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Abstract. In this paper, we consider the problem of mining class rele-
vant patterns from a given context, where each object in the context has
a label which is either “positive” (i.e., target-class) or “negative” (i.e.,
non target-class). Garriga et al. studied the notion of relevancy in FCA
(Formal Concept Analysis). Based on their work, we propose a CbO-
based algorithm which, while traversing the search space of closed sets
on the positives, performs pruning based on a relevance check; it checks
whether or not a pattern (concept) is dominated by another pattern. The
pruning method performs two kinds of checks; dominance check between
a node and its children nodes, and dominance check between a node and
its sibling nodes in a CbO-based search tree. Although extra costs are
required for performing the latter check, our experimentally results show
that the proposed approach has outperformed the conventional methods
in the literature.

1 Introduction

Concise representation is essential in a pattern mining task to handle large
amounts of patterns generated during the mining process. Closed patterns and
closed itemsets have been extensively studied in the field of FCA (Formal Con-
cept Analysis) [2] and data mining (for example, [14,15]) to reduce the number
of patterns without losing their information.

Lavrač et al. proposed the theory of relevance [10,11], where each object in
a given context has a label which is either “positive” (i.e., target-class) or “neg-
ative” (i.e., non target-class), and patterns take the form of sets of attributes.
A pattern is then considered to be more relevant than (or dominating) another
pattern if it covers at least all positives (i.e., target-class objects) covered by the
irrelevant (or dominated) pattern, but no additional negative. Garriga et al. [4]
have studied the notion of relevancy in terms of closed patterns, and relevant
patterns are shown to be useful for many classification tasks.

Several methods have been proposed to generate relevant patterns, using the
notion of closed patterns [4,12,5]. In particular, the approach in [4] first generates
the set of all closed patterns, and then removes from them those irrelevant ones
by checking a certain pruning condition. In [5], Grosskreutz first studied an
algorithm which is polynomial time in the size of the input and output, and
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also proposed a memory-efficient divide-and-conquer algorithm which visits a
superset of relevant patterns. In the divide-and-conquer algorithm, a pruning
criterion based on the dominance check in terms of negative supports (supp−-
check for short) has been introduced.

In this paper, we propose a CbO-based algorithm [8] which, while traversing
the search space of closed sets on the positives, performs pruning using two
types of the dominance check between patterns: the supp−-check and another
check, the siblings-check for short, between sibling nodes in a CbO-based search
tree. Our experimental results on some datasets show the effectiveness of our
algorithm; they show that the newly introduced dominance check works well for
reducing irrelevant patterns.

The organization of the rest of this paper is as follows. We first summarize
some basic notations and definitions of relevant pattern mining in Sect. 2. We
then explain our approach to mining relevant patterns from a formal context
in Sect. 3, and show some experimental results in Sect. 4. Finally, we give a
summary of this work in Sect. 5.

2 Mining Relevant Patterns

2.1 Preliminaries

We use some basic notions of FCA in [2,3]. In FCA, we consider a set G of
objects, a set M of attributes and a relation I ⊆ G×M , such that (g,m) ∈ I if
and only if object g has the attribute m. We call such a triple K = (G,M, I) a
formal context .

By A′ we mean the set of attributes shared by a subset A of objects, and
B′ the set of objects sharing a subset B of attributes. A concept (A,B) is a
maximal objects-attributes correspondence, satisfying A′ = B and B′ = A. A is
called the extent of the concept, and B its intent. Two formal concepts (A1, B1)
and (A2, B2) are ordered by

(A1, B1) ≥ (A2, B2)←→ A1 ⊇ A2,

and form a complete lattice.
We assume that each object has a class label in {+,−}. Each label is not in

M . The set G of all objects are divided into two subsets: the set G+ of those
objects that are labeled by +, the positives (or the positive examples), and the
set G− of those objects that are labeled by −, the negatives (or the negative
examples).

