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Abstract. An approximate discovery of closed itemsets is usually based
on either setting a frequency threshold or computing a sequence of projec-
tions. Both approaches, being incremental, do not provide any estimate
of the size of the next output and do not ensure that “more interesting
patterns” will be generated first. We propose to generate closed item-
sets incrementally, w.r.t. the size of the smallest (cardinality-minimal or
minimum) generators and show that this approach (i) exhibits anytime
property, and (ii) first generates itemsets of better quality and then those
of lower quality.
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1 Introduction

Closed itemsets (or intents of concepts in FCA) are widely used in Pattern
Mining (PM) and Knowledge Discovery [19]. They are of particular importance
because (i) a closed itemset provides a concise representation of implications,
(ii) it is a maximal set that embodies all other itemsets with the same sup-
port [17].

Itemsets (or patterns) are mostly used to solve the set cover problem, which
is formulated for PM as follows. Let D be a dataset over attributes M and C
be the set of all closed itemsets of D. Then the goal is to find the smallest set
of itemsets S ⊆ C such that S covers entirely D3. This problem is known to be
NP-complete [12]. One of the most common approaches in finding approximate
solutions is based on the Minimum Description Length (MDL) principle [11].
An MDL-based approach to PM [18, 21] is realized in two steps: (i) computing
a set of candidates F ⊆ C, (ii) selecting greedily those itemsets that minimize
the total description length.

The problem of reducing C to F is one of the most important in PM [1]. Given
a set of itemsets S (solution of the set cover problem), the goal is to compute
such a candidate set F ⊆ C that contains (i) (almost) all itemsets from S, and

3 The problem can be studied in more general settings, i.e., by considering arbitrary
itemsets X ⊆M .
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(ii) a small number of non-optimal itemsets, i.e., |F \ S| should be as small as
possible.

There are two main approaches to compute F . The first one is based on
frequency [1], while the second one is based on projections [9, 5]. Both approaches
are incremental, i.e., they use the preceding output to compute the next one.
A frequency-based approach consists in an incremental computing of itemsets
of decreasing frequency. The problem is that by decreasing the threshold one
can get exponentially many newly generated patterns. Moreover, the largest
threshold that ensures the presence of all itemsets from S in F is unknown
in advance. The second approach, in order to find “good projections”, requires
embedding of background knowledge, which is not always available. Moreover,
adding a new projection does not always guarantee that the size of the output
will not be exponential [4].

An efficient approach to compute F should be not only incremental and
background-knowledge-free but also should (i) have a polynomial delay [10]
(meaning that the time between the output of one itemset and the next is
bounded by a polynomial function of the input size), (ii) generate itemsets of
decreasing interestingness. Here, by interesting itemsets we mean those that pro-
vide a (sub)optimal solution of the set cover problem. The latter raises the ques-
tion, which strategy of closed itemset discovery would meet all the requirements
listed above?

In this paper we propose a minimum closure structure, which is induced by
generators of the smallest size. We show that it (i) allows for exploring closed
itemsets incrementally, (ii) has a polynomial delay, (iii) computes itemsets that
ensure a complete data coverage after at most two iterations. Itemsets providing
a better solution of the set cover problem might be found in subsequent iter-
ations. We also revise two algorithms, namely Titanic [20] and Close-By-One
(CbO) [14], and show that they exhibit the anytime property. Both of them
allow for generating the same subsets of closed itemsets iteratively, but CbO
computes them in a more efficient way from a PM perspective.

The paper has the following structure. In Section 2 we recall the main def-
initions. In Section 3 we introduce the closure structure and minimum closure
structure of closed itemsets and discuss anytime properties of Titanic and CbO
w.r.t. the introduced structures. In Section 5 we discuss the empirical properties
of closure structures. In Section 6 we conclude and give directions of future work.

2 Preliminaries

Concepts and the partial order between them. A formal context [8] is a triple
(G,M, I), where G is called a set of objects, M is called a set of attributes and
I ⊆ G×M is a relation called incidence relation, i.e., (g,m) ∈ I if object g has
attribute m. The derivation operators (·)′ are defined for A ⊆ G and B ⊆M as
follows: A′ = {m ∈M | ∀g ∈ A : gIm}, B′ = {g ∈ G | ∀m ∈ B : gIm}.

