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Abstract—This article proposes a comparison of methods for 

determining code complexity when generating data sets for 

software testing. The article offers the results of a study for 

evaluating one path of program code, the work is not finished 

yet, it will be further expanded to select data for testing many 

paths. To solve the problem of generating test data sets, it is 

proposed to use a genetic algorithm with various metrics for 

determining the complexity of program code. A new metrics is 

proposed for determining code complexity based on changing 

weights of nested operations. The article presents the results 

and comparison of the generated input test data for the passage 

along the critical path. For each metric considered in the 

article, conclusions are presented to identify specifics depending 

on the selected data. 
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I. INTRODUCTION  

Software engineering is a comprehensive, systematic 
approach to the development and maintenance of software. 
When developing programs, the following stages are most 
often distinguished - analysis, design, programming and 
testing. At the stage of analysis, software requirements are 
determined and documentation is performed. At the design 
stage, the appearance of the program is detailed, its internal 
functionality is determined, the product structure is 
developed, and requirements for subsequent testing are 
introduced. Writing the source code of a program in one of 
the programming languages is done at the programming 
stage. 

One of the most important steps in developing software 
products is testing. Important goals of testing are the 
compliance of the developed program with the specified 
requirements, adherence to logic in the data processing 
processes and obtaining correct final results. Therefore, for 
testing it is very important to generate input test data, on the 
basis of which the program will be checked for errors and 
compliance with specified requirements. To esteem the 
quality of the input data a code coverage indicator is used, 
that is percentage of the entire program can the test sets 
“cover”. It is determined by the ratio of the tested operations 
to the total number of operations in the code. 

Some software code testing processes are improving quite 
slowly. The development of most types of test scenarios is 
most often done manually, without the use of any automation 
systems. Because of this the testing process becomes 
incredibly complicated and costly both in time and in 
finances, if you approach it in all seriousness. Up to 50% of 
all time costs can be spent on testing some programs. 

One of the main goals of testing is to create a test sets that 
would ensure a sufficient level of quality of the final product 
by checking most of the various paths of the program code, 
i.e. would provide maximum coverage. Nevertheless, the task 
of finding many paths itself consists of several sub-tasks, the 
solution of which is necessary to find high-quality test sets. 
One of the local problems that can be solved to find a test set 
is to determine one of the most complex code paths.  

For the most part, validation and verification of software 
products is difficult to optimize. It is especially difficult to 
automate the generation of test data, which for the most part 
is done manually.   

Nevertheless, there are many studies using non-standard 
algorithms to solve the automation problem. For example, in 
[1] it is proposed to use a Constraint-Based Algorithm for the 
Mort system, which uses error testing to find input test data. 
Test data is selected in such a way as to determine the 
presence or absence of certain errors. 

Quite often, genetic algorithms are used in one way or 
another to solve this problem. The article [2] compares 
different methods for generating test data, including genetic 
algorithms, a random search method and other heuristic 
methods. 

In [3] to solve the problem, it is proposed to use 
Constraint Logic Programming and Symbolic Execution. In 
[4], the Constraint Handling Rules are used to help in manual 
verification of problem areas in the program. 

Some researchers use heuristic methods to automate the 
testing process using a data-flow diagram. Studies of 
automation methods using this diagram were done in articles 
[5, 6, 7, 8]. In [5] it is proposed to additionally use genetic 
algorithms to generate new input test data sets based on 
previously generated ones. 

In articles [9, 10] it is proposed to use hybrid methods for 
generating test data. In [9], an approach is used that combines 
strategies of Random Strategy, Dynamic Symbolic Execution 
and Search-Based Strategies. The article [10] proposes a 
theoretical description of the search method using the genetic 
algorithm. The approaches to search for local and global 
extrema on real programs are considered. A hybrid approach 
for generating test data is proposed - a Memetic Algorithm. 

The approach in [11] uses a hybrid intelligent search 
algorithm to generate test data. Proposed approach center on 
the methods of Branches and Borders and the Hill Climbing 
to improve intellectual search. 

There are also studies using machine learning, for 
example, in [12]. It proposes a method using a neural network 
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and user-customizable clustering of input data for sequential 
learning.  

