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Abstract. Generalized quantifiers allow to decrease the outermost char-
acter of the universal and existential quantifiers. Concept-forming oper-
ators in Formal Concept Analysis have a universal character. As a con-
sequence, some noise in the data can dramatically alter the final result.
This paper introduces a first approximation to quantified formal-concept
operators with the main goal of decreasing this universal character and
be less sensitive to noisy data.
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1 Introduction

Formal Concept Analysis (FCA), introduced by Ganter and Wille in the eight-
ies, has become an appealing research topic both from theoretical [18, 22] and
applicative perspectives [1, 16, 17, 19, 24, 26]. Specifically, FCA is a mathemati-
cal tool in charge of extracting information from databases containing a set of
attributes A and a set of objects B related to each other by a binary relation
R ⊆ A×B. These pieces of information are called concepts and a hierarchy can
be established on them providing an algebraic structure called concept lattice.
From the concept lattice, a mathematical development for the conceptual data
analysis and processing of knowledge can be carried out. Soon after its introduc-
tion, a number of different approaches for its generalization were introduced [2,
5, 7]. One of the most general fuzzy approaches is the multi-adjoint concept
lattice [20, 21, 23], which will be considered in this paper. The multi-adjoint con-
cept lattice framework considers different adjoint triples in the definition of the
concept-forming operations, providing interesting properties [11, 13].

Generalized quantifiers [6, 8, 9, 14, 15, 25] have been proposed in order to solve
the theoretical drawback of the usual universal and existencial quantifiers. Specif-
ically, these quantifiers try to introduce intermeditate quantifiers between the
existential quantifier, where just one element is enough to result the truth, and
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the universal quantifier, where all elements have to fulfill a given formula in or-
der to result the truth. As a consequence, more proper quantifiers can be used
in applications where the outermost quantifiers are very restrictive. For exam-
ple, notions as “Most” or “Many” can be implemented and so, considered in
applications.

This paper is inspired by [9, 25] in order to develop different notions and
results on multi-adjoint concept lattices, based on the monadic quantifiers of
type 〈1〉 determined by fuzzy measures [15]. Specifically, we have introduced
the definition of generalized quantifier in this general framework as a natural
extension, which also satisfies the main properties. Moreover, we have used the
extended definition to present a generalization of the usual fuzzy concept-forming
operators [3, 4, 7, 23] in order to decrease the drastic (universal) character of these
operators, which are very sensitive to noise data. As a consequence, the new
introduced operators offer a complementary alternative to the original concept-
forming operators to obtain more robust, stable and valuable information from
datasets. Although the new operators generalize the original one, they do not
form an antitone Galois connection, in general. Therefore, different sufficient
conditions and alternative definitions will be studied in the future in order to
ensure Galois connections.

The paper is organized as follows. In the second section, we recall the theory
related to multi-adjoint concept lattices. In the third section, we generalize the
notion of generalized quantifier by using adjoint triples. In addition, we use
the extended definition in order to present a generalization of the usual fuzzy
concept-forming operators. In the last section, we list some directions where our
approach could be further developed.

2 Preliminaries

To begin with, we will recall the notion of adjoint triple which play an important
role in this work. Adjoint triples arise as a generalization of triangular norms and
their residuated implications. These operators are the basic calculus operators
in different frameworks such as multi-adjoint logic programming, multi-adjoint
fuzzy relation equations, multi-adjoint fuzzy rough sets and multi-adjoint con-
cept lattices. It is worth noting that these operators increase the flexibility of
the mentioned frameworks, since the conjunctors are not required to be either
commutative or associative.

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be mappings. We say that (&,↙,↖) is an
adjoint triple with respect to (P1,≤1), (P2,≤2), (P3,≤3) if the following double
equivalence is satisfied:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x

for all x ∈ P1, y ∈ P2 and z ∈ P3. The previous double equivalence is called
adjoint property.
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The following properties are obtained straightforwardly from the adjoint
property [10, 12].

Proposition 1. Let (&,↙,↖) be an adjoint triple with respect to the posets
(P1,≤1), (P2,≤2) and (P3,≤3), then the following properties are satisfied:

1. & is order-preserving on both arguments.
2. ↙ and ↖ are order-preserving on the first argument and order-reversing on

the second argument.
3. ⊥1 & y = ⊥3, >3 ↙ y = >1, for all y ∈ P2, when (P1,≤1,⊥1,>1) and

(P3,≤3,⊥3,>3) are bounded posets.
4. x&⊥2 = ⊥3 and >3 ↖ x = >2, for all x ∈ P1, when (P2,≤2,⊥2,>2) and

(P3,≤3,⊥3,>3) are bounded posets.
5. z ↖ ⊥1 = >2 and z ↙ ⊥2 = >1, for all z ∈ P3, when (P1,≤1,⊥1,>1) and

(P2,≤2,⊥2,>2) are bounded posets.

Once we have introduced the notion of adjoint triple, we are in a position
to present multi-adjoint concept lattices. The philosophy of the multi-adjoint
paradigm was applied to the formal concept analysis in order to obtain a new gen-
eral approach framework that could conveniently accommodate different fuzzy
approaches given in the literature. The mentioned general approach is called
multi-adjoint concept lattices and their main notions will be recalled below [23].

Definition 2. A multi-adjoint frame is a tuple (L1, L2, P,&1, . . . ,&n) where
(L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and (&i,↙i,↖i)
is an adjoint triple with respect to L1, L2, P , for all i ∈ {1, . . . , n}.
Definition 3. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a context
is a tuple (A,B,R, σ) such that A and B are non-empty sets, R is a P -fuzzy
relation R : A×B → P and σ : A×B → {1, . . . , n} is a mapping which associates
any element in A×B with some particular adjoint triple in the frame.

After fixing a multi-adjoint frame and a context for that frame, the concept-
forming operators are denoted as ↑ : LB2 −→ LA1 and ↓ : LA1 −→ LB2 and are
defined, for all g ∈ LB2 , f ∈ LA1 and a ∈ A, b ∈ B, as

g↑(a) =
∧

b∈B

(
R(a, b)↙σ(a,b) g(b)

)
(1)

f↓(b) =
∧

a∈A

(
R(a, b)↖σ(a,b) f(a)

)
(2)

A multi-adjoint concept is a pair 〈g, f〉 satisfying that g ∈ LB2 , f ∈ LA1 and
that g↑ = f and f↓ = g. A hierarchy can be defined on the whole set of multi-
adjoint concepts, which gives rise to the concept lattice.

Definition 4. Given a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a con-
text (A,B,R, σ), a multi-adjoint concept lattice is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 , g↑ = f, f↓ = g}
in which the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2
(equivalently f2 �1 f1).
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3 Formal-concept operators with generalized quantifiers

This section will generalize the notion of generalized quantifier given in [25] by
using adjoint triples. Specifically, we will consider adjoint triples defined on the
complete lattice ([0, 1],≤) assuming that their conjunctors have 1 as left and
right identity element.

Before presenting the notion of quantifier, we need to present the concept of
fuzzy measure invariant with respect to the cardinality.

Definition 5. Let U be a finite universe and P(U) be the powerset of U . We will
say that the mapping µ : P(U)→ [0, 1] is a fuzzy measure, if it is an increasing
mapping satisfying that µ(∅) = 0 and µ(U) = 1. We will say that the fuzzy
measure µ is invariant with respect to the cardinality, if the following condition
holds:

If |A| = |B| then µ(A) = µ(B), for all A,B ∈ P(U)

where | · | denotes the cardinality of a set.

An example of fuzzy measure invariant with respect to the cardinality is given

by the mapping µrc : P(U) → [0, 1] defined as µrc(A) = |A|
|U| , for all A ∈ P(U).

Notice that, if ϕ : [0, 1]→ [0, 1] is an increasing mapping such that ϕ(0) = 0 and
ϕ(1) = 1, then the mapping µϕ : P(U)→ [0, 1] defined as µϕ(A) = ϕ(µrc(A)), for
all A ∈ P(U), is also a fuzzy measure invariant with respect to the cardinality.
The former fuzzy measure µrc is called relative cardinality whereas the latter
fuzzy measure µϕ is called relative cardinality modified by ϕ or simply modified
relative cardinality. Both fuzzy measures were exemplified in [25].

Definition 6. Let U be a non-empty finite universe, F(U) = [0, 1]U be the set of
fuzzy sets of U on [0, 1], P(U) be the powerset of U , µ : P(U)→ [0, 1] be a fuzzy
measure invariant with respect to the cardinality and (&,↙,↖) be an adjoint
triple w.r.t ([0, 1],≤) such that x& 1 = 1 &x = x, for all x ∈ [0, 1].

• A mapping Qµ : F(U)→ [0, 1] defined, for all C ∈ F(U), as:

Qµ(C) =
∨

D∈P(U)\{∅}

(( ∧

u∈D
C(u)

)
& µ(D)

)
(3)

is called right quantifier determined by the fuzzy measure µ.

• A mapping µQ: F(U)→ [0, 1] defined, for all C ∈ F(U), as:

µQ(C) =
∨

D∈P(U)\{∅}

(
µ(D) &

( ∧

u∈D
C(u)

))
(4)

is called left quantifier determined by the fuzzy measure µ.
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From now on, all results will be formulated with respect to a right quantifier
determined by a fuzzy measure µ. For that reason, the right quantifier will
be called simply quantifier. Notice that, all presented results can be translated
analogously for a left quantifier.

The following proposition shows that the universal and existential quantifiers
can be obtained from Definition 6 considering the minimum and maximum fuzzy
measures µ∀ and µ∃, respectively, which are defined as follows:

µ∀(D) =

{
1 if D = U
0 otherwise

µ∃(D) =

{
0 if D = ∅
1 otherwise

Proposition 2. Given a non-empty finite universe U , the quantifiers Q∀ and
Q∃ determined by the minimum and maximum fuzzy measures µ∀ and µ∃, re-
spectively, we have that Q∀ and Q∃ represent the universal and existencial quan-
tifiers. That is, for all C ∈ F(U), the following equalities are satisfied:

Q∀(C) =
∧

u∈U
C(u)

Q∃(C) =
∨

u∈U
C(u)

From a computational point of view, the notion of quantifier given in Equa-
tion (3) of Definition 6 is not suitable. This fact is due to the computation over
all sets from P(U)\{∅} is required. In order to compute the quantifier in a more
efficient way, we propose an alternative computation procedure which makes
use of the property of being invariant with respect to the cardinality of fuzzy
measures.

Theorem 1. Let U = {u1, . . . , un} be a universe, with |U| = n, and Qµ be a
quantifier determined by a fuzzy measure µ invariant with respect to the cardi-
nality. Then,

Qµ(C) =
n∨

i=1

C(uπ(i)) & µ({u1, ..., ui}), C ∈ F(U)

where π is a permutation on {1, 2, . . . , n} such that C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥
C(uπ(n)).

As a direct consequence of Theorem 1, the following result proposes to com-
pute the quantifier considering a fuzzy measure built from the relative cardinal-
ity, which was illustrated at the beginning of Section 3.

Corollary 1. Let U = {u1, . . . , un} be a universe, ϕ : [0, 1] → [0, 1] be an in-
creasing mapping such that ϕ(0) = 0, ϕ(1) = 1 and µ be a fuzzy measure built
from the relative cardinality, by using ϕ. Then,

Qµ(C) =
n∨

i=1

C(uπ(i)) & ϕ(i/n), C ∈ F(U)
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where π is a permutation on {1, 2, . . . , n} such that C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥
C(uπ(n)).

After introducing a generalization of the definition of generalized quantifier
in the multi-adjoint concept lattices framework and showing its main properties,
we will focus on using the extended definition to present a generalization of the
usual fuzzy concept-forming operators.

Definition 7. Given a multi-adjoint frame and a context for that frame, µA,
µB two fuzzy measures on A and B, respectively, which are invariant with respect
to the cardinality and QA, QB two quantifiers determined by the fuzzy measures
µA and µB, respectively, the quantified concept-forming operators are denoted
as ↑QA : [0, 1]B −→ [0, 1]A and ↓QB : [0, 1]A −→ [0, 1]B, where [0, 1]B and [0, 1]A

denote the set of fuzzy subsets g : B → [0, 1] and f : A→ [0, 1], respectively, and
are defined, for all g ∈ [0, 1]B, f ∈ [0, 1]A and a ∈ A, b ∈ B, as:

g↑QB (a) =
∨

X∈P(B)\{∅}

(∧

b∈X
R(a, b)↙σ(a,b) g(b)

)
& µB(X) (5)

f↓
QA

(b) =
∨

Y ∈P(A)\{∅}

(∧

a∈Y
R(a, b)↖σ(a,b) f(a)

)
& µA(Y ) (6)

Applying Corollary 1, we obtain the following characterization of the quanti-
fied concept-forming operators, where the fuzzy measures µA and µB are defined
from two fuzzy sets ϕA and ϕB , as follows:

µA({a1, ..., aj}) = ϕA(j/m)

µB({b1, ..., bi}) = ϕB(i/n)

for all subset {a1, ..., aj} ⊆ A, {b1, ..., bi} ⊆ B, with |A| = m and |B| = n.

Proposition 3. In the framework of Definition 7, the quantified concept-forming
operators ↑QA : [0, 1]B −→ [0, 1]A and ↓QB : [0, 1]A −→ [0, 1]B, satisfy:

g↑QB (a) =

n∨

i=1

(
R(a, bπ(i))↙σ(a,bπ(i)) g(bπ(i))

)
& ϕB(i/n) (7)

f↓
QA

(b) =

m∨

j=1

(
R(aλ(j), b)↖σ(aλ(j),b) f(aλ(j))

)
& ϕA(j/m) (8)

for all g ∈ [0, 1]B, f ∈ [0, 1]A and a ∈ A, b ∈ B, where π and λ are permutations
such as:

R(a, bπ(i+1))↙σ(a,bπ(i+1)) g(bπ(i+1)) ≤ R(a, bπ(i))↙σ(a,bπ(i)) g(bπ(i))

R(aλ(j+1), b)↖σ(aλ(j+1),b) f(aλ(j+1)) ≤ R(aλ(j), b)↖σ(aλ(j),b) f(aλ(j))
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The next result shows that the quantified concept-forming operators ↑QA and
↓QB form an antitone Galois connection when the quantifiers QA and QB are
determined by the minimum fuzzy measure µ∀.

Proposition 4. Given the quantifiers Q∀
A and Q∀

B determined by the minimum

fuzzy measure µ∀ on the universes A and B, respectively, then the pair (
↑
Q∀
B ,

↑
Q∀
A )

is an antitone Galois connection.

However, this result does not need to be satisfied for arbitrary quantifiers.
Hence, it would be interesting to study sufficient conditions to ensure that the
pair (↑QB , ↑QA ) be an antitone Galois connection.

4 Conclusions and future work

In this paper, we have introduced the monadic quantifiers of type 〈1〉 deter-
mined by fuzzy measures [15] in the general framework of multi-adjoint lattices.
Moreover, we have proven that the new definitions also have the universal and
existential quantifiers as particular cases. The second important result is the sim-
plification of the generalized quantifier definition taking into account that fuzzy
measures are invariant with respect to the cardinality. This result allows to de-
velop more simple and efficient proofs in this framework. Finally, the natural
and simple expressions of the quantified concept-forming operators have been
presented, and we have also shown that they form a Galois connection when
the minimum fuzzy measure is considered. However, this is not true in general.
Hence, in the future, sufficient conditions or new definitions will be studied in
order to provide Galois connections.

References

1. C. Alcalde, A. Burusco, H. Bustince, A. Jurio, and J. A. Sanz. Evolution in time
of L-fuzzy context sequences. Information Sciences, 326:202 – 214, 2016.

2. L. Antoni, S. Krajci, O. Kridlo, B. Macek, and L. Pisková. On heterogeneous
formal contexts. Fuzzy Sets and Systems, 234:22–33, 2014.
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