
Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

Improvement of the algorithm of automated

definition of rhyme

Vladimir Barakhnin

Federal Research Center for

Information and Computational

Technologies

Novosibirsk, Russia
bar@ict.nsc.ru

Irina Kuznetsova

Federal Research Center for

Information and Computational

Technologies

Novosibirsk, Russia

ORCID: 0000-0002-6890-1636

Olga Kozhemyakina

Federal Research Center for

Information and Computational

Technologies

Novosibirsk, Russia
ORCID: 0000-0003-3619-1120

Yulia Borzilova

Federal Research Center for

Information and Computational

Technologies

Novosibirsk, Russia

ORCID: 0000-0002-8265-9356

Ilya Pastushkov

Federal Research Center for

Information and Computational

Technologies

Novosibirsk, Russia
ORCID: 0000-0002-0341-7931

Abstract—The paper considers approaches to the

improvement of one of the steps of the algorithm used for the

automated determination of rhyme in poetic texts. The

automated rhyme detection tool is one of the modules of the

system of complex analysis of poetic texts. In the current

module implementation, the rhyme search and definition

subtask are solved by finding words with consonant endings

using the A. A. Zaliznyak Grammar Dictionary of the Russian

Language and the basic rules of phonetic analysis. Alternative

solutions to the search problem in the dictionary of words with

consonant endings are proposed. The results obtained will

allow us to conclude that the current implementation is

optimistic and the methods used can be finalized to solve the

problems of determining the rhyme of a poetic text.

Keywords—analysis of poetic texts, metrorhythmic analysis,

rhyme identification

I. INTRODUCTION

One of the tasks of the automated complex analysis of
poetic texts [1] is to determine the characteristics which are
related with the metrorhythmics of a poem. Among the
works where the statistical information extracted from the
poetic text was used for the solving of philological problems,
we can mention the study [2], which, despite compiling it
manually, presents a rather comprehensive statistical picture
of the metrorhythmics of Pushkin’s works, what allows the
authors to find the patterns inherent to Pushkin’s rhyme. The
modern information technologies make possible to conduct
such studies, if not completely automatically, then with
minimal usage of the work of expert-philologists.

The problem solution of automated analysis of poetic
texts requires the adaptation to various languages. The
different approaches are caused by both the specifics of the
language (in particular, the features of the construction of
poetic texts) and the tools used by researchers. The toolkit, in
turn, depends on the goals set by the researchers (for
example, to obtain the confirmation of any regularity in the
structure of the poetic text), and, to some extent, on
technologies that were relevant at the time of the study.

As for the linguistic versatility of instruments, it is
impossible to develop a system for automated analysis of
meter and rhythm, designed for a wide range of languages.
Moreover, the insoluble task is to develop a metrorhythmic
analysis system suitable for at least a group of related
languages — each language requires the development of its
own approaches that take into account its structure. The

authors of the study [3] conducted an experiment for
languages similar in structure, which ended unsuccessfully
due to the specifics of each of the languages considered by
the authors.

The problem of analyzing the metrorhythm of poetic
texts for each language (or a group of the similar languages)
is obtained differently. Next, we will consider some of the
projects of the authors who solve the indicated problem for
different languages.

D. Fusi in studies [4, 5] introduced the Chiron system,
which allows analyze with several languages (Latin and
Greek). The system is built at a level of abstraction in which
it is possible to work with several different languages, meters
and texts. The developed system have a modular structure,
each module interacts with the next one by data transfering
(in a predetermined format). The higher the level of the
hierarchical chain, the more abstract analysis is performed by
this component. Hierarchy levels in the system:

 phonetics and prosody;

 appositives and clique;

 metric scan.

The author [4, 5] does not mention the accuracy statistic
in determining each level (phonetics, clitics, metrics), but it
can be assumed that the accuracy is not the maximum. The
author emphasized that the developed system (as well as
similar ones) does not imply a complete replacement of the
expert; the main task is to provide researchers with data
whose processing costs occupy a significant share of human
resources.