Sets A ⊆ G, B ⊆ M , such that A = A′′ and B = B′′, are said to be closed.
For A ⊆ G, B ⊆ M , a pair (A,B) such that A′′ = B and B′′ = A, is called
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a formal concept, A and B are called extent and intent, respectively. In Data
Mining, an intent is also called a closed itemset (or closed pattern).

A partial order ≤ is defined on the set of concepts as follows: (A,B) ≤ (C,D)
iff A ⊆ C (D ⊆ B), a pair (A,B) is a subconcept of (C,D), while (C,D) is a
superconcept of (A,B). With respect to this partial order, the set of all formal
concepts forms a complete lattice L called the concept lattice of the formal
context (G,M, I).

Equivalence classes and key sets. Let B be a closed itemset. Then all subsets
D ⊆ B, such that D′′ = B are called generators of B and the set of all generators
is called the equivalence class of B, denoted by Equiv(B) = {D | D ⊆ B,D′′ =
B}. A subset D ∈ Equiv(B) is a key [20] or minimal generator of B if for every
E ⊂ D one has E′′ 6= D′′ = B′′, i.e., every proper subset of a key is a member
of the equivalence class of a smaller closed set. We denote a set of keys (key set)
of B by K(B) [3]. The set of keys is an order ideal, i.e., any subset of a key is a
key [20]. The minimum key set Kmin(B) ⊆ K(B) is a subset of the key set that
contains the keys of the minimum size, i.e., Kmin(B) = {D | D ∈ K(B), |D| =
minE∈K(B)|E|}. In an equivalence class there can be several keys, but only one
closed itemset, which is maximal in this equivalence class. An equivalence class
is called trivial if it consists only of a closed itemset.

The size of the equivalence class is the nominator of (extentional) stability [13,
15], which assesses the probability that the set of objects given by the closed
itemset B remains closed when removing a subset of attributes from intent B,
or formally, Stabext(A,B) = |{D ⊆ B | D′ = A}|/2|B|. Intentional stability is
defined similarly, i.e., Stabint(A,B) = |{C ⊆ A | C ′ = B}|/2|A|.

For the sake of simplicity, we denote attribute sets by strings of characters,
e.g., abc instead of {a, b, c}.
Example. Let us consider a formal context given in Table 1. Five concepts have
nontrivial equivalence classes, namely ({g1}, acf), ({g3}, ade), ({g5, g6}, bdf),
({g5}, bdef) and (∅, abcdef). Among them, only bdf and abcdef have the min-
imum key sets that differ from the key sets, i.e., Kmin(bdf) = {b}, K(bdf) =
{b, df}. Kmin(abcdef) = {ab}, K(abcdef) = {ab, adf, aef, cef}.

Stab(bdf) = |{{g5, g6}, {g6}}|/22 = 1/2 and Stab(ac) = |{{g1, g2}}|/22 =
1/4, thus, if the analyzed dataset contains noise, bdf is more likely to be closed
in the original dataset (without noise).

Table 1: Formal context and nontrivial equivalence classes.

a b c d e f

g1 × × ×
g2 × × ×
g3 × × ×
g4 × ×
g5 × × × ×
g6 × × ×

C Kmin(C) K(C) Equiv(C)

ade ad ad ad, ade
acf af , cf af , cf af , cf , acf
bdf b b, df b, df , bd, bf , bdf
bdef be, ef be, ef be, ef , bde, bef , def , bdef
abcdef ab ab, adf , aef , cef ab, adf , aef , cef , ..., abcdef∗

∗ The equivalence class includes all itemsets that contain a key from K(abcdef).
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Lectic order and lexicographic trees. Let M be a set of linearly ordered attributes
m1 < m2 < . . . < mk. Then, an itemset B1 ⊆ M is lectically smaller than the
set B2 ⊆M , if the smallest differing element belongs to B1. A lexicographic tree
is a tree that has the following properties: (i) the root corresponds to the null
itemset; (ii) a node in the tree corresponds to an itemset, (iii) the parent of a
node m1 . . .mi−1mi is a node m1 . . .mi−1.
Example. The lexicographic tree in Fig. 1 is built on closed itemsets with the
minimum keys of size 1 and 2, i.e., all closed itemsets except ace from Fig. 1.
In the tree we distinguish nodes that correspond to closed itemsets (dark) and
intermediate nodes (white), needed to respect property (iii) from the definition
of the lexicographic tree.

