
Revisiting the GreCon Algorithm
for Boolean Matrix Factorization

Martin Trnecka[0000−0001−7770−2033] and Roman Vyjidacek[0000−0002−5442−0444]

Dept. Computer Science, Palacký University Olomouc, Olomouc, Czech Republic
martin.trnecka@gmail.com, roman.vyjidacek@upol.cz

Abstract. Over the past decade, the two most fundamental Boolean
matrix factorization (BMF) algorithms, GreCon and GreConD, were
proposed. Whereas GreConD has become one of the most popular al-
gorithms, GreCon—an algorithm on which the GreConD was build—is
somewhat forgotten. Although GreCon may produce better results than
GreConD, computing BMF via this algorithm is time consuming. We
show that the reasons for not using GreCon algorithm are no longer
truth. We revise the algorithm and on various experiments we demon-
strate that the revised version is competitive to current BMF algorithms
in term of running time. Moreover, in some cases GreCon outperforms
GreConD—the fastest BMF algorithm. Additionally, we argue that a
search strategy of GreConD, notwithstanding it provides a good result,
is limited. Furthermore, we show that our novel approach to GreCon
opens a new door to further BMF research.

Keywords: Boolean matrix factorization · Boolean matrix factorization
Algorithms · Formal concept analysis

1 Introduction

Boolean Matrix Factorization (BMF), also known as Boolean matrix decom-
position, is a well-established and widely used tool in data-mining and data
processing of Boolean (1/0) data.

In the last decade there was a huge effort dedicated to a BMF research. In
many works (e.g. [2, 3]) a strong connection—which we consider in the paper—
between BMF and formal concept analysis (FCA) was established. FCA provides
a general framework for the BMF problem description. Namely, formal context
represents the input data and formal concepts represent factors in such data.
From this perspective, BMF can be seen as a covering of a formal context by
formal concepts [2, 3, 10].

In the pioneer work [3] two main algorithms, GreCon and GreConD, for
BMF as well as a fundamental theory based on FCA were established.1 These
two algorithms are basic ones. Both utilize formal concepts as candidates for

1 The algorithms were originally called Algorithm 1 and 2. The names GreCon and
GreConD come from later works.

Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0). Published in Francisco
J. Valverde-Albacete, Martin Trnecka (Eds.): Proceedings of the 15th International
Conference on Concept Lattices and Their Applications, CLA 2020, pp. 59–70, 2020.

factors. From these candidates the final factors are selected via a greedy choice.
A detailed description of these two algorithms is provided in Section 2.

While the GreConD has become extremely popular, mainly due to its simple
architecture and performance—in a fact GreConD is one of the fastest BMF
algorithms and according to various experimental evaluations (see e.g. results in
[1, 2]) it provides a very good results from the quality viewpoint—the GreCon
is forgotten in the contemporary BMF research. There are two main reasons
for that: (i) GreCon is a very slow BMF algorithm. The algorithm requires
a several iterations over the set of all formal concepts, which may be large. (ii)
Results provided by GreConD are comparable to results provided by GreCon.
These two reasons stand on results presented in [3] and are widely adopted in
BMF research. In the paper, we argue that these reasons need to be revisited,
mainly according to a new development in BMF.

The main aim of this paper is to show that the reasons for not using GreCon
algorithm are no longer valid—thanks to the development of algorithms for FCA
and, paradoxically, thanks to the development of the GreConD algorithm. The
main aim can be summarized as follows: (i) We reimplemented the GreCon
algorithm and on various experiments we demonstrate that the revised version
is competitive in term of running time with existing BMF algorithms. Moreover,
the new implementation in some cases outperforms GreConD. (ii) We show,
that the search strategy used by GreConD, despite it provides a good result, is
limited. In the paper, we compare the search spaces of GreCon and GreConD
and we briefly address the comparison of the results provided by both of them.
(iii) Last but not least, the massive speed up of GreCon presented in the paper
opens a new door to further BMF research. Namely, we utilize the GreCon
search strategy on a restricted set of formal concepts. Although this is not a
completely new idea, its application was limited, because of the speed of existing
algorithms. Moreover, in an experimental evaluation we show that this approach
may provides better results.