B. Navarro proposed a tool that studies the metrics of
Spanish sonnets and performs semantic analysis of poems [6,
7]. Currently, this system is applied to a corpus of 5078
sonnets of the XVI and XVII centuries. The corpus is
converted to the TEI format1 ; the sequence of characters
from one poem without additional marking is input to the
system. A rule-based module performs separating syllables:
an external grammar marking system is used. If the syllabic
partition produces 10 metric syllables, then the system
considers that the scan is complete. For non-standard
situations, a number of rules applied (a detailed description
of the rules is not given by the authors of the project).

1 TEI: Text Encoding Initiative: https://tei-c.org/

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 37

The system [3], mentioned previously, is a tool for the
complete analysis of poetic texts in Portuguese. The system
input is a poems in XML format and it scan each poem
independent of other poems in the corpus. Includes the
following steps:

 text preprocessing (conversion to XML format);

 extract words from a poem;

 finding a stressed syllable;

 division into syllables;

 phonetic transcription forming (using an independent
dictionary);

 selection of transcription options for each poem
(determination of the rhythmic scheme);

 an attempt to determine the metric of a poem;

 search for matching metrics based on the most
appropriate rhythmic scheme;

 splitting a work into syllables according to metric.

The results of the analysis [3] showed a high percentage
of accuracy (95–98%), however, for other languages (similar
in structure), the experiment on the analysis of poetic texts
ended unsuccessfully due to the specifics of individual
languages.

M. Agirrezabal et al. [8] developed the ZeuScansion
system, which performs syntax analysis for English poems.
The system uses dictionaries to determine the stressed
syllable in a word. By combining words to form the stress
pattern of the whole poem, the system also performs syntax
analysis, followed by a series of rules. If the word was not
found in the dictionary, the program searches and uses the
nearest word in heuristics.

R. Ibrahim and P. Plecháč [9, 10] developed the KVĚTA
system, the purpose of which is to analyze Czech poems. The
system got a poem as input, the words of which should
contain morphological marking. KVĚTA applies a series of
rules to poems that transform a poetic text into a phonetic
transcription; if the rules cannot be applied, a dictionary is
applying. The system compares the patterns found in the
poems with the generated variations. Initially, the idea of a
metric index was used [11]. Later, the authors used a metric
coefficient using some others parameters, which allowed to
increase the accuracy from 94.88% to 95.94%.

A number of works are known devoted to the analysis of
versification for Arabic and similar languages. A. Kurt and
M. Kara [12] proposed an algorithm for recognizing and
analyzing poems written in a special, typical for eastern
(Arabic, Persian, Turkish) poetry, versification system
“arud”. M. A. Alnagdawi described a method for finding
poetic metrics using context-free grammars [13]. A.
Almuhareb et al. [14] described some methods for defining
poetic patterns in Arabic for extracting verses.

For the Russian language, a number of solutions during
metrorhythmic analysis problem are also proposed. In study
[15], the automatic procedures for specifying a poetic text —
metrorhythmic marking and identification of a verse meter
— were considered. The automation of metrorhythmic
marking is achieved by using the following procedures [16]:

 line numbering of the poem;

 tokenization of words;

 accentuation of the poem;

 selection of rhymed lines;

 syllabic determination.

The authors2 developed an open network resource, which
is represented by the components: the problem-oriented
“Poetology Thesaurus” and the “Block of Analysis and
Specification” of the text objects. In the “analysis and
specification” block, two sets of tasks are identified [15]: a
specification of terminological articles of a thesaurus and a
specification of a poem. The structure of the complex
includes groups of solutions of the problems:

 metrorhythmic marking of the text;

 filling of the fields of the specification of the poem;

 meter identification.