Fig. 1: Left: Lexicographic tree of a set of closed itemsets Cmin
1 ∪ Cmin

2 = C \ {ace}.
A path from the root to a filled node corresponds to an itemset. Right: The closure
structure is given by

⋃
k=0,...,3Kk (Section 3.1). Keys are given in bold.

3 Incremental Generation of Closed Itemsets

In this section we introduce the closure structure and discuss how Titanic and
CbO can be used to discover this structure incrementally. Both algorithms ex-
hibit the anytime property, meaning that they (i) compute the whole set of closed
itemsets given enough time and space, (ii) can be interrupted at any time pro-
viding an estimated number of closed itemsets at the next (and following) levels.
The algorithms differ in (i) key sets they use, (ii) the approaches to derivation of
new keys based on previously computed ones, which results in different estimates
of the output size for the next iteration and different computational complexity.

3.1 Level-wise Structure on Key Sets

Let C be the set of all closed itemsets and K(B) be the key set of a closed itemset
B ∈ C. Level : C → {1, . . . , |M |} is a function that maps a closed itemset to the
set of sizes of its keys, i.e., Level(B) = {|D| | D ∈ K(B)}. The structural level
k is given by all the keys of size k, i.e., Kk = {D ∈ K(B) | B ∈ C, |D| = k}. We
say that B belongs to the structural level k if there exists a key D ∈ K(B) of
size k, i.e., B ∈ Ck if k ∈ Level(B). The set of the corresponding closed itemsets
is given by Ck = {B | B ∈ C, k ∈ Level(B)}. The set of all structural levels will
be called closure structure. We call structural complexity of C the maximal index
of non-empty levels, Nc = max{k | k = 1, . . . , |M |, Kk 6= ∅ }.
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Example. The levels of dataset from Fig. 1 are given in Fig. 1 (right). The
structural complexity Nc = 3. Closed itemset bdf belongs to structural levels
C1 and C2, because its equivalence class contains the keys from two structural
levels, i.e., b ∈ K1 and df ∈ K2, while acf is included only in C2 since its keys
af, cf are in K2.

Proposition 1 I =
⋃

k=1,...,|M |Kk is an order ideal w.r.t. ⊆.

Proof. Consider an itemset B ∈ I. Suppose the contrary, i.e., that an arbitrary
subset D ⊂ B of size |B|−1 is not in I, thus, D is not a key. Then B can not be
a key, since we can replace D with key E ⊂ D. Thus, our assumption is wrong
and I is an order ideal.

Proposition 2 Nc is the dimension of the maximal Boolean sublattice of the
lattice of C.

It follows directly from the definition of Nc and Lemma 6 in [2].

Proposition 3 Structural complexity Nc of C is the maximal n ∈ {1, . . . , |M |}
such that there exists a concept (B′, B) with |B| = n and Stabint(B

′, B) = 1/2n.

Proof. By Proposition 1, there exists B, |B| = Nc that corresponds to the intent
of the bottom element of the Boolean sublattice. Since every subset C ⊂ B′ is
an extent of a concept (C,C ′) such that C ′ 6= B, then Stabint(B′, B) = 1/2n.

3.2 Generating closed itemsets using the closure structure.

Titanic algorithm [20] computes closed itemsets based on their keys. However,
the authors do not consider this algorithm as incremental and anytime. Instead,
in case of limited time or space, they propose its version for computing an iceberg
lattice.

In this paper we state that, in case of limited resources, we can compute just
several levels rather than considering only frequent itemsets. The pseudocode is
given as Algorithm 1 (this version is a little bit different from the original one,
since we put all the steps related to computing keys into one procedure).

To obtain the next set Kk it is sufficient to consider the union of two keys
from Kk−1 (line 1) and then check if each obtained key makes an order ideal with
the previously computed keys (line 3-6, according to Proposition 1). However,
itemsets from S may be just members of an equivalence class. To ensure that
an itemset is a key, one needs to compare support supp(D) of candidate D ∈ S
with the minimal support ind supp(D) of the keys of size k − 1 contained in
D (line 12). If these values are the same, then the support of D is inductively
derived from the support of proper subsets, and D is not minimal (not a key).
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Anytime property and the estimates of the size of the next output. Given the size
of the current output |Kk| (the number of keys), the estimated size of the next
output |Kk+1| is given by |Ck+1| ≤ |Kk+1| < |Kk|(|Kk| − 1)/2. More generally,
the number of keys at level k + n, n ∈ N is O(|Kk|2

n

).
Titanic computes all keys of closed itemsets. A closed itemset can have keys

of different size. The latter means that the same closed itemset will be computed
at different levels (e.g., an itemset bdf from Fig. 1 has key b ∈ K1 and df ∈ K2).
From a PM perspective, computing keys that generate the same closed itemsets
is redundant.

Algorithm 1 Titanic-Gen

Require: Kk−1, the key set of level k−1
Ensure: Kk, the key set of level k
1: S ← {{m1 < . . . < mk} |
{m1, . . . ,mk−2,mk−1},
{m1, . . . ,mk−2,mk} ∈ Kk−1}

2: for all D ∈ S do
3: for all (k− 1)-subsets E ⊆ D do
4: if E /∈ Kk−1 then
5: S ← S \ {D}
6: exit forall
7: end if
8: ind supp(D) ←

min(ind supp(D), supp(S))
9: end for

10: end for
11: ComputeSupport(S)
12: Kk ← {D ∈ S | ind supp(D) 6=

supp(D)}
13: return Kk

Algorithm 2 CbO-Gen

Require: K∗k−1, a subset of the minimum
key set Kmin

k−1 of level k − 1,
Tk−1, the lexicographic tree containing
all closed itemsets

⋃
i=1,...,k−1 Cmin

i

Ensure: K∗k, a subset of the minimum key
set of level k

1: K∗k ← ∅
2: Tk ← Tk−1

3: for all X ∈ K∗k−1 do
4: Y ←M \X ′′
5: for all m ∈ Y do
6: X∗ = X ∪ {m}
7: S ← (X∗)′′

8: if S /∈ Tk then
9: add(Tk, S)

10: K∗k ← K∗k ∪ {X∗}
11: end if
12: end for
13: end for
14: return K∗k

In the next section we propose an approach where only one minimum key for
each closed itemset is considered.

3.3 Level-wise Structure on Minimum Key Sets

Similar to the closeness structure induced by key sets, we introduce the minimum
closeness structure induced by minimum key sets.

Let C be a set of all closed itemsets and Kmin(B) be the minimum key set of a
closed itemset B ∈ C. We denote a function that maps a closed itemset to the size
of its minimum key by level, i.e., level : C → {0, . . . , |M |}, such that level(B) =
|D|, where D ∈ Kmin(B) is an arbitrary itemset chosen from Kmin(B). The
minimal structural level k is given by all minimum keys of size k, i.e., Kmin

k =⋃
B∈C,

level(B)=k

Kmin(B). We say that B belongs to the minimum structural level k

if itemsets in Kmin(B) have size k. We denote the corresponding set of closed
itemsets of level k by Cmin

k . More formally, Cmin
k = {B | B ∈ C, level(B) = k}.

We call minimum structural complexity of C the maximal number of not empty
levels, Nmin

c = max{k | k = 1, . . . , |M |, Kmin
k 6= ∅}.
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Proposition 4 Imin =
⋃

k=1,...,|M |Kmin
k is an order ideal.

Proof. The proof is similar to the proof of Proposition 1.

Example. The structural levels Kk of the dataset from Fig. 1 are given in
Fig. 1 (right). The minimum structural levels are the following: Kmin

1 = K1,
Kmin

2 = K \ {df}, and Kmin
3 = {ace}. Set df is excluded because the size of b

is smaller than df . The same for {adf, aef, cef} ⊆ K3. The minimum structural
complexity is Nmin

c = 3.

In contrast to Ck (induced by the structural level Kk) Cmin
k (induced by the

minimum structural level Kmin
k ) does not intersect with sets of concepts from

other levels, e.g., bdf is in C1 = Cmin
1 and in C2, but not in Cmin

2 .

3.4 Computing closed itemsets based on minimum closure
structure.

A closed itemset may have more than one munimum key. In this section we
propose to compute closed itemsets based on a subset K∗k of Kmin

k .