A pattern in K = (G,M, I) is a subset of the attribute set M . An object g
satisfies the pattern P if g contains all attributes in P . The occurrence set of P ,
denoted by occ(G,P ), is the set of those objects in G which satisfy P . We simply
write it by occ(P ), when G is obvious from the context. The negative occurrence
set of the pattern P , denoted by occ−(P ), is the set of those objects in G− which
satisfy P , i.e., occ−(P ) = occ(G−, P ). The positive occurrence set of the pattern
P , denoted by occ+(P ), is defined dually, i.e., occ+(P ) = occ(G+, P ).
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The support of P , denoted by supp(G,P ), is the size of occ(G,P ). We simply
write it by supp(P ), when G is obvious from the context. The negative support
(positive support) of the pattern P , denoted by supp−(P ) (supp+(P )), is the size
of occ−(P ) (occ+(P )), respectively.

The notion of a closed pattern is defined as usual: a pattern P is closed when
there is no other pattern Q such that P ( Q and supp(G,P ) = supp(G,Q).

Closed patterns can be defined in terms of the following closure operator:

ΓG(P ) = {i ∈M | ∀o ∈ occ(G,P ) contains attribute i.},
i.e., the closure ΓG(P ) of a pattern P includes all attributes that are present in
all objects in G which contain all attributes in P .

2.2 Relevant Patterns

Definition 1 (relevant pattern).
A pattern P is more relevant than (or dominates) a pattern Q in G iff

– occ+(P ) ⊇ occ+(Q),
– occ−(P ) ⊆ occ−(Q).
– Γ (P ) 6= Q.1

We call a pattern P relevant if there is no other pattern Q more relevant
than (or dominating) P . 2

The following theorem by Garriga et al. [4] gives a characterization of relevant
patterns in terms of the following closure operator:

Γ+(P ) = {i ∈M | ∀o ∈ occ(G+, P ) contains attribute i.}
Γ+(·) is called the closure on the positives, and a pattern P is closed on the

positives if Γ+(P ) = P .

Theorem 1 (Garriga et al. [4]). Let R be the set of relevant patterns in a
given context. Then, a relevant pattern P satisfies the following conditions:

– P is closed on the positives, and
– there exists no generalization P0 ⊂ P such that P0 ∈ R and supp−(P0) =

supp−(P ).

2

Example 1. Figure 1 shows a small dataset and concepts generated from it.
Among them, those concepts shown in a rectangle have relevant patterns with
their intents; the relevant patterns are ∅, 0, 1 and 2. We often simply write a
pattern by the concatenation of its attributes instead of a set notation, i.e., 0
instead of {0}, for example. Similarly for the extent of a concept.

We note that each concept is also closed on the positives. In particular,
supp−(0) = supp−(01) = ∅, and pattern 0 is more relevant than (or dominates)
pattern 01. 2

1 This condition is due to [5]. It ensures that the members of an equivalence class do
not dominate each other circularly.
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Fig. 1: Example of Closed/Relevant Patterns: Relevant patterns are shown in bold font.

3 Mining Relevant Patterns

In this section, we describe our algorithm for mining relevant patterns. We also
explain its application for association rule mining in Section 3.2.

3.1 The Algorithm

Algorithm 1 shows the outline of our algorithm for mining relevant patterns from
a formal context. It is based on the Close-by-One (CbO) algorithm by Kuznetsov
[8]. We use a version of CbO given in [6,13], which uses a recursive procedure
searching for all formal concepts in a depth-first manner. Let 〈G,M, I〉 be a given
formal context, where G = {0, 1, . . . ,m− 1} and M = {0, 1, . . . , n− 1} for some
m,n ≥ 0. Given a concept 〈A,B〉, y ∈ M and a set of attributes Im, function
RS-GenerateFrom in Algorithm 1 recursively traverses the search space of closed
sets on the positives, a superset of all relevant patterns, which are obtained by
adding j ∈ M to B such that j > y. Im is used for a bookkeeping purpose to
record those attributes not used during the process of deriving concepts.

The differences of the function with CbO are threefold: (i) we use the closure
function Γ+ (line 10), (ii) we employ the pruning methods based on the domi-
nance check (line 14), and (iii) we perform a modified version of the canonicity
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test (or the prefix-preserving test) using Im (line 13). We call it the Im-canonicity
test for short.