The rest of the paper is organized as follows. In Section 2, we provide a
brief introduction to BMF, overview of related works and a description of the
basic algorithms, GreCon and GreConD. Then, in Section 3, a comparison
of GreCon and GreConD is discussed. Section 4 provides a description and
a pseudocode of the redesign GreCon algorithm. In Section 5, we present re-
sults from various experimental evaluations. Section 6 summarizes the paper and
outlines a further research directions.

2 A Brief Introduction to BMF

A good overview of BMF and related topics can be found e.g. in [1, 2, 8]. In
general, BMF and BMF algorithms are addressed in various papers involving
formal concept analysis [3, 6], role mining [4], binary databases [5] or bipartite
graphs [9]. In this paper, we focus instead of a general BMF to a certain class of
factorization, so-called from-below matrix factorization [2], i.e. no entries in the
input data with a zero value are covered by some factor.

60 Martin Trnecka and Roman Vyjidacek

A general aim of BMF is for a given Boolean matrix I ∈ {0, 1}m×n to find
matrices A ∈ {0, 1}m×k and B ∈ {0, 1}k×n for which

I ≈ A ◦B (1)

where ◦ is Boolean matrix multiplication, i.e. (A ◦B)ij = maxk
l=1 min(Ail,Blj),

and ≈ represents an approximate equality. This approximate equality is assessed
by || · || (i.e. by number of 1s) and with the corresponding metric E which is
defined for matrices I ∈ {0, 1}m×n, A ∈ {0, 1}m×k, and B ∈ {0, 1}k×n by

E(I,A ◦B) = ||I	 (A ◦B)||, (2)

where 	 is Boolean subtraction which is the normal matrix subtraction with an
alternative definition 0 − 1 = 0. In other words, function E is a number of 1s
in I that are not in (A ◦B). The metric (2), or its variant, is generally used to
assess the quality of factorization [1, 2].

A decomposition of I into A◦B may be interpreted as a discovery of k factors
that exactly or approximately describe the data: interpreting I, A, and B as
the object-attribute, object-factor, and factor-attribute matrices. The model (1)
can be interpreted as follows: the object i has the attribute j, i.e. Iij = 1, if and
only if there exists factor l such that l applies to i and j is one of the particular
manifestations of l.

2.1 BMF with Help of Formal Concept Analysis

We already mentioned that the BMF is closely connected to FCA. The formal
context 〈X,Y, I〉 with m objects and n attributes can be seen as a Boolean
matrix I ∈ {0, 1}m×n where Iij = 1 if 〈x, y〉 ∈ I, and vice versa. To every
I ∈ {0, 1}n×m one may associate a pair 〈↑, ↓〉 of arrow operators assigning to
sets C ⊆ X = {1, . . . ,m} and D ⊆ Y = {1, . . . , n} the sets C↑ ⊆ Y and D↓ ⊆ X
defined by

C↑ = {j ∈ Y | ∀i ∈ C : Iij = 1},
D↓ = {i ∈ X | ∀j ∈ D : Iij = 1}.

A pair 〈C,D〉 for which C↑ = D and D↓ = C is called a formal concept. The
set of all formal concepts for formal context 〈X,Y, I〉 is defined as follows

B(X,Y, I) = {〈C,D〉 | C ⊆ X,D ⊆ Y,C↑ = D,D↓ = C}.

For the sake of simplicity, we denote the set of all formal concepts for Boolean
matrix I by B(I). The set of all concepts can be equipped with a partial order
≤ such that 〈A,B〉 ≤ 〈C,D〉 iff A ⊆ C (or D ⊆ B). The whole set of partially
ordered formal concepts is called the concept lattice of I.

The set of formal concepts that is generated by single object (denoted by
O(I)) is called the set of object concepts, i.e. O(I) = {〈i↑↓, i↑〉 | ∀i ∈ X}, and
the set that is generated by single attribute (denoted A(I)) is called the set of
attributes concepts, i.e. A(I) = {〈j↓, j↓↑〉 | ∀j ∈ Y }.