The algorithm sequentially generates subsets K∗k ⊆ Kmin
k , k = 1, . . . , |M |

such that for each B ∈ Cmin
k there exists only one D ∈ K∗k. The pseudocode is

given as Algorithm 2. By construction, I∗ =
⋃

k=1,...,|M |K∗k is an order ideal.

An itemset from K∗k ⊆ Kmin
k is computed as the closure of a union of an

itemset X ∈ K∗k−1 and an attribute m ∈M \X ′′. The minimality of keys can be
easily checked by using lexicographic tree Tk−1 that contains the closed itemsets
of the minimum keys computed earlier. The tree storage takes O(2|M |) memory.
Checking the minimality takes O(|M |) time.

The proposed algorithms is a version of Close-By-One (CbO) [14]. The call
trees (records of an execution) of both algorithms are the same. It means that
a closed itemset is computed based on the same minimum key (provided that
the attributes in M are considered in the same order). They differ in the test
for uniqueness of closed itemsets, namely the canonicity test (in CbO) and lexi-
cographic tree (in the proposed version).

Example. Let us consider how Algorithm 2 works using the dataset from Fig. 1.
The intermediate steps are given in Table 2. At input we get K∗2, a subset of min-
imum keys of size 2. For each closed itemset Cmin

2 it contains only one minimum
key. The lexicographic tree for Cmin

1 ∪ Cmin
2 is given in Fig. 1.

Table 2: Intermediate steps of Algorithm 2 for the minimum structural level 2.

X ∈ K∗2 ab ac ad ae af be ce de

X ′′ abcdef ac ade ae acf bdef ce de
Y = M \X ′′ ∅ bdef bcf bcdf bde ac abdf abcf
added to K∗3 ace
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Anytime property and the estimates of the size of the next output. Given the size
|K∗k| of the output at the current iteration, the number of keys |K∗k+1| that will
be generated at the next iteration is given by

∑
X∈K∗k |M \X

′′|. More generally,

the number of minimum keys at level k + n, n ∈ N is O(|K∗k||M |n).

4 Why Minimum Keys are Better?

In the previous section we introduced the structural levels Kk (used in Algo-
rithm 1) and the miminum structural levels Kmin

k . The corresponding sets of
closed itemsets are Ck and Cmin

k , respectively. We also consider subsets K∗k ⊆
Kmin

k used in Algorithm 2.
At level k, both algorithms allow for discovering the same closed itemsets,

i.e.,
⋃

i=1,...,k Cmin
k =

⋃
i=1,...,k Ck. However, Ck may intersect with another Cn,

while all Cmin
k are disjoint. The latter means that in the second case closed

itemsets will not be discovered twice. Redundant computations may take place
not only w.r.t. different levels, but also within a (minimum) structural level,
when a closed itemset has several keys of the same size. In Algorithm 2 this
problem is solved by reducing Kmin

k to K∗k. Depending on data and the depth
k of the closure structure, the performance of algorithms can differ drastically
(see experiments in Section 5, Table 4). We illustrate this problem by means of
a concrete example.
Example. Let us compare the structures that are used by the algorithms. The
closure structure

⋃
k=0,...,3Kk used by Titanic is given in Fig. 2. Four filled areas

highlight the keys of four closed itemset. It means that Titanic discovers the same
closed itemset several times (equal to the number of keys in the filled areas). The
number of minimum keys (in bold) is much lower, while the number of minimum
keys discovered by CbO (in dark bold) is even smaller. For instance, among the
minimum keys Kmin(bdef) = {be, ef} and Kmin(acf) = {af, cf}, CbO uses only
be and af , respectively.

Fig. 2: Key sets
⋃

k=1,...,|M|Kk (the closure structure), minimum key sets⋃
k=1,...,|M|Kmin

k (the minimum closure structure, in bold), the subsets of minimum

key sets used by Algorithm 2 (in dark bold). The keys corresponding to the same closed
itemset are united by a filled area.

Computational redundancy can affect the estimates of the size of the next
output. We will study how precise these estimates are in experiments (Section 5).

In addition to computational benefits, a minimum key is the best descriptor
of an equivalence class according to the information theory [7]. Based on the
reasoning from [16] it follows directly that the minimum keys provide the shortest
description according to the Minimum Description Length principle [11].