For the pruning methods, we perform two kinds of the dominance check;
the one is the dominance check between the node 〈A,B〉 and its child node
Nj = 〈C,D〉, where D = Γ+(B ∪ {j}) (line 10), and the other is the dominance
check between Nj and its sibling nodes Ni = 〈(Γ+(B ∪ {i}))′, Γ+(B ∪ {i})〉 for
some i > j and i ∈ D\B. We refer to the former check as the supp−-check , while
the latter one is referred to as the siblings-check for short. If D is dominated
either by B or the intent of Ni, we skip the search tree rooted at Nj , and we
record attribute j as “marked” and add it to Im.

We use the set Im of marked attributes in the Im-canonicity test (line 13).
Since the search tree rooted at a node constructed with each of attributes in
Im is pruned, we ignore those attributes in the canonicity test so that we check
whether or not (B�j)\Im 6= ∅, whereB�j = (Γ+(B∪{j})\B)∩{0, 1, . . . , j−1}.2

Algorithm 1: Generate RelSets

Input: a formal context, minsup: a minimun support threshold
Output: RelSet : the set of relevant patterns

1 RelSet := ∅;
2 call RS-GenerateFrom(〈(G+)′′, (G+)′〉, 0, ∅);
3 Remove irrelevant patterns in RelSet
4 return RelSet

5 Function RS-GenerateFrom(〈A,B〉, y, Im) is
input: a concept 〈A,B〉, an attribute y, a set of attributes Im.

6 add B to RelSet
7 if y > |M | then return
8 for j from y upto |M | do
9 if j /∈ B then

10 D ← Γ+(B ∪ {j})
11 C ← D′

12 if supp(C) < minsup then continue
13 if (B � j) \ Im 6= ∅ then continue
14 if supp−(D) = supp−(B) or D is dominated by Γ+(B ∪ {i}) for

∃i > j such that i ∈ D \B then
15 mark j as “pruned”
16 Im ← Im ∪ {j}
17 continue

18 else
19 Im1 ← Im
20 call RS-GenerateFrom(〈C,D〉, j + 1, Im1)

2 This notation is due to [7].
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Fig. 2: Example of the Topdown Search of Algorithm 1.

Example 2. Figure 2 shows a dataset and the computation of Algorithm 1 for it.
We can represent the computation of function RS-GenerateFrom in Algorithm 1
by a tree; each node represents an invocation of RS-GenerateFrom, and each
edge in the tree is labeled by the current value of j which is used to compute a
(new) concept (line 8). Leaf nodes denoted by black squares represent computed
concepts for which the Im-canonicity test in line 13 fails. Leaf nodes denoted by
⊥1 (⊥2) represent computed concepts for which the supp−-check (the siblings-
check) in line 14 fails, respectively. Relevant patterns are ∅, 0 and 03.

2

As in Figure 2, since the computation of function RS-GenerateFrom in Al-
gorithm 1 can be represented by a tree, we call such a tree a cPos (search) tree.
We denote by N0 `T Nj if N0 has a descendant node Nj in a cPos tree T . We
also write by N0 `T,I Nj if N0 has a descendant node Nj in a cPos tree T with
the I-canonicity test. We denote simply by B0 `T Bj for short, where B0 (Bj)
is the set of attributes of N0 (Nj), respectively. Similarly for N0 `T,I Nj .

Lemma 1. Let N0 = 〈A,B〉 be a node in a cPos search tree T . Suppose that
N0 `T Nj = 〈Aj , Bj〉, where Nj = 〈(Γ+(B ∪ {j}))′, Γ+(B ∪ {j})〉 (j ∈ M) and
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Fig. 3: The CbO-based Search Tree in Lemma 1.

Nj `T Nd = 〈Ad, Bd〉 for some node Nd in T . Consider a subset Bd1
⊆ Bd such

that {y ∈ Bd1
| y < j + 1} = {y ∈ Bd | y < j + 1}. Then, there exist nodes Ns

and Nd1
with its intent Γ+(Bd1

) in T such that Ns is a sibling node of Nj and
Ns `T,Im Nd1

for Im = Bd \Bd1
.

Proof. Let k = min{i ∈ Bd1
| i > j}. Then, let Ns be the sibling node of Nj

with its intent Bs = Γ+(B∪{k}). See Fig. 3. We show that Ns is not pruned by
the Im-canonicity test. Let Nj1 be the node in the branch from Nj to Nd in T
such that attribute k is first introduced in the branch. For the intent Bj1 of Nj1 ,
we have that Bj1 ⊇ Bs. Since Γ+(·) is monotone, it follows that Γ+(B ∪ {k})
passes the Im-canonicity test.