Revisiting the GreCon Algorithm for Boolean Matrix Factorization 61

Now, we explain the connection between a set of formal concepts and the
BMF. Every set F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(I), with a fixed indexing of
the formal concepts 〈Cl, Dl〉 induces the m× k and k× n Boolean matrices AF
and BF by

(AF)il =

{
1, if i ∈ Cl,
0, if i 6∈ Cl,

and

(BF)lj =

{
1, if j ∈ Dl,
0, if j 6∈ Dl,

for l = 1, . . . , k. That is, the lth column of AF and lth row BF are the char-
acteristic vectors of Cl and Dl, respectively. The set F is called a set of factor
concepts. The entry Iij = 1 is covered by formal concept 〈A,B〉 if i ∈ A and
j ∈ B.

2.2 Algorithm GreCon

The GreCon2 algorithm [3] is one of the straightforward algorithms for BMF
based on FCA. To produce matrices AF and BF it uses a greedy search for factor
concepts driven by metric (2). More precisely, the algorithm first computes the
set B(I). Then it iteratively goes through this set and in each iteration a factor
concept that covers the largest not yet covered part of input data is selected, i.e.
it is a set cover based algorithm. The algorithm is designed to compute an exact
(or approximate if it is stopped before the end) from-below matrix factorization.

2.3 Algorithm GreConD

One of the most successful algorithms for BMF is the GreConD3 algorithm [3]
which was originally designed to improve a running time of GreCon. To pro-
duce the matrices AF and BF it uses a particular greedy search for factor
concepts which allows us to compute factor concepts “on demand”, i.e. without
the need to compute the set of all formal concepts for the input matrix first.
GreConD constructs the factor concepts by adding sequentially “promising
columns” to candidate 〈C,D〉 for factor concept. More formally, a new column j
that minimizes the error E(I,AF∪〈(D∪j)↓,(D∪j)↓↑〉◦BF∪〈(D∪j)↓,(D∪j)↓↑〉) is added
to 〈C,D〉. This is repeated until no such columns exist. If there is no such col-
umn, 〈C,D〉 is added to the set F . This strategy leads to a huge time saving
while the quality of the decomposition is comparable with the decomposition
obtained via GreCon. Similar to GreCon, the algorithm is also designed to
compute an exact and approximate from-below factorization.

2 GreCon is the abbreviation for Greedy Concepts.
3 GreConD is the abbreviation for Greedy Concepts on Demand.

62 Martin Trnecka and Roman Vyjidacek

3 Comparison of GreCon and GreConD

In what follows, we demonstrate differences between the search strategies of
GreConD and GreCon. Let us consider matrix I, depicted below, with rows
{1, 2, 3, 4, 5} and columns {a, b, c, d, e, f}

a b c d e f

I =

0 0 1 1 1 1
0 1 0 1 0 1
1 1 0 0 1 1
1 0 0 1 1 0
0 0 0 1 1 0

1
2
3
4
5

and two sets of factor concepts F1 and F2 that are computed via GreConD
and GreCon respectively. The corresponding matrices are:

AF1 ◦BF1 =

0 0 1 1 1
0 1 0 1 0
1 1 0 0 1
1 0 0 1 1
0 0 0 1 1

◦

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 1 1
0 0 0 1 0 0
0 0 0 0 1 0

 ,AF2 ◦BF2 =

1 0 0 1 0
0 0 1 0 0
0 1 0 0 1
1 0 0 0 1
1 0 0 0 0

◦

0 0 0 1 1 0
1 1 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 1
1 0 0 0 1 0

 .

The search space, in each iteration of GreCon, is the set of all formal con-
cepts. Namely, in each the iteration all formal concepts in the concept lattice of
I (depicted in Figure 1) are considered as candidates for factors, in order in they
were generated.

1, 2, 3, 4, 5

1, 2, 3

f

1, 2, 4, 5
d

1, 3, 4, 5
e

2, 3
b, f 1, 2

d, f

1, 3

e, f

1, 4, 5

d, e

3, 4

a, e

2

b, d, f

3

a, b, e, f

1

c, d, e, f

4

a, d, e

a, b, c, d, e, f

Fig. 1: Concept lattice of I.