152 Tatiana Makhalova et al.



Table 3: The characteristics of datasets and their closure structure. The cell color
corresponds to the coverage ratio∗ of concepts in Cmin

k .

|Cmin
k |/|C| (in percentage)|G| |M |

k : 1 2 3 4 5 6 7 8 9 10
Nmin

c |C|

auto 205 129 0.2 4.7 21.7 36.9 26.4 8.7 1.3 0.1 8 57 788
breast 699 14 3.3 13.9 31.0 34.6 15.2 1.9 6 361
car ev. 1 728 21 0.3 2.3 10.6 27.5 37.8 21.6 6 7 999
ecoli 327 24 5.6 32.5 43.5 15.8 2.4 0.2 6 425
glass 214 40 1.2 13.9 37.5 32.1 11.9 3.0 0.4 0.0 8 3 245
heart 303 45 0.2 2.2 10.6 25.0 31.2 21.1 8.0 1.6 0.1 9 25 538
hepatitis 155 50 0.0 0.5 3.0 10.1 21.6 29.0 22.8 10.2 2.5 0.3 10 144 856
iris 150 32 0.7 5.9 17.7 28.5 29.8 15.2 2.2 7 4 481
led7 3 200 28 0.7 4.3 14.4 28.7 32.3 16.5 3.1 7 1 950
pima 768 36 2.2 17.5 28.7 27.8 16.7 5.9 1.2 0.1 8 1 625
soybean 683 99 0.0 0.1 1.4 6.9 18.0 27.6 25.6 14.4 5.0 1.0 10 2 870 926
tic tac toe 958 27 0.1 0.8 5.3 22.6 39.8 24.9 6.6 7 42 711
wine 178 65 0.5 9.7 36.1 38.0 13.5 2.0 0.1 7 13 228
zoo 101 35 0.8 8.3 26.1 36.2 23.2 5.2 0.2 7 4 569
∗ CR = 1, 0.8 ≤ CR < 1.0, 0.6 ≤ CR < 0.8, CR < 0.6.

5 Experiments

In this section we report the results of an experimental study of the minimum
closure structure, i.e., closed itemsets within levels Cmin

k . We use freely available
datasets from the LUCS/KDD data set repository [6] (see Table 3).

In our experiments we focus on the following questions: (i) what is the
structure induced by the minimum keys, (ii) what concepts does level Cmin

k

(k = 1, . . . , |M |) contain, (iii) what is the quality of concepts in Cmin
k ?

5.1 Minimum Closure Structure

Considering Algorithms 1 and 2, the structural complexity (Nc and Nmin
c ) is

equal to the number of iterations required to compute the whole lattice. The-
oretically, for a dataset over M attributes, Nmin

c ≤ Nc ≤ |M |, and the largest

level |M |2 has size
( |M |
b |M|2 c

)
. In experiments we study how the theoretical bounds

differ from the actual values. The results are reported in Table 3. The per-
centage of closed itemsets at level k w.r.t. the total number |C| is given in
column “|Cmin

k |/|C|”, the largest level is highlighted in bold. Our experiments
show that the theoretical bounds are overestimated 6 times (on average), i.e.,
Nmin

c ≈ |M |/6. The number of closed itemsets in the largest level on average is
about 35% of the total number of closed itemsets. Thus, around 30% of closed
itemsets can be computed before the largest level has been achieved. As ex-
pected, the largest levels are usually in the middle of the closure structure, i.e.,
Nmin

c /2.

5.2 Characteristics of Structural Levels

In the previous section we study the overall closure structure. In this section we
consider the composition of each level in more detail.
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Coverage ratio. Referring to the set cover problem, we need to reduce the whole
set of itemsets to a subset of candidates F (see Section 1). Algorithms 1 and 2
suggest to compute the candidate sets incrementally, which raises the question
“when the computation can be stopped?” In our experiments we compute the
level-wise coverage ratio of closed itemsets (formal concepts), i.e., the ratio of
cells covered by closed itemsets Cmin

k to all non-empty entries. The background
colors of cells in Table 3 show the coverage ratio for each structural level. The cov-
erage ratio monotonically decreases with levels. For example, for “iris” dataset,
closed itemsets from Cmin

1 alone covers the whole dataset and Cmin
2 alone is able

to cover the whole dataset. Each level from Cmin
3 to Cmin

6 covers more than 80%
of dataset. The itemsets from the last level Cmin

7 cover more than 60%, but less
than 80%. Thus, the coverage ratio does not increase with each consecutive level.

It follows directly from the definitions of the (minimum) structural levels
that it is enough to compute at most 2 levels in order to compute the complete
covering (if we use for covering itemsets of length at least 2).

Level composition. Along with the coverage ratio, we study the composition
of the levels, i.e., the distribution of closed itemsets w.r.t. their frequency. The
typical structures are given in Figure 3 (left and middle). For example, for “iris”
dataset, frequent closed itemsets (fr. ∈ (0.8, 1.0]) make 20% of Cmin

1 , 2.3% of
Cmin
2 , and only 0.1% of Cmin

3 . The ratio of infrequent closed itemsets (fr. ∈
(0., 0.2]), on the contrary, increases, e.g., they make 20% of Cmin

1 , 46% of Cmin
3 ,

and 77% of the last level Cmin
7 .

The described behavior is typical for all datasets. The only difference is the
initial ratio of infrequent closed itemsets. For instance, Cmin

1 of “iris” and “heart-
disease” contain 20% and 53% of infrequent closed itemsets, respectively. Only
closed itemsets of “pima” and “ecoli” have level-wise frequency distribution that
differs from the typical one. We show level-wise frequency of “pima” dataset in
Figure 3, right. Further we will show that level-wise quality of “pima” and “ecoli”
itemsets differs from others.

Fig. 3: Distribution of frequent concepts by levels. A level Cmin
k is represented by a

horizontal bar. The level number k is given in parentheses, the percentage of closed
itemsets |Cmin

k |/|Ck| is on the left of the level number. The proportion of closed itemsets
of frequency (v1, v2] among Cmin

k is highlighted in colors.

In those experiments we showed that the empirical structural complexity
is much lower than its theoretical upper bound, i.e., Nmin

c ≈ |M |/6 < |M |,
and closed itemsets of the first two levels contain a large number of frequent
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itemsets. This conclusion raises the following questions: (i) how useful are the
closed itemsets of the first levels, (ii) do we need to compute the following levels
to discover more interesting itemsets (or itemsets of better quality)?

Quality of itemsets. In our study we propose to assess itemset quality by average
F1 score by levels. All the studied datasets have class labels that are used only for
evaluation. F1 score is defined as follows: F1 = 2 · prec · recall/(prec+ recall).

For a closed itemset B, objects from B′ are considered as classified. The label
of the majority of objects B′ is taken as the label of B. The remaining objects
G \B′ are considered as unclassified by B. Then, the average values of F1 score
for concepts Cmin

k are considered (see Fig. 4). In general, the quality of closed
itemsets decreases with each subsequent level, except for “pima” and “ecoli”
datasets. The reason of this unusual behavior needs a more careful study.

Fig. 4: Average value of F1 by levels.

5.3 Anytime property. Precision of the boundaries.

Both algorithms provide boundaries on the number of keys that will be gen-
erated at the next iteration k + 1. For Algorithms 1 and 2 these values are
|Kk|(|Kk| − 1)/2 and

∑
X∈K∗k |M \X

′′|. We compare these values with the true

number of newly generated closed itemsets |Cmin
k | = |Ck \ ∪i=1,...,k−1Ci|. The

ratio of the predicted size to the actual one is reported in Table 4. The results
show that, except for levels 1 and 2, the estimates of Algorithm 2 provide more
precise boundaries. Since the boundaries are closely related to the computational
strategy, high values indicate the computational redundancy of Algorithm 1.

Table 4: The median values of the ratio of predicted size |Cmin
k | to the actual one.

k 1 2 3 4 5 6 7

Titanic-Gen 1.00 1.61 58.81 347.82 1348.19 5907.63 12058.46
CbO-Gen 1.00 3.21 8.45 17.16 32.16 56.21 123.94

6 Conclusion

In this paper we have studied the minimum closure structure of closed itemsets.
This structure is induced by the smallest (minimum) generators. We have pro-
posed an alternative point of view on the Titanic and Close-By-One algorithms,
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namely we have shown that they exhibit the anytime property and allow for in-
cremental generation of closed itemsets w.r.t. the (minimum) closure structure.
In the experiments we have shown that the algorithms generate first itemsets of
the highest quality and then itemsets of decreasing quality. One of the most in-
teresting directions of future work is to study the connection between structural
complexity and stability.
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