Next, we show that there exists node Nd1
such that Ns `T,Im Nd1

for Im =
Bd \ Bd1

. We prove it by the induction on the size of Bd1
\ Bs. The base case

Bd1
= Bs is trivial. For the induction step, let Ns1 be the child node of Ns

obtained by adding to Bs k1 = min{i ∈ Bd \ Bs | i > k}. We can show that
Ns `T,Im Ns1 similarly to the above. The remaining proof then follows from the
induction hypothesis. 2

Theorem 2 (Correctness of Algorithm 1). For a given formal context and a
minimum support minsup, (i) the set of patterns given by function RS-GenerateFrom
in Algorithm 1 includes all the relevant patterns, and (ii) it is a subset of the
closed on the positives with the support no less than minsup.

Proof. The part (ii) is rather obvious, since the patterns generated by the func-
tion are the results of Γ+. For the part (i), since a relevant pattern is closed on
the positives from Theorem 1, we show that the pruning methods, line 14 in the
algorithm, do not eliminate any relevant pattern.
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Let N0 = 〈A,B〉 be a node in a cPos search tree T . Suppose that N0 has
a descendant node Nd = 〈Ad, Bd〉 in T , i.e., N0 `T Nd = 〈Ad, Bd〉, and I ⊆
{y + 1, . . . , |M | − 1} (0 ≤ y < |M |) is the set of attributes added to each node
in the branch br from N0 to Nd. Let

I1 = {j ∈ I | supp−(B1) = supp−(Γ+(B1∪{j})) for the intent B1 of a node in br},
and

I2 = {j ∈ I | Nj in br is dominated by a younger sibling node in T}.
Let Im = I1∪ I2. We now consider subset Bd1

= Bd \ Im. From Lemma 1, we
then have that there exists a node Nd1

such that N0 `T,Im Nd1
and its intent is

Γ+(Bd1).

We note that this derivation from N0 to Nd1
is not pruned in Algorithm 1.

Moreover, Γ+(Bd1
) is more relevant thanBd, since supp−(Bd) = supp−(Γ+(Bd1

)).
2

Grosskreutz proposed an output-polynomial time algorithm (Algorithm 2
in [5]) for enumerating relevant patterns. It, however, requires memory with the
size of the output (i.e., the set of relevant patterns). To address the problem, the
author also proposed a divide-and-conquer algorithm (Algorithm 3 in [5]); it uses
less memory, but it visits irrelevant patterns. Algorithm 1 in the current paper
is similar to that divide-and-conquer algorithm in that both visit a superset of
relevant patterns, and every pattern is visited at most once during the search
space traversal. The difference is that Algorithm 3 in [5] employs the supp−-
check only, while Algorithm 1 in this paper employs the siblings-check as well
as the supp−-check.

Algorithm 1 visits irrelevant patterns; its search space is the set of all closed
on the positives in the worst case. The set of all relevant patterns is obtained by
filtering in line 3. For that, we use the filtering method in [4].

3.2 Relevant Patterns and Correlation Measures

Since the framework using the support/confidence only generates too many rules,
we usually use another measure to find “interesting” ones among the generated
rules. lift-value is such a measure to find correlated rules; the lift-value of a rule
A → c+, where A is a pattern and c+ is a class label, is defined as the ratio

of the probability of P (A ∧ c+ | A) to that of P (c+): lift(A, c+) = P (A∧c+)
P (A)·P (c+) .

Given a contingency table in Table 1, where given m and n are both assumed to
be constants, we have that lift(A, c+) = n

m · a
a+b . We use the following property

of lift-values: for patterns A1 and A2,

lift(A1, c+) ≥ lift(A2, c+)↔ a1b2 ≥ a2b1,

where ai (bi) (i = 1, 2) is the number of true positives (false positives), respec-
tively. We thus have that, if A1 is more relevant than A2, then lift(A1, c+) ≥
lift(A2, c+). Algorithm 1 can be therefore utilized to find association rules with
high lift-values.
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Table 1: Contingency Table for Rule r=A→ c+.

c+ is true c+ is false Sumrow

A is true sup(r)=a b sup(A)=a+ b
A is false m− a n−m− b sup(¬A)= n− (a+ b)

Sumcol sup(c+)=m sup(c−)= n−m n

Table 2: Example Databases: from the UCI Machine Learning Repository.