Novelty Search can also be used to generate test data. In 
the article [13] it is proposed to use this approach to evaluate 
large spaces of input data and is compared with approaches 
based on the genetic algorithm. 

The possibilities of generating test data for testing web 
services are also being investigated, for example, in the 
WDSL specification [14]. 

For the convenience of generating test data, UML 
diagrams are also used [15, 16]. The articles suggest using 
genetic algorithms to generate triggers for UML diagrams 
that will allow to find a critical path in the program. The 
article [17] proposes an improved method based on a genetic 
algorithm for selecting test data for many parallel paths in 
UML diagrams. 

In addition to UML diagrams, the program can be 
described as a Classification-Tree Method developed by 
Grochtmann and Grimm [18]. In [19] the problem of 
constructing trees is considered and an integrated 
classification tree algorithm is proposed, and in [20] was 
investigated the developed ADDICT prototype (short for 
AutomateD test Data generation using the Integrated 
Classification-Tree methodology) for an integrated approach. 

This article proposes a comparison of different methods 
for evaluating code complexity for generating test data. The 
article is structured as follows. Section 2 introduces 
terminology and provides basic information on the genetic 
algorithm. The third section sets the problem to be solved and 
introduces one of the methods for assessing code complexity. 
Section 4 proposes the results of the operation of the input 
data generation method using the introduced code estimation 
method. In section 5 there is comparing of different code 
evaluation methods. 

II. GENETIC ALGORITHM 

Formally, the genetic algorithm is not an optimization 
method, at least in the understanding of classical optimization 
methods. Its purpose is not to find the optimal and best 
solution, but to find close enough to it. Therefore, this 
algorithm is not recommended to be used if fast and well-
developed optimization methods already exist. But at the 
same time, the genetic algorithm perfectly shows itself in 
solving non-standardized tasks, tasks with incomplete data or 
for which it is impossible to use optimization methods 
because of the complexity of implementation or the duration 
of execution [21, 22]. 

A genetic algorithm is considered to be completed if a 
certain number of iterations is passed (it is desirable to limit 
the number of iterations, since the genetic algorithm works on 
the basis of trial and error, which is a rather lengthy process), 
or if a satisfactory value of the fitness function was obtained. 
As usual a genetic algorithm solves the problem of 
maximizing or minimizing and the adequacy of each solution 
(chromosome) is evaluated using the fitness function. 

The genetic algorithm works according to the following 
principle: 

Initialization. A fitness function is introduced. An initial 
population is being formed. In classical theory, the initial 
population is formed by randomly filling each gene in the 

chromosomes. But to increase the rate of convergence of the 
solution, the initial population can be specified in a certain 
way, or random values can be analyzed in advance to exclude 
definitely inappropriate ones. 

Population assessment. Each of the chromosomes is 
evaluated by a fitness function. Based on the given 
requirements, chromosomes get the exact value of how well 
they correspond to the problem being solved.  

 Selection. After each of the chromosomes has its own 
fitness value, the best chromosomes are selected. 
Selection can be done by different methods, for 
example, from the sorted in order first n chromosomes 
are selected, or only the most suitable, but not less 
than n, etc. 

 Crossing. [23]. The first is a significant difference 
from standard optimization methods. After selection of 
chromosomes suitable for solving the problem, they 
crossing. Random chromosomes from all the "chosen 
ones" randomly generate new chromosomes. Crossing 
occurs on the basis of the choice of a certain position 
in two chromosomes and the replacement of parts of 
each other. After the required number of chromosomes 
is generated to create a population, the algorithm 
proceeds to the next step.  

 Mutation. [24]. Also the step specific to GA. In a 
random order, a random gene can change values to a 
random one. The main point in a mutation is the same 
as in biology - to bring genetic diversity into a 
population. The main goal of mutations is to obtain 
solutions that could not be obtained with existing 
genes. This will allow, firstly, to avoid falling into 
local extremes, since a mutation can allow the 
algorithm to be transferred to a completely different 
branch, and secondly, to “dilute” the population in 
order to avoid a situation where in the whole 
population there will be only identical chromosomes 
that will not generally move towards a solution. 

