argument is the error value, i.e., the cross-entropy function
value estimated for the probability of membership in each
word of the language:

 (,) () log ()
y

H p q p y q y  ,

that is to be transformed back (with some error) into the
coefficients of an LSTM recurrent neural network.

IV. EXPERIMENTAL PROCEDURE

Two language corpora were used: Penn Treebank [27]
and English NER task CoNLL2003 [28]. Refer to Table 1 for
their summary data. For the CoNLL2003 corpus, NE-PER
(Personal, person, human) were used. To estimate the named
entity recognition quality we used conventional metrics:
general accuracy for all the classes, accuracy, completeness,
F1-score for the first class represented by the NEs [29]. Also,
refer to [30].

TABLE I. EXPERIMENTAL DATA SET STATISTICS

Dataset Text element type
Penn

Treebank
CoNLL2003

Training

Sentences 42068 14987

Words 887.521 204.567

Validation
Sentences 3370 3466

Words 70.390 51.578

Test
Sentences 3761 3684

Words 78.669 46.666

V. EXPERIMENTAL PROCEDURE

A. Experiment No.1: Standard NE recognition problem

Refer to Fig. 3 for the test set recognition results achieved
with the multiclass loss function.

Fig. 3. CoNLL2003 test set recognition result.

B. Experiment No.2: Random NE recognition

Feature space for the CoNLL2003 corpus is constructed
in such a way as to make the named entity character strings
composed of 3 - 20 random characters for training and
testing. Refer to Fig. 4 for the results.

We will further check if the experimental result is a
mistake.

Fig. 4. The CoNLL2003 corpus test set recognition result with randomly

misspelled NE character features during the training and the testing.

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 296

C. Experiment No.3: Unique NE recognition refined

problem statement

Using the information on Chem-NER [3], we can refine
the NE recognition problem with the CoNLL2003 corpus as
follows: first, the NN is trained; then, it recognizes NEs not
present in the training set, only in the test one. The resulting
problem is more complicated: the network will be trained
with the NE character features not found in the test set NEs.
For this, every corpus CoNLL2003 named entity is a string
composed of 3 - 20 random characters. It is transfer learning
[30] for named entity recognition.

Fig. 5. The result of the CoNLL2003 corpus test recognition with the NN
trained on NEs with randomly misspelled character features.

Fig. 6. The result of the CoNLL2003 corpus validation set recognition with

the NN trained on NEs with randomly misspelled character features.

The results of this experiment and the previous one are

controversial.

Fig. 7. The result of the CoNLL2003 corpus test recognition with the NN

trained on NEs with randomly misspelled character features. The NN
modified the prediction and loss functions.

D. Experiment No.4: The algorithm adaptation for unique

NE recognitions

Using the feature space building conditions from
Experiment No. 3, we will change the predictive function
from the softmax class as follows: if the confidence factor in

favor of at least one class is less than 50%, then class 0
(named entity) would be predicted. It means that the NN
cannot recognize the unique string with a high probability:

()

* ROUND argmax (; ,)W
y Y z

y p y z b


 
  

 

In this case, while in the training the error function skips
the recognition errors associated with the randomly changed
NE characters.

E. Experiment No.5: Solution verification with the Penn

TreeBank corpus

Experiment No. 4 is repeated with the Penn TreeBank
corpus. The hypothesis is: with each named entity misspelled
we will avoid the well-known <UNK> (unknown) character
recognition problem. Every named entity is encoded by these
characters. The text corpus (stock reports and financial news)
is huge and homogeneous; that is why it is suitable to learn
the unique named entity recognition accuracy with the
method proposed in Experiment No. 4.

Fig. 8. The result of the PennTreeBank corpus test recognition with the NN
trained on NEs with randomly misspelled character features. The NN
modified the prediction and loss functions.

F. Experiment No.6: The method improvement and the

comparative metrics estimation

During the experiments, we identified and confirmed the
existence of the problem that was reviewed in [32].
Unfortunately, our team found it out too late, when
experiments 1-5 had been completed. It is an independent
confirmation that the problem does exist in the industry.
Initially, we introduced a more radical problem statement
and offered an EN representation-agnostic solution, even if
the recognition quality is not perfect. Thus, to estimate the
comparative characteristics, the loss function will be left as
in experiments 5-6, and the convolutional encoder will get
NE character strings as input. The NEs that were used in
training are deleted from the test set for the quality
assessment as proposed in [32]. Since gazetteers are used in
[32], we also used them for this experiment. Refer to Table 2
for the comparative characteristic of this method with and
without gazetteers. There are 1,500 training epochs for this
model. The NE recognition target classes are Person,
Organization, Location, as in [32].