Dataset #obj. #attr. target class #pos.

Lenses 24 9 hard 4
soft 5
none 15

Mushroom 8124 117 poisonous 3916
Lymphography 148 59 malign lymph 61
Soybean-small 48 72 D3 10

4 Experimental Results

We show in Table 2 some datasets used in our experiments. They are from
the UCI Machine Learning 3. The table shows some properties of each dataset,
including the target classes considered and the number of their positive examples.

We have implemented our proposed method by using Java 8 on a PC with
an Intel Core i7 processor running at 2.30GHz, 8GB of main memory, working
under Windows 10 (64 bit). We have performed the following experiments with
fixed min sup = 1 (i.e., all concepts).

4.1 Experimental Results: the Lenses Dataset

To see the effects of our pruning methods, we present some results for the Lenses
dataset in Figure 4. In Algorithm 1, we incorporate into the CbO-based miner for
closed on the positives (cloPos) two types of pruning methods: the supp−-check
and the siblings-check.

The figure shows the number of patterns generated in computing the closed
on the positives (cloPos) and that of patterns generated by using the supp−-check
only, together with that of patterns generated by using both the supp−-check
and siblings-check.

We have tested three cases, varying target classes: hard, soft and non-contact
lenses. We have observed that the pruning method by the siblings-check enables
us to generate less patterns compared with the cloPos method (i.e., without

3 http://archive.ics.uci.edu/ml/datasets/statlog+(heart).
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Fig. 4: Comparison in the Lenses Dataset

Table 3: #(Generated Patterns) in Lenses Dataset

target class
hard soft non-lense

#(clo) 71 77 107
#(cloPos) 7 26 81
supp−-check 5 26 81
sibs-check 3 25 73
#(RPs) 3 25 73

pruning) and supp−-check only. Table 3 shows more detailed results, includ-
ing the number of closed patterns (#(clo)) and that of relevant patterns after
removing irrelevant ones (#(RPs)) (in line 3 in Algorithm 1).

4.2 Experimental Results on the Other Datasets

In Figure 5, we present some results for the other three datasets in Table 2,
Mushroom, Lymphography and the Soybean-small. The figure (left) shows the
numbers of generated patterns by Algorithm 1. The figure (right) shows the
corresponding execution times in milliseconds. We note that these figures use a
logarithmic scale.

We have observed that the effects of the pruning method by the siblings-check
on these datasets are more prominent than those on the previous Lenses dataset.
The numbers of closed patterns (#(clo)) and closed on the positives (#(cloPos))
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Fig. 5: #(Generated Patterns) and Execution Time for the Mushroom, Lymphography
and the Soybean-small Dataset.

Table 4: Results of the Other Datasets in Table 2.

Mushroom Lymphography Soybean-small

#(clo) 145,353 35,905 2,036
#(cloPos) 86,547 4,692 66
supp−-check 2,643 2,710 44
sibs-check 337 753 26
#(RPs) 187 499 22

in these three datasets are orders of magnitude larger than that of the Lenses
dataset. As a result, there are more chances for pruning by the siblings-check
to work for reducing the number of irrelevant patterns. The execution times of
these datasets are also reduced accordingly.

5 Concluding Remarks

In this paper, we have considered the problem of mining relevant patterns for
labeled data from a formal context, especially focusing on the pruning methods
for reducing irrelevant patterns. Unlike the divide-and-conquer based method [5]
in the literature, we have proposed a CbO-based algorithm; while traversing the
search space of closed sets on the positives, it performs pruning using two types
of the dominance check between patterns: the supp−-check and the siblings-
check. We have empirically examined the effectiveness of our algorithm on some
datasets, and shown that the effects of the siblings-check on reducing irrelevant
patterns have compensated for its extra computational costs.

For future work, sine our algorithm visits a superset of relevant patterns from
a formal context, it will be interesting to introduce another dominance check to
reduce the search space. Another further work is to apply relevant pattern mining
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to association rule mining with non-monotone measures such as lift (e.g., [9]).
The relationship with subgroup discovery , e.g., recent work by Belfodil et al. [1],
is also to be studied.
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