After all the steps have been passed on, it is defined 
whether the population has reached the desired accuracy of 
the decisions or has come to limit the number of populations, 
and if so, the algorithm stops working. Otherwise, the cycle 
with the new population is repeated until the conditions are 
achieved. 

III. PROBLEM DESCRIPTION 

The use of genetic algorithms in the testing process allows 
to find the most complex parts of the program in which the 
risks due to errors are greatest. Evaluation occurs due to the 
use of the fitness function, the parameters of which are the 
weights of each passable operation. Definition of weights, i.e. 
the complexity of the program code, occurs due to various 
metrics used depending on the requirements for the input sets. 

The task of generating input test data consists of three 
subtasks: 

1. Search for input data for passing along one of the most 
complex code paths. Difficulty is determined by the 
chosen metric for code evaluation; 

2. The exclusion or reduction of the weights of 
operations on the path for which the data were 
selected, based on the fitness function for other paths; 
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3. Generation of input test data for many paths of 
program code. 

The limit on the number of sets of input data is 
established after the development stage and will allow to 
concentrate on certain paths.  

The whole algorithm is performed cyclically - the 
procedure for searching for input data for one path is started, 
after which operations in this path are excluded from further 
calculations and the data search for one path is started again. 

As one of the ways to determine the complexity of the 
code, an method is proposed that works as follows:  

 The first operation is assigned a weight of, for 
example, 100 units.  

 Each subsequent operation is also assigned a weight - 
if there are no conditions or cycles, the weight is taken 
in accordance with the previous operation. 

 Conditions share the weight in accordance with the 
rule - if the condition contains only one branch (only if 
...), then the weight of each operation is reduced by 
80%. If the condition is divided into several branches 
(if ... else ...), then the weight is divided into equal 
parts - for two branches 50% / 50%, for three 33% / 
33% / 33%, etc.  

 The weights of operations in the cycle remain, but can 
also be multiplied by certain weights, if necessary. 

 All nested restrictions are summed, for example, for 
two nested conditions the weight of operations will be 
80% * 80% = 64% 

Assigned weights can be used to develop test cases using 
genetic algorithms, that is, to assess how much calculated 
weight assigned on one or another branch for certain values 
of input parameters. 

For convenience, we introduce the following notation: 

X - data sets; 

F (X) is the value of the fitness function for each data set 
depending on the calculated values of the weights. 

The challenge is to maximize the objective function, i.e. F 
(X) → max 

IV. THE RESULTS OF THE METHOD 

In accordance with the previously proposed option for 
assessing the complexity of program code, this method is 
being finalized to better meet real requirements. Weights are 
considered in accordance with the operability of the program, 
in other words, the more iterations the program performs, the 
more weight the initial test version will have.  

The first population is formed by random values. Each 
population contains 100 chromosomes. The total number of 
the population is also 100. Due to this, a sufficient number of 
different options will be formed and the best ones will be 
selected. Table 1 presents the test results. 

In each of the tests, at least two different versions of the 
data were generated, in which the considered program code 
will work the most times, which means that it will go the 
greatest number of times in different ways. In addition, you 
can see certain patterns in the results - the first value is 

always maximum (random values were limited to 100), the 
second value is less than the first, but more than the third. 

 

TABLE I. COMPARISON OF RESULTS 
Population Test 1 Test 2 Test 3  Test 4 

0 1: 78, 23, 35 
2: 62, 36, 95 

3: 52, 35, 27 
4: 17, 77, 73 

5: 75, 9, 96 

1: 97, 3, 6 
2: 82, 77, 64 

3: 24, 47, 57 
4: 90, 13, 82 

5: 81, 69, 24 

1: 92, 97, 28 
2: 38, 66, 52 

3: 63, 76, 64 
4: 7, 24, 56 

5: 57, 48, 8 

1: 15, 67, 26 
2: 32, 27, 83 

3: 37, 52, 64 
4: 70, 49, 64 

5: 67, 29, 94 

20 1: 95, 64, 54 

2: 95, 64, 29 
3: 95, 64, 54 

1: 97, 80, 4 

2: 97, 80, 53 
3: 97, 80, 28 

1: 99, 13, 10 

2: 99, 13, 11 
3: 99, 13, 11 

1: 99, 71, 45 

2: 99, 71, 15 
3: 99, 71, 3 

50 1: 95, 64, 54 

2: 95, 64, 29 
3: 95, 64, 54 

1: 97, 80, 29 

2: 97, 80, 4 
3: 97, 80, 53 

1: 99, 13, 10 

2: 99, 13, 11 
3: 99, 13, 11 

1: 99, 71, 60 

2: 99, 71, 3 
3: 99, 71, 3 

Result 

(100) 