TABLE II. THE QUALITY CHARACTERISTICS OF THE METHOD

Corpus
no gazetters with gazetters

Prec. Recall F1 Prec. Recall F1

CONLL

test A

0.56 0.78 0.649 0.59 0.75 0.657

CONLL

test B
0.43 0.87 0.571 0.57 0.85 0.579

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 297

The recognition quality is higher if a NE generalized
pattern is generated through training. Refer to Table 3 for the
comparison of the results with [32]. Refer to Table 14 for a
comparison of the results. (Table 14: Out of domain
performance: F1 of NERC with different models).

TABLE III. RESULTS COMPARED TO [29]

The results
Precision

 Recall F1-score

Proposed method

CONLL test B 0.59055 0.75364 0.6537

CONLL test A 0.44853 0.85251 0.57881

Memorization

CONLL test B 0.5314 0.2236 0.3148

CONLL test A 0.5585 0.2249 0.3207

CRF Suite

CONLL test A 0.6712 0.3857 0.4899

CONLL test B 0.6794 0.3641 0.4741

SENNA

CONLL test A 0.6862 0.5868 0.6326

CONLL test B 0.6461 0.5194 0.5758

The experimental numerical results are presented in

Table 4. The specified natural language models quality

refers to the epoch indicated in the Table.

TABLE IV. EXPERIMENTAL RESULTS

Exp
No.

Fig

No.
Trainin
g epoch

General
accuracy

NER

precisio

n

NER
recall

F1
score

1 3 150 0.849 0.7859 0.8495 0.81

2 4 44 0.9214 0.8825 0.9950 0.934

3 5 250 0.8174 0.3921 0.0302 0.054

3 6 250 0.8401 0.4003 0.0346 0.061

4 7 250 0.8466 0.2681 0.9023 0.39

5 8 54 0.9852 0.7708 0.9943 0.866

6 -- 1500 -- 0.5637 0.7809 0.649

VI. RESULTS AND DISCUSSION

Interpreting Experiment No. 2 results as a success is a

mistake because it contradicts Experiment No. 3 results. A

possible reason for the contradiction is a feature of the

tensorflow softmax software package function that

processes the NN output:

- the class occurrence probability P is estimated from the

NN output values with the class 0 features. The standard

class index for NER-Person class is 0. The estimated

probability is low, but still, it is higher than for the other

n classes representing the words.

- or it assigns class index 0 (Person) if the probabilities

of the term being a member of each class in the set are

equal.

Nevertheless, as the classifier finds a non-random NE

representation in a character string (refer to Experiment No.

3), it will assign to it an index of the class (word) that differs

from the NE class but is more similar to that of another non-

random word. A trivial example is: we need to recognize the

proper noun: the Snowball dessert name. The NN model

was trained with the names of other desserts. It was also

trained with fairy tales used as counterexamples where the

word Snowball represents a ball of snow for the winter

game, but not the dessert.

This problem shows that the existing named entity

recognition training methods have a significant

disadvantage: the recognition quality depends on whether

the NE lists for the training and recognition sets intersect or

not. In this case, the contradiction is between the possible

uniqueness of the NE representation and the statistical

method of recognition applied.

These results mean that it is possible to formulate the

problem of NE recognition by searching the character string

that was not used while in training.
The most obvious solution for this contradiction is

increasing the classifier sensitivity threshold to, e.g., 50%
probability of accurate identification of previously known,
standard words in a sentence. As experiments 4 and 5 show,
this aim is achievable. For a big training set (Experiment 5)
the recognition quality is equal to that of the non-unique NE
recognition.

VII. CONCLUSIONS AND FURTHERRESEARCH

The experiments show that multilayer neural networks
can be applied to named entity recognition even if the NEs
greatly differ from the training set. The unique NE
recognition for the CoNLL2003 corpus complex text is
possible with accuracy 0.5637, completeness 0.7809, and F1-
score 0.6492.

Nevertheless, the researchers should consider two
different problems: the recognition of known or similar NEs,
and the recognition of unknown NEs not similar to those
used for the training. The paper [32] also confirms that the
problem exists. Our results are comparable to those presented
in [32]. Our experiments showed that the conventional
substitution or a substitution refined with extra statistical
data (gazetteers and additional features) can just significantly
improve the recognition of known NEs (e.g., included in the
dictionaries.) It is the case for the more complex, advanced
accuracy improvement algorithms. The extra statistical data
used in Experiment No. 6 increased F1-score by 0.7%...0.8%
through reducing the recognition completeness. The
achievable metrics of any new method for the conventional
problem depends on the amount of intersection between the
NE training set and the testing one. The recognition of
general text patterns located between NEs is a more natural
problem statement. We also identified an issue with the
softmax function (particularly tensorflow tf.nn.softmax) as
applied to NN output layer factors that represent NEs since it
leads to lower accuracy.

REFERENCES
[1] A. Kao and S. Poteet, “Natural Language Processing and Text

Mining,” London: Springer-Verlag, 2007.

[2] J. Patrick and M. Li, “High accuracy information extraction of
medication information from clinical notes: 2009 i2b2 medication
extraction challenge,” Journal of the American Medical Informatics
Association, vol. 17, pp. 524 -527, 2010.

[3] M. Krallinger, “The CHEMDNER corpus of chemicals and drugs and
its annotation principles,” Journal of cheminformatics, vol. 7, no. 1,
pp. 1-17 , 2015. DOI:10.1186/1758-2946-7-S1-S.

[4] А. Glazkova, “Russian Person Names Recognition Using the Hybrid
Approach,” Supplementary Proceedings of the Seventh International
Conferencem on Analysis of Images, Social Networks and Texts
(AIST), pp. 34-41, 2018.

[5] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

[6] L. Anh, M. Arkhipov and M. Burtsev, “Application of a Hybrid Bi-
LSTM-CRF model to the task of Russian Named Entity Recognition,”
Proceedings of the AINL, 2017.

[7] H. Robbins and S. Monro, “A Stochastic Approximation Method,”
The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400-407,
1951.

[8] A. Wald, “Statistical Decision Functions,” Wiley, 1950.

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 298

[9] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient based
learning applied to document recognition,” Proceedings of the IEEE,
pp. 2278-2324, 1998.

[10] J. Jang, “Information extraction from text,” Mining Text Data,
Springer, 2012, 524 p.

[11] H. Isozaki and H. Kazawa, “Efficient support vector classifiers for
named entity recognition,” Proceedings of the 19th international
conference on Computational linguistics, vol. 1, pp. 1-7, 2002.

[12] G.D. Zhou and J. Su, “Named entity recognition using an hmm-based
chunk tagger,” Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 473-480, 2002.

[13] R. Klinger, “Automatically selected skipedges in conditional random
fields for named entity recognition,” Proceedings of the 8th
International Conference on Recent Advances in Natural Language
Processing, pp. 580-585, 2011.

[14] W. Chen, Y. Zhang and H. Isahara, “Chinese named entity
recognition with conditional random fields,” Proceedings of the 5th
Special Interest Group of Chinese Language Processing Workshop,
pp. 118-121, 2006.

[15] Y. Bengio, P. Simard and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Transactions
on Neural Networks, vol. 5, pp. 157-166, 1994.

[16] A. Ivakhnenko, “Grouped Arguments Handling for Solving
Prognostic Problems,” Automatics, no. 6, pp. 24-33, 1976.

[17] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W.
Hubbard and L. Jackel, “Handwritten Digit Recognition with a
Backpropagation Network,” Proceedings of NIPS, 1989.

[18] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and
Trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009. DOI:
10.1561/2200000006.

[19] J. Li, A. Sun, J. Han and C. Li, “A Survey on Deep Learning for
Named Entity Recognition,” IEEE Trans. Knowl. Data Eng., 2020.
DOI: 10.1109/TKDE.2020.2981314.

[20] X. Ma and E. Hovy, “End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF,” Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, vol. 1, pp.
1064-1074, 2016.

[21] Y. Kim, Y. Jernite, D. Sontag and A. Rush, “Character-Aware Neural
Language Models,” Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pp. 2741-2749, 2016.

[22] M. Cho, J. Ha, C. Park and S. Park, “Combinatorial feature
embedding based on CNN and LSTM for biomedical named entity
recognition,” J. Biomed. Inform., vol. 103, no. 2019, 103381, 2020.

[23] J.Chiu and E. Nichols, “Named entity recognition with bidirectional
lstm-cnns,” Transactions of the Association for Computational
Linguistics, vol. 4, pp. 357-370, 2016.

[24] R. Srivastava, K. Greff and J. Schmidhuber, “Highway networks,”
arXiv preprint: 1505.00387, 2015.

[25] G. Pundak and N. Tara, “Sainath: Highway-LSTM and Recurrent
Highway Networks for Speech Recognition,” Proc. Interspeech,
ISCA, 2017.

[26] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” Proceedings
32nd ICML, pp. 448-456, 2015.

[27] M. Marcus, B. Santorini and M. Marcinkiewicz, “Building a large
annotated corpus of English: the Penn Treebank,” Computational
Linguistics, vol. 19, no. 2, pp. 313-330, 1993.

[28] E. Tjong, K. Sang and F. De Meulder, “Introduction to the conll-2003
shared task: Language independent named entity recognition,”
Proceedings of CoNLL, vol. 4, pp. 142-147, 2003.

[29] C. Van, “Rijsbergen, Information Retrieval,” Butterworth-
Heinemann, 1979.

[30] H. He, “Learning from imbalanced data,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1263-1284, 2009.

[31] L. Pratt, “Discriminability-based transfer between neural networks,”
NIPS Conference: Advances in Neural Information Processing
Systems 5. Morgan Kaufmann Publishers, pp. 204-211, 1993.

[32] L. Augenstein, L. Derczynski and K. Bontcheva, “Generalisation in
Named Entity Recognition: A Quantitative Analysis,” Computer
Speech & Language, 2017. DOI:10.1016/j.csl.2017.01.012.2017.