Among the tools that execute metrorhythmic analysis,
web resources 3 , 4 are of interest. The first of them,
Rifmoved.ru, is positioned as an supporting tool for the
analysis of poetic text, which determines the stanza and the
forms (sonnet, sextine). The algorithms were developed on
the basis of the author’s concept of program poetry analysis
by V. Onufriev, however, a theoretical description of these
algorithms was not found in scientific sources. The authors
of the resource indicate that the work of the algorithms is
designed to analyze poetic texts written in traditional forms,
classical stanzas and sizes. This fact greatly limits the usage
of the tool for large corpuses of texts of poets who are not
related to classical literature.

The second resource, the Neogranka.ru, obviously, is an
amateur web portal for determining the poetic size,
generating new poems and selecting rhymes. When a user
tries to determine the verse size, the service clarifies all
controversial situations (accentuation options), what takes a
lot of user time. There is also no theoretical description of
the algorithms used in available sources.

It is important to note that almost all the algorithms
mentioned above are aimed to study relatively small text
corps covering the work of one or more authors, therefore,
the speed of rhyme determination algorithms is not a critical
parameter. However, in the research conducted at the Federal
Research Center for Information and Computational
Technologies (FRC ICT), it is planned to study the
interdependence of the phonometric and lexical-thematic
levels of poetic texts with the aim of identifying and
measuring the relationships of semantic associations
described on the basis of semantic fields with poetic sizes;
the so-called textures that take into account the construction
and metrorhythmics (a detailed statement of the problem
described in [17]). One of the main difficulties in solving
problem mensioned above is the need to analyze corpus of
poetic texts of a large volume, as a result of which the task of
optimizing rhyme search algorithms from the point of view
of time spending becomes necessary. As usual, these
algorithms use multiple queries to databases containing

2 Wikipoetics: http://wikipoetics.ru/
3 Rifmoved.ru. http://rifmoved.ru/analiz_stihov.htm
4 Neogranka.ru. http://neogranka.ru/razmer_stiha.html

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 38

phonetic transcription of words, so we are faced with the task
of optimizing such SQL queries. Note that this task is
becoming actual in all areas of scientific research working
with Big data: from business analytics to the analysis of
Earth remote sensing data (for example, [18, 19]).

II. THE PROBLEM STATEMENT

A web application has been developed at FRC ICT5 ,
which is used to analyze the structural level of Russian-
language poetic texts. The algorithms are described in [20],
they does not involve a work with complex cases of analysis
of poetic texts, therefore, in [21], the implementation of the
algorithms from [15] was proposed, what includes a more
rigorous classification of poems by meter. But in the
algorithm for determining the rhyme from [15], the authors
use the web-based application “Big Rhyme Dictionary”6: the
application receives a word, the output returns the full set of
words rhyming with it (out of context). However, this
approach takes a lot of time and resources, therefore, the
rhyme search algorithm [21] is implemented for reasons of
the possibility of rhyme creation: the lines rhyme if the last
words in the line have the same position of the stressed
syllable and the endings phonetically match.

To identify the phonetically matching endings, the data
about endings from article [22] are used. The algorithm
request a word into a table with words aggregated from A.A.
Zaliznyak’s dictionary [23], implemented in a standard way.

The purpose of the study is to find for alternative
approaches to search for rhyming lines in the database and
conduct a series of experiments to find out the most effective
method for usage in the algorithm. The proposed solution:

1) To build a table with inverted rows sorted

lexicographically.

2) To separate all words into sections by ranges after

endings. In other words, the store endings (inverted)

separately from the word (as metadata).

3) To add the trigram symbolic indexes to the original

table with all the words.

4) To perform an experiment with the aim of find

rhyming words using sections (search only endings) and

trigram indexes.

5) To compare the performance of a section search

option using indexes or a combination of these options.
To test the hypothesis about the effectiveness of

application of the trigram symbolic indexes, it was decided
to conduct an additional experiment to measure the
performance of SQL queries using the indexes in the search
module of the complex analysis of poetic texts. This module
solves the problem of searching for low-level characteristics
(for example, metrorhythmic statistics) and high-level
characteristics (for example, genre-style affiliation). When a
search query is done, SQL queries to the database are
generated, some of which include a search by values of the
varchar and text type. The execution time of such queries can
be reduced by using the symbolic indexes.

5 Analysis of poetic texts online. http://poem.ict.nsc.ru/
6 Big Rhyme Dictionary. http://rifmovnik.ru/docs.htm

III. THE RESEARCH PROCESS

A. Data preparation

One of the options for the search implementation is the
partition of the source table with words into sections. The
version of the PostgreSQL database deployed on the FRC
ICT server supports simple partitioning: the splitting of one
large logical table into several small physical sections7. The
benefits of the usage of sections:

 When queries or updates access a large percentage of
a single partition, the performance can be improved
by taking advantage of sequential scan of that
partition instead of using an index and random
access reads scattered across the whole table.

 The bulk loads and deletes can be accomplished by
adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE
NO INHERIT and DROP TABLE are both far faster
than a bulk operation. These commands also entirely
avoid the VACUUM overhead caused by a bulk
DELETE.

 Seldom-used data can be migrated to cheaper and
slower storage media.

PostgreSQL supports partitioning via range partitioning
(for example, one might partition by date ranges) and list
partitioning − the table is partitioned by explicitly listing
which key values appear in each partition. In this study, the
list partitioning is used, where the ends of the dictionary
words are indicated as key values.

To create a list of sections in form of tables, a Python
script is used that operates by the following algorithm:

1) The request to a table with words.

2) The selection of the N-last characters from the word.

3) The formation of an array of all dictionary endings.

4) The counting and sorting the usage of each ending in

descending order.

5) The separating of M-first endings from the array, on

the basis of which the sectioning will be performed.
As the last N characters, four characters are taken, this

value can be changed in the future. To build a sorted
dictionary, we use the collections module of the Counter
library8. The result is a dictionary of the following structure:

Counter({'НОГО': 86077, 'ЕЙСЯ': 76978, 'ВШЕЙ':
76400, 'ИМСЯ': 62934, 'ШЕГО': 61719, 'ГОСЯ': 57630,
'ИХСЯ': 57617, 'НОМУ': 57354, 'ВШИМ': 57282 ...})

In the received dictionary, the key is the desired ending
(last N characters), and the value is the number of
occurrences of this ending. It was decided to isolate the
values of endings with coefficients included in the 90th
percentile from the created dictionary. These endings were
used to create the sections.

The process of the creation of partitioned tables includes
the following steps:

7 PostgreSQL: Documentation 9.4: Partitioning.

https://www.postgresql.org/docs/9.4/ddl-partitioning.html
8 Collections — Container datatypes.
https://docs.python.org/3.7/library/collections.html

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 39

1) To create a parent table whose properties inherit all

the child tables (sections). The parent table is a table with

words from the dictionary of A. A. Zaliznyak [23] with the

structure:

a) identifier;

b) word;

c) accentuation (the number of the syllable to which

the stress falls);

d) word type;

As an additional column, the endings (last N characters)
of each word in inverted order are added.

2) To create the child tables with inheritance of parent

structure. In these tables there will be no additional columns

except legacy ones. All child tables will be called the

sections.

3) To add the restrictions to the section tables that

define the valid key values for each section. The restrictions

do not overlap — no key values apply to several sections at

once.

4) To create a key column index for each section. In this

study, the indexes were created for the “word” column.

5) To define a trigger to redirect data added to the main

table to the corresponding section. Created trigger is work

out when SQL command INSERT is run.
The created trigger launches a function that adds values

to the corresponding section (table). Fragment of the
function:

CREATE OR REPLACE FUNCTION
words_with_reversed_endings_insert_function()

RETURNS TRIGGER AS $$

BEGIN

 IF (NEW.ending = 'нии') THEN

 INSERT INTO words_with_endings_nii
(id, word_form, ending, accent, word_type)

 VALUES (NEW.id, NEW.word_form,
reverse(NEW.ending), NEW.accent, NEW.word_type);

 ELSIF (NEW.ending = 'ний') THEN

 INSERT INTO words_with_endings_niy
(id, word_form, ending, accent, word_type)

 VALUES (NEW.id, NEW.word_form,
reverse(NEW.ending), NEW.accent, NEW.word_type);

The creation of tables, indexes, trigger and function is
performed through a Python script in an automated mode.
The manual adjustment of table and index names is required,
since transliterated ending names were used for naming —
some cases required the manual intervention (transliterate9 is
used). These cases include, for example, the coincidence of
names during transliteration of the endings “ЕМСЯ” and
“ЁМСЯ”.

In the context of a PostgreSQL database, a trigram is a
group of three consecutive characters. We can measure the
similarity of the two lines by counting the number of
matching trigrams. This simple idea turns out to be very
effective for measuring the similarity of words in many

9 Transliterate – PyPi. https://pypi.org/project/transliterate/

natural languages, as well as for solving related problems,
such as, for example, fuzzy search (search by similarity).

PostgreSQL supports two types of text indexes10: GIN
(Generalized Inverted Index) and GIST (Generalized Search
Tree), which provide a work with symbol trigrams, what is
prerequisite for using GIN, which operates the lexemes by
defaults. Despite the fact that the GIN by description is very
similar to the experiment with inverted strings, GIST also has
a basis for application: its tree-like structure increases the
completeness of search results by including inaccurate hits,
which is quite suitable for the rhyme search task, since the
table from the work of V.M. Zhirmunsky [22] contains, inter
alia, the pairs of endings that do not coincide in spelling.

As part of the search module for a comprehensive
analysis of poetic texts, it is possible to add text indexes to
solve the following problems:

 search by accentuation mask;

 search by words from the name and text.

The corpus of Pushkin’s works was loaded to the
database; the main tables with the texts of works and their
metadata contain data with a volume of more than 700 rows.
The search query includes not only the direct solution of the
above problems, but is also adapted for the user to
understand: the response array includes additional entries,
such as the author’s full name and title of the poem, i.e. the
request is composite. During the experiment, the query
runtime of processing additional parts of the request are not
taken into account.

B. Experiments

It is supposed to conduct the following experiments with
the search for rhymes in corpuses of the PostgreSQL
database:

1) To search for the desired ending among the section

names: SELECT * from pg_catalog.pg_tables where

%section name conditions%. It is worth noting that only in

this experiment the previously inverted lines described

above are used.

2) To search the endings by the incomplete match of

LIKE on a table without indexes.

3) To search the endings by the incomplete match of

LIKE on the table with the constructed GIN index by symbol

trigrams: CREATE INDEX trgm_idx ON test_trgm USING

GIN (t gin_trgm_ops);

4) To search the endings by the incomplete match of

LIKE on the table with the constructed GIST index by

symbol trigrams: CREATE INDEX trgm_idx ON test_trgm

USING GIST (t gist_trgm_ops).
For conducting the experiment, the smallest possible

sample of 100 examples of endings was taken; 80% of the
sample consisted of randomly selected the most frequently
used endings (the first 500 one), the remaining 20% were
examples from the following 100 used endings (also
randomly selected). The time spent on experiments were
measured for each of the options (1)–(4). During each
experiment, the characteristics are received (the
abbreviations are indicated in brackets):

10 Postgres Pro Standard.
https://postgrespro.ru/docs/postgrespro/9.5/textsearch-indexes

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 40

 average SQL query runtime (avg);

 50th percentile (median);

 90th percentile (90 perc);

 95th percentile (95 perc);

 98th percentile (98 perc).

The results are shown in table I.

TABLE I. THE RESULTS OF THE EXPERIMENT

 Avg Median 90 perc 95 perc 98 perc

Search among

section names

0.798 0.831 1.704 1.942 2.381

Without
indexes

2.497 2.364 3.450 4.109 4.193

GIN 2.258 2.130 2.974 3.343 3.645

GIST 2.407 2.392 3.179 3.330 3.607

It is possible to make a number of conclusions:

 The least time-consuming option turned out to be
(1), suggesting a search among section names. This
indicator is partly conditioned by those endings for
which the sections were not created — in such cases,
the cost of executing the SQL query was negligible.

 Search results without indexes and searches using
the GIST index differ slightly from each other, what
indicates the inappropriateness of using the GIST
index to solve the research problem.

 Satisfactory results showed the usage of the GIN
index to search for incomplete matches (3).

An additional experiment on measuring the time which is
spent for searching by the accentuation mask or by words
from the poems consists in the formation of search queries
and comparison their effectiveness. Trigram symbolic
indexes GIST and GIN affected in the query are added
separately to the text fields of the tables, namely the fields
“Mask of accentuation” and “Text of the poem”; at the first
stage of the experiment, the query runtime without indexes
was measured. Types of executed requests:

 without indexes;

 using GIST index (the operator class gist_trgm_ops
was used);

 using GIN index (the operator class gin_trgm_ops
was used).

A fragment of a typical SQL query for which runtime
was measured:

SELECT

 a."ID" as AUTHOR_ID,

 a."LASTNAME", a."FIRSTNAME",

 a."MIDDLENAME",

 p."ID" as POEM_ID, p."NAME" as POEM_NAME,

 m."ACCENTUATION_MASK" FROM "AUTHOR"
a

LEFT JOIN

 "POEM" p ON p."AUTHOR_ID" = a."ID"

LEFT JOIN

 "MRSTATISTICS" m ON m."POEM_ID" = p."ID"

WHERE

 m."ACCENTUATION_MASK" LIKE 'cC cC cC c'

The query runtime was measured with different variants
of the search conditions (for example, a search for a different
number of words); the result was an average score of 10
queries with GIST and GIN indexes. The results of the
experiment are shown in table II.

TABLE II. THE RESULTS OF AN EXPERIMENT TO ADD INDEXES TO A

SEARCH MODULE

Index name Avg query runtime, msec

without

indexes
GIST GIN

Search by accentuation mask 99 117 116

Search by words from the
name and text

129 146 144

The results of an additional experiment showed an
increase in the time for processing queries for text values
used in the SQL query. Such an increase can be caused either
by insufficient test data, or by the inefficiency of the applied
indexes within the framework of the problem being solved.

IV. CONCLUSIONS

The usage of PostgreSQL built-in database tools has long
been limited by search engines in their modern
understanding, the results were returned on request in a
natural language using a DBMS (Database Management
System). For the task of rhyme search, the program
performance is not a determining factor. In the present work,
the most prospective approaches were shown, as well as the
examples on how to significantly speed up the algorithm
using simple steps, what allows other researchers to apply
these approaches as part of their research without requiring
expert knowledge of the PostgreSQL database. In addition,
the interface to access the DBMS does not change (except
for the manual construction of a table with inverted rows),
what is convenient for developers who integrate the text
analysis systems with the PostgreSQL database.

ACKNOWLEDGMENT

The study was carried with the support of the Russian
Science Foundation (project No. 19-18-00466).

REFERENCES
[1] V. Barakhnin and O. Kozhemyakina, “About the automation of the

complex analysis of russian poetic text,” CEUR Workshop
Proceedings, vol. 934, pp. 167-171, 2012.

[2] N.V. Lapshina, I.K. Romanovich and V.I. Yarkho, “Metrical
Handbook for Pushkin’s poems,” M., L.: Academia, 1934.

[3] A. Mittmann, “Escansão automático de versos em português,”
Universidade Federal de Santa Catarina, 2016.

[4] D. Fusi, “An Expert System for the Classical Languages: Metrical
Analysis Components,” Lexis, vol. 27, pp. 25-45, 2008.

[5] D. Fusi, “A Multilanguage, Modular Framework for Metrical
Analysis: IT Patterns and Theorical Issues,” Langages, vol. 3, no.
199, pp. 41-66, 2015.

[6] B. Navarro, “A Computational Linguistic Approach to Spanish
Golden Age Sonnets: Metrical and Semantic Aspects,” Proceedings of
the Fourth Workshop on Computational Linguistics for Literature, pp.
105-113, 2015.

[7] B. Navarro, M.R. Lafoz and N. Sánchez, “Metrical Annotation of a
Large Corpus of Spanish Sonnets: Representation, Scansion and

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 41

Evaluation,” Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC), pp. 4360-4364, 2016.

[8] M. Agirrezabal, “ZeuScansion: a Tool for Scansion of English
Poetry,” Journal of Language Modelling, vol. 4, no. 1, pp. 3-28, 2016.

[9] R. Ibrahim and P. Plecháč, “Towards the Automatic Analysis of
Czech Verse,” Formal Methods in Poetics, Lüdenscheid: RAM-
Verlag, pp. 295-305, 2011.

[10] P. Plecháč, “Czech Verse Processing System KVĚTA — Phonetic
and Metrical Components,” Glottotheory, vol. 7, no. 2, 2016.

[11] I. Pilshchikov, and A. Starostin, “The problems of automation of
basic procedures rhythmic parsing accentual-syllabic texts,” Russian
National Corpus: 2006-2008: New results and perspective, pp. 298-
315, 2009.

[12] A. Kurt and M. Kara, “An algorithm for the detection and analysis of
arud meter in Diwan poetry,” Turkish journal of electrical engineering
& computer sciences, vol. 20, no. 6, pp. 948-963, 2012.

[13] M.A. Alnagdawi, H. Rashideh and A.F. Aburumman, “Finding
Arabic Poem Meter using Context Free Grammar,” Journal of
Communications and Computer Engineering, vol. 3, no. 1, pp. 52-59,
2013.

[14] A. Almuhareb, “Recognition of Classical Arabic Poems,”
Proceedings of the Workshop on Computational Linguistics for
Literature, pp. 9-16, 2013.

[15] V.N. Boikov, M.S. Karyaeva, V.A. Sokolov and I.A. Pilshchikov,
“On an Automatic Procedure for the Specification of a Poetic Text for
an Open Information-Analytical System,” CEUR Workshop
Proceedings, vol. 1536, pp. 144-151, 2015.

[16] I. Pilshchikov, and A. Starostin, “Reconnaissance automatique des
mètres des vers russes: Une approche statistique sur corpus,”
Langages, vol. 3, no. 199, pp. 89-106, 2015.

[17] K. Taranovsky, “About the relationship between poetic rhythm and
topic,” About poetry and poetics, Moscow: Languages of Russian
culture, pp. 372-403, 2000.

[18] N.I. Golov and L. Ronnback, “SQL query optimization for highly
normalized Big Data,” Business Informatics, vol. 33, no. 3, pp. 7-14,
2015.

[19] L.I. Lebedev, Yu.V. Yasakov, T.Sh. Utesheva, V.P. Gromov, A.V.
Borusjak and V.E. Turlapov, “Complex analysis and monitoring of
the environment based on Earth sensing data,” Computer Optics, vol.
43, no. 2, pp. 282-295, 2019. DOI: 10.18287/2412-6179-2019-43-2-
282-295.

[20] V.B. Barakhnin, O.Y. Kozhemyakina and A.V. Zabaykin, “The
Algorithms of Complex Analysis of Russian Poetic Texts for the
Purpose of Automation of the Process of Creation of Metric
Reference Books and Concordances,” CEUR Workshop Proceedings,
vol. 1536, pp. 138-143, 2015.

[21] V.B. Barakhnin, O.Yu. Kozhemyakina and I.V. Kuznetsova,
“Development and Implementation of the Algorithm for Automatic
Analysis of Metrorhythmic Characteristics of Russian Poetic Texts,”
CEUR Workshop Proceedings, vol. 2523, pp. 290-298, 2019.

[22] V.M. Zhirmunsky, “Rhyme, its history and theory,” Petrograd:
Academia, 1923.

[23] A.A. Zaliznyak, “Grammatical dictionary of the Russian language.
The changing word forms: about 10,000 words,” M.: Russian
language, 1980.