1: 95, 64, 54 

2: 95, 64, 29 

1: 97, 80, 4 

2: 97, 80, 29 

1: 99, 13, 10 

2: 99, 13, 11 

1: 99, 71, 60 

2: 99, 71, 45 

V. COMPARISON OF METHODS FOR ASSESSING THE 

COMPLEXITY OF PROGRAM CODE 

For the researching, several tests of the algorithm with 
four different metrics were carried out - a modified metric, 
the logic of which was described in Section 3, SLOC metrics 
for evaluating the number of lines of code, ABC metrics and 
Jilb metrics. 

The metric SLOC (abbr. Source Lines of Code) is 
determined by the number of lines of code. This metric takes 
into account only the total number of lines of code in the 
program, which makes it the easiest to understand. In this 
case, the number of lines refers to the number of commands, 
and not the physical number of lines. 

The ABC metric, or Fitzpatrick metric, is a metric that is 
determined based on three different indicators ABC = <na, nb, 
nc>. The first indicator na (Assignment) is allocated for lines 
of code that are responsible for assigning variables a certain 
value, for example, int number = 1. The indicator nb (Branch) 
is responsible for using functions or procedures, that is, 
operands that work out of sight of the current program code. 
The indicator nc (Condition) calculates the number of logical 
operands, such as conditions and loops. The metric value is 
calculated as the square root of the sum of the squared values 
of na, nb and nc. 

F =  √n𝑎
2 + n𝑏

2 + n𝑐
2                  (1) 

It is noteworthy that one line of code can be taken into 
account in different parameters, for example, when assigning 
a variable the value of a certain function (double number = 
Math.Pow (2, 3) is assigned both in na and nb). The 
disadvantages of this metric include the possible return of a 
zero value in some parts of the code. 

The Jilb metric is aimed to determine the complexity of 
program code depending on its saturation with conditional 
operands. This metric is useful for determining the 
complexity of program code, both for writing and for 
understanding it: 

F =  𝑐𝑙/𝑛,                                (2) 
where cl – the number of conditional operands, n – the total 
number of lines of code. 

For testing, code is used with many different paths, where 
one is critical which has the largest number of operations. The 
selection of input data for this path will be a solution to the 
subtask and from this data it will be possible to determine 
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how accurately the data is selected. The critical path will be 
reached if the 1st and 3rd values from the selected data are 
greater than 50 and 1 value is less than 3. 

The following genetic algorithm settings are used to 
generate input test data: 

 Number of generations – 100 

 Number of populations in one generation – 100 
Range of received data values – (0, 100) 

A. Results using the metric proposed in the article 

An algorithm with this metric selects data with a priority 
of operations of a higher level. As a result (99th generation), 
two data sets were obtained - (70, 9, 78) and (75, 67, 82). 
Both sets go along the longest code path, which is the 
solution to the subtask. Table 2 presents the first 10 options in 
each of the generations. 

TABLE II. RESULTS OF THE PROPOSED METRIC 
Modified metric  

Variant\Gen. 0 1 99 

1 (70, 9, 78) = 164 

100 

(75, 67, 82) = 

164 100 

(70, 9, 78) =  

164 100 

2 (75, 67, 82) = 

164 100 

(61, 29, 94) = 

164 100 

(70, 9, 78) =  

164 100 

3 (61, 29, 94) = 
164 100 

(63, 52, 87) = 
164 100 

(75, 67, 82) = 
164 100 

4 (63, 52, 87) = 

164 100 

(63, 49, 83) = 

164 100 

(75, 67, 82) = 

164 100 

5 (63, 49, 83) = 
164 100 

(70, 9, 78) =  
164 100 

(75, 67, 82) = 
164 100 

6 (5, 68, 90) =  

96 382 

(63, 52, 87) = 

164 100 

(75, 67, 82) = 

164 100 

7 (60, 37, 3) =  
32 500 

(70, 9, 78) =  
164 100 

(75, 67, 82) = 
164 100 

8 (12, 80, 49) = 16 

000 

(70, 9, 78) =  

164 100 

(70, 9, 78) =  

164 100 

9 (47, 12, 17) = 16 
000 

(70, 9, 78) =  
164 100 

(70, 9, 78) =  
164 100 

10 (53, 35, 76) = 16 

000 

(61, 29, 94) = 

164 100 

(75, 67, 82) = 

164 100 

Can be seeing that the algorithm works quite efficiently 
and already in the first generation the data was selected for 
the critical path.  

B. SLOC metric 

TABLE III. RESULTS OF METHOD WITH SLOC METRIC 

SLOC metric 

Variant\Gen. 0 1 99 

1 (64, 14, 96) =  

6 411 

(68, 50, 94) = 

6 411 

(63, 72, 91) = 

6 411 

2 (68, 50, 94) = 
 6 411 

(80, 70, 88) = 
6 411 

(68, 50, 94) = 
6 411 

3 (80, 70, 88) =  

6 411 

(65, 81, 89) = 

6 411 

(68, 50, 94) = 

6 411 

4 (65, 81, 89) = 

 6 411 

(63, 72, 91) = 

6 411 

(63, 72, 91) = 

6 411 

5 (63, 72, 91) = 

 6 411 

(74, 83, 76) = 

6 411 

(80, 70, 88) = 

6 411 

6 (74, 83, 76) =  

6 411 

(64, 69, 91) = 

6 411 

(68, 50, 94) = 

6 411 

7 (64, 69, 91) =  

6 411 

(69, 88, 85) = 

6 411 

(68, 50, 94) = 

6 411 

8 (69, 88, 85) =  

6 411 

(64, 14, 96) = 

6 411 

(63, 72, 91) = 

6 411 

9 (5, 39, 72) =  

3 618 

(63, 72, 91) = 

6 411 

(63, 72, 91) = 

6 411 

10 (2, 67, 73) =  

3 618 

(68, 50, 94) = 

6 411 

(80, 70, 88) = 

6 411 

This metric is the simplest from the point of view of 
implementation, it takes into account only the total number of 

lines of code. The results are presented in table 3. The 
algorithm with this metric picked up 3 sets - (63, 72, 91), (68, 
50, 94) and (80, 70, 88). All three satisfy the conditions for 
passing along the critical path. 

As with the previous metric, the algorithm in the first 
generation picked up suitable data. 

C. ABC metric 

This metric takes into account more variations of the 
values, such as assigning values to variables, logical checks 
and function calls. The algorithm with the ABC metric picked 
up 2 options for the input data that pass along the critical path 
- (69, 46, 78) and (77, 36, 98). The remaining results are 
presented in table 4. 

TABLE IV. RESULTS OF METHOD WITH ABC METRIC 

ABC metric 

Variant\Gen. 0 1 99 

1 (95, 27, 97) 
= 6 351 

(77, 36, 98) = 
6 351 

(69, 46, 78) = 
6 351 

2 (77, 36, 98) 

= 6 351 

(69, 46, 78) = 

6 351 

(77, 36, 98) = 

6 351 

3 (69, 46, 78) 
= 6 351 

(61, 65, 95) = 
6 351 

(69, 46, 78) = 
6 351 

4 (61, 65, 95) 

= 6 351 

(95, 27, 97) = 

6 351 

(69, 46, 78) = 

6 351 

5 (5, 67, 92) = 
3 538 

(61, 65, 95) = 
6 351 

(69, 46, 78) = 
6 351 

6 (5, 87, 95) = 

3 538 

(95, 27, 97) = 

6 351 

(69, 46, 78) = 

6 351 

7 (1, 35, 60) = 
3 538 

(61, 65, 95) = 
6 351 

(69, 46, 78) = 
6 351 

8 (1, 70, 53) = 

3 538 

(69, 46, 78) = 

6 351 

(77, 36, 98) = 

6 351 

9 (60, 30, 12) 
= 768 

(69, 46, 78) = 
6 351 

(69, 46, 78) = 
6 351 

10 (60, 49, 73) 

= 768 

(69, 46, 78) = 

6 351 

(69, 46, 78) = 

63 51 

D. Jilb metric 

Unlike previous metrics, this one takes into account the 
absolute complexity of the program, which is calculated by 
dividing the number of cycles and conditions by the total 
number of operations on the way. The complexity of the 
program is determined in a completely different way, which 
led to the fact that the input data was selected for a different 
path. The results are presented in table 5. 

TABLE V. RESULTS OF METHOD WITH JILB METRIC 

Jilb metric 

Variant\Gen. 0 1 99 

1 (75, 51, 3) = 

100 

(62, 25, 41) = 

100 

(78, 45, 21) = 

100 

2 (92, 33, 11) 
= 100 

(94, 22, 35) = 
100 

(63, 36, 10) = 
100 

3 (94, 22, 35) 

= 100 

(98, 51, 12) = 

100 

(75, 51, 3) = 

100 

4 (98, 51, 12) 
= 100 

(80, 42, 20) = 
100 

(80, 42, 20) = 
100 

5 (80, 42, 20) 

= 100 

(78, 45, 21) = 

100 

(78, 45, 21) = 

100 

6 (78, 45, 21) 
= 100 

(80, 59, 8) = 
100 

(63, 36, 10) = 
100 

7 (80, 59, 8) = 

100 

(5, 40, 27) = 

100 

(80, 42, 20) = 

100 

8 (5, 40, 27) = 
100 

(99, 38, 29) = 
100 

(78, 45, 21) = 
100 

9 (99, 38, 29) 

= 100 

(62, 25, 41) = 

100 

(75, 51, 3) = 

100 

10 (62, 25, 41) 
= 100 

(63, 36, 10) = 
100 

(80, 42, 20) = 
100 
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The data obtained are very different both with other 
metrics and within the metric. This is due to the features of 
the tested code - it has one common loop, within which there 
is one common condition. If this condition is not met, then 
none of the operations, except the cycle and conditions, will 
be taken into account when calculating the metric. A value of 
100 indicates that among all operations on the path, all are 
cycles or conditions, i.e. formally selected input data are 
options when the first condition was not met and other 
operations were not taken into account. 

VI. CONCLUSION 

Evolutionary methods work in such a way as to find the 
best solutions to problems that are impossible or too costly to 
solve with standard optimization methods. They do not 
always work quickly or efficiently, but in problems with non-
standard approaches it shows superiority. 

The introduction of various metrics for calculating the 
fitness function made it possible to add a method for 
generating input test data of greater variability and the ability 
to introduce new data requirements. Each metric is focused 
on specific code parameters and can be used when data must 
be selected in accordance with certain requirements. In 
addition, in the case when the metric does not select data 
efficiently, it is possible to use other metrics that can overlap 
each other’s shortcomings. 

All analyzed metrics, with the exception of the Jilb 
metric, generated several data sets for the critical path that 
was originally selected. It is noticeable that metrics for a 
small code of 130 lines with several code paths successfully 
select data in the first generation, which indicates a rather 
high convergence rate of the algorithm. In subsequent 
generations, various options are sequentially eliminated. 

The conducted studies allow to propose a new method for 
generating test data based on the genetic algorithm, in which 
the fitness function will be formed not on the basis of one of 
the known metrics for assessing code complexity (as in this 
paper), but on the basis of a hybrid metric, which is a 
weighted sum of the indicators present in metrics considered 
in this paper. It also seems promising in terms of increasing 
the degree of code coverage by creating an effective 
mechanism for regulating (increasing and decreasing) the 
weights of operations in the fitness function while increasing 
the nesting level of the code section.   

In the future, it is planned to expand ways to determine 
the complexity of the code. In addition to using metrics 
directly, it is planned to develop a method for taking into 
account indicators of the number of operations, functions, 
conditions and cycles with different weights. It is also 
possible to establish the degree of reduction or increase in the 
weights of operations at different levels of nesting. This will 
allow you to set the priority for input generation when certain 
requirements arise. 
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