The search space of GreConD is different. GreConD always starts with
attributes concepts. Then it extends the selected concept via some promising
attributes, i.e. GreConD search space is limited to chains in the corresponding

Revisiting the GreCon Algorithm for Boolean Matrix Factorization 63

concept lattice and the selection of a particular chain is driven by the greedy
choice. Note, the columns of the input matrix are considered in a fixed order.
As a consequence of this GreConD may stop in some local maximum.

In a fact, this is true for the first iteration on our example data matrix I.
GreConD starts with attribute a which generates 〈{3, 4}, {a, e}〉. All remaining
candidates (attribute concepts) have smaller or equal size as the first concept.
Then, 〈{3, 4}, {a, e}〉 is extended by some attributes to obtain a potentially better
candidate (candidate which covers more not yet covered entries of I), namely
attributes b, d, f are considered, meanwhile c is skipped because a, c, e do not
generate any formal concept. The concepts considered as candidates for factors
in the first iteration of GreConD are depicted by black nodes in Figure 1.
As a consequence of this GreConD is not able to discover the best choice
〈{1, 4, 5}, {d, e}〉.

Despite the differences between the algorithms, the results produced by them
are comparable—GreConD produces slightly worse results than GreCon—in
terms of the overall coverage which is evaluated by the metric (2). The com-
parison of the coverage is shown in Figure 2. Note, the coverage is computed as

1− E(I,A◦B)
||I|| .

0 25 50 75 100 125 150 175 200
Number of Factors

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

GreCon
GreConD

(a) Americas small

0 50 100 150 200 250 300
Number of Factors

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

GreCon
GreConD

(b) Customers

0 100 200 300 400 500
Number of Factors

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

GreCon
GreConD

(c) DNA

0 20 40 60 80 100 120
Number of Factors

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

GreCon
GreConD

(d) Mushroom

Fig. 2: Comparison of coverage produced by factorization obtained via GreCon
and GreConD on selected real-word data.

64 Martin Trnecka and Roman Vyjidacek

This observation—in fact results presented in Figure 2 are standard in BMF—
was confirmed by previous works e.g. [1, 2]. The interpretation of this observation
is affected by a small misunderstanding. Namely, graphs in Figure 2 capture the
cumulative coverage, i.e. the sum of all covered entries for a given number of
factors. In this sum, the differences between the factorizations be may not easy
to see.

In [3] a different kind of experiments were performed. Instead of plotting the
cumulative coverage, the coverage of i-th factor in one factorization in contrast
with the coverage of i-th factor in the second factorization is plotted, i.e. plotted
points have coordinates based on the number of covered entries. Results of this
experiments—[3] includes only the results for Mushroom data (see Section 5)—
for selected data are depicted in Figure 3.

10
0

10
1

10
2

10
3

10
4

10
5

GreCon

10
0

10
1

10
2

10
3

10
4

10
5

G
re
C
on
D

(a) Americas small

10
0

10
1

10
2

10
3

10
4

GreCon

10
0

10
1

10
2

10
3

10
4

G
re
C
on
D

(b) Customers

10
0

10
1

10
2

10
3

10
4

GreCon

10
0

10
1

10
2

10
3

10
4

G
re
C
on
D

(c) DNA

10
0

10
1

10
2

10
3

10
4

GreCon

10
0

10
1

10
2

10
3

10
4

G
re
C
on
D

(d) Mushroom

Fig. 3: Comparison of GreCon and GreConD algorithms on selected real-
word data. The plot uses axes with a logarithmic scale. The plotted points have
coordinates based on the number of covered entries.

One may easily see, that the difference between factorizations may be very
large despite small differences in Figure 2. In case of Customers dataset (Fig-
ure 3b) the datapoints are gathered close to the diagonal which means that
there is a small difference between the corresponding factors. In contrast with
this a significant difference between GreCon and GreConD on DNA dataset
(Figure 3c) may be observed.

