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Abstract—The article deals with the problem of choosing 

the neural network architecture in the problem of analyzing 

signal data obtained by shooting spectra from fluorescent 

sensors, which are based on the formation of exciplexes 

between the boron Dibenzoyl methanate fluorophore 

(DBMBF2) and aromatic compounds. Attention is paid to the 

problem of selecting the structural features and parameters of 

the network in the process of training and testing on available 

data. 
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I. INTRODUCTION 

This work is based on the usage of data obtained from the 
sensor described in [1]. This sensor can selectively detect 
benzene and its derivatives in multicomponent mixtures of 
aromatic hydrocarbon compounds. It's work is based on the 
properties of the dibenzoyl methanate boron fluorophore 
(DBMBF2). During the operation of this sensor, changes in 
the DBMBF2 fluorescence spectra that appear due to the 
formation of complexes (exciplexes) between the 
fluorophore and aromatic compounds in the excited state are 
measured. As the output, the sensor provides spectrum shape 
data in the form of 2048 spectrum values, each of which 
represents the signal intensity at a specific frequency. In [1], 
processing and analysis of spectral data is performed based 
on the model [2] of changing of the fluorescence spectra 
shape of DBMBF2, which is adsorbed on silica gel. The 
multidimensional least squares method is used to determine 
the parameters of this model [5]. The resulting parameters 
are then applied to solve the inverse problem of calculating 
the concentration of hydrocarbons from a known form of the 
spectrum. However, an attempt to analyze data obtained 
from two or more chemosensitive elements that react 
differently to changes in gas concentration showed 
insufficient effectiveness of this method in the described 
task. 

The problem of calculating the concentration of 
hydrocarbons by using a known form of the spectrum can be 
solved not only by using the least squares method. Other 
method to solve similar tasks were presented in work [4]. 
However, we intend to propose a different kind of solution 
for this problem. This data analysis task is characterized by a 
lack of information about the data structure, dependencies 
between data, and the distribution of analyzed indicators. 
Under these conditions, the best solution is to use neural 
networks to create a neural network model that can 

determine the concentration of hydrocarbons by the shape of 
the spectrum. This is due to the ability of neural networks to 
learn and model nonlinear processes while working with data 
that does not have clear relationships and dependencies. 

However, the usage of neural networks is associated with 
a number of difficulties. In particular, we need to choose the 
network architecture that is appropriate for the task, as well 
as determine the values of hyperparameters that would allow 
us to solve the problem in the best way using the available 
data. With this approach, we will have to go through all the 
architecture and hyperparameters options, and choose a 
specific set that will give the best results of solving the 
problem among the presented options. 

II. CHOICE OF NEURAL NETWORK ARCHITECTURE 

In the described case, we solve the problem of predicting 
the gas concentration based on the available values of the 
spectrum shape taken from two sensors. At the same time, 
the spectrum data taken from specific sensor does not depend 
on data of other sensor in any way and does not form any 
clear sequence. Each element of the source data is a one-
dimensional array of fluorescence intensities at different 
wavelengths, taken for a specific concentration of various 
hydrocarbons in the air. 

Prediction problems are very often solved by using direct 
propagation networks. The basis of networks of this type is a 
multi-layer perceptron, which is widely used for data 
processing in modeling, identifying various situations, and 
predicting any events or values [9-14]. Combined with the 
format of the available data, a multi-layer perceptron is a 
very promising solution. For this reason, it was decided to 
choose an architecture based on the use of a multi-layer 
perceptron for further research. 

III. NEURAL NETWORK HYPERPARAMETERS SELECTION 

Neural network hyperparameters are parameters that are 
used during network training, but do not change in the 
process. These include parameters such as: 

• Learning rate. 
• Neuron activation functions. 
• Optimization algorithm. 
• The batch size (Batch Size). 
• Number of neurons in hidden layers 

The difficulty of choosing hyperparameters is that the 
choice must satisfy two conditions – solve the problem at the 
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lowest values of prediction errors and provide sufficient 
generalizing ability of the network to avoid overfitting [6]. 

There are various approaches for selecting the values of 
neural network hyperparameters [7,8]. The most popular 
method is called Grid Search, which could be described as 
searching for combinations of all the proposed values of 
hyperparameters in the network and selection of the best 
combination based on a certain metric, such as the deviation 
of predicted values from true values, in ppm in our case. It 
was decided to use this approach in this work. 

Each of the sensor elements used in the experiment 
provides data in form of an array of 2048 fluorescence 
intensity values at different wavelengths. A detailed study of 
the data allowed us to determine that out of 2048 channels 
provided by each sensor, values of only 882 responded to 
changes in concentration. Data from two sensors was used 
simultaneously during network training. Thus, since 
following above statements, the data used for network 
training is a one-dimensional array of 1764 elements 
representing fluorescence intensities captured by detectors 
from two sensor elements consisting of different 
chemosensory materials, characterized by surface 
modification of the carrier matrix or the use of various 
DBMBF2 derivatives[4], the number of input neurons was 
assumed to be equal to the number of available elements – 
1764 to be exact. As options of the number of neurons in the 
hidden layers, the products of the number of input neurons 
by various powers of the number 2 were accepted. Thus, 
options like 220, 441, 882, 1764, 3528 neurons per hidden 
layer were accepted. 1,2,3 and 4 layers were the acceptable 
number of hidden layers. 

The options of optimization algorithms was represented 
by such algorithms as Adam, Adagrad, Adadelta, SGD 
(Stochastic Gradient Descent). 

The options of activation functions for hidden layers 
consisted of ReLU, LeakyReLU, Tanh (hyperbolic tangent), 
sigmoid, and linear function. 

The learning speed was represented by values from 0.001 
to 0.0001 with step of 0.0001. 

Thus, all combinations of the parameters of neural 
networks were trained and validated using cross-validation 
on a samples of fluorescence intensity and concentration 
values obtained from sensors during the experiment 
described in [1], and among them one with the lowest 
average error of cross-validation, having values k=10, was 
selected.  

As a result, the following parameters of the neural 
network prevailed: 

• Number of hidden layers: 3; 
• Number of neurons in hidden layers: 882, 882 and 220 

in series; 
• Activation function of hidden layers of neurons: ReLU; 
• Learning rate: 0.0004; 
• Optimization algorithm: Adagrad. 

IV. EVALUATION OF THE RESULTING NETWORK MODEL 

To evaluate the obtained hyperparameters, a software 
tool, which was used to train a neural network with the 
proposed parameters and available data, as well as to obtain 

output data of training results and network predictions, was 
implemented. 

The software tool that was mentioned above consists of 
two components: 

• A server-side program that directly trains the network 
using the capabilities of the supercomputer of the Samara 
national research University, by utilizing CUDA cores 
through Python libraries, TensorFlow and Keras to be exact; 

• A client application written in the Java using libraries 
such as Swing, for providing GUI, JSch to connect to server 
and control training process and Apache Commons to obtain 
data after training finishes. This application loads the Python 
program, and transfers data, used to train the network, to the 
server. It also was controlling the start of training and 
receiving output results obtained as a result of training the 
network and predicting gas concentration values on testing 
data-sets. 

Screenshot of the operation of this application is shown 
in figure 1. 

 
Fig. 1. Example of application work. 

 
Fig. 2. Benzene concentrations per timeslot values used for k-fold cross-
validation. 

This application was used to test the previously obtained 
set of hyperparameters by training network on 1,376 
examples of sensor measurements, with concentrations 
presented in fugures 2, 3 and 4.  

Cross-validation by the K-Fold method, where k=10, was 
used to ensure validity of our results, which gave us the 
prediction results for benzene concentrations shown in figure 
5. 
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Fig. 3. Toluene concentrations per timeslot values used for k-fold cross-

validation. 

 
Fig. 4. P-Xylene concentrations per timeslot values used for k-fold cross-

validation. 

 
Fig. 5. The ratio of predicted benzene concentrations to real ones, the 
concentration is measured in ppm. 

 
Fig. 6. The ratio of predicted toluene concentrations to real ones, the 

concentration is measured in ppm. 

 
Fig. 7. The ratio of predicted p-xylene concentrations to real ones, the 

concentration is measured in ppm. 

The same set of hyperparameters was applied to training 
neural networks used for prediction of concentrations of 
toluene and p-xylene. The results of k-fold cross-validation 
for those neural networks is shown in figures 6 and 7. 

As you can see from the picture, the predicted 
concentration values are very close to the real ones. The 
average error rate during validation was 8 ppm, when 
measuring benzene with evenly distributed concentrations 
equal to 30, 60, 100, 133, 171, 200, 240 and 300 ppm. This 
confirms that the multilayer perceptron with the architecture 
presented in this paper can be used in the task of analyzing 
spectral data using two or more sensors, which will allow us 
to obtain a sufficiently high accuracy of predicting gas 
concentrations. 

V. IMPROVEMENTS 

Despite the fact that the obtained result of selecting 
hyperparameters in training already shows results close to 
real ones, it is possible to achieve even greater accuracy by 
selecting hyperparameters using evolutionary algorithms, 
such as the genetic algorithm, which has been growing in 
popularity in recent years when performing this task. 
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