Revisiting the GreCon Algorithm for Boolean Matrix Factorization 65

4 Redesign of GreCon

Now we describe a basic idea of redesigning the GreCon algorithm. We call the
redesigned version of the algorithm GreCon2 because it is mainly an efficient
implementation of the original GreCon algorithm.

Differently from GreCon, GreCon2 does not need repeatedly compute the
number of not yet covered entries for each formal concept—which is the most
time consuming task in GreCon. Instead of this the actual cover for all formal
concepts is maintained for the entire running time. For this purpose, a conve-
nient data structure which enables an additional speed up is used. Additionally,
GreCon2 does not iterate over all the formal concepts (i.e. data structure) but
only over the numbers (integers). A pseudocode of GreCon2, which accepts as
an input Boolean matrix I ∈ {0, 1}m×n, is depicted in Algorithm 1.

Algorithm 1: GreCon2

Input: Boolean matrix I ∈ {0, 1}m×n

Output: Set F of factor concepts.

1 concepts← B(I);
2 foreach 〈Al, Bl〉 ∈ concepts do
3 covers[l]← ||Al|| · ||Bl||
4 foreach (i, j) ∈ 〈Al, Bl〉 do
5 append l to list cell[i · n + j]
6 end

7 end
8 while AF ◦BF 6= I do
9 add 〈Al, Bl〉 which maximizes covers[l] to F

10 foreach (i, j) ∈ 〈Al, Bl〉 do
11 foreach k ∈ cell[i · n + j] do
12 covers[k]← covers[k]− 1
13 end
14 delete list cell[i · n + j]

15 end

16 end

In the first phase, GreCon2 computes the set of all formal concepts B(I)
(line 1). Then the algorithm computes a coverage for each concept—stores in
array covers (line 3)—and for each Iij constructs a list of concepts that cover
Iij (lines 4–6). These lists are stored in array cell on a corresponding indexes
(line 5). Note that accessing the entries of arrays covers and cell requires a
constant time.

In the second phase, GreCon2 performs linear search in array covers and
adds to F concept 〈Al, Bl〉 for which the value of cover[l] is maximal (line 9).
For each Iij covered by 〈Al, Bl〉 GreCon2 decrease values in array covers for
each concept that covers Iij (lines 10–13) and deletes the list for Iij (line 14).
The second phase is repeated until all the entries of the input data matrix are
covered or, equivalently, there is no covers[l] > 0.

66 Martin Trnecka and Roman Vyjidacek

5 Experimental Evaluation

In this section, we present results of an experimental comparison of GreCon,
GreConD and GreCon2. We implemented4 all three algorithms in the Swift
programming language with the same level of optimization to make the compar-
ison fair.

5.1 Datasets

We used eight real-world datasets, namely Advertisement, Mushroom, Tic Tac
Toe from [7]; Americas small, Apj, Customer, Firewall 1 from [4]; and DNA [11].
The characteristics of the datasets are shown in Table 1. Specifically the num-
ber of objects, the number of attributes, the density of nonzero entries in data
in percents, the number of concepts, and the number of object and attribute
concepts. All of them are well known and widely used as benchmark datasets in
BMF.

Table 1: Datasets and their characteristics.

dataset # objects # attributes dens. |B(I)| |O(I) ∪ A(I)|
Advertisement 3279 1557 0.88 9192 2648
Americas small 3477 1587 1.91 2764 524
Apj 2044 1164 0.29 798 723
Customer 10961 277 1.50 47848 5806
DNA 4590 392 1.47 4483 1450
Firewall 1 365 709 12.35 317 152
Mushroom 8124 119 17.65 221525 8231
Tic Tac Toe 958 30 33.33 59505 988

5.2 Running Times Comparison

We compared the running times of GreCon, GreConD and GreCon2. All
experiments were performed on an ordinal computer with 2.7GHz Quad-Core
Intel Core i7 processor and 16GB of RAM. Each algorithm was run 5 times
on a particular data and the average time as well the standard deviation (the
numbers after ±) are reported in Table 2. Note, the running times do not involve
the time required to load input data. In case of GreCon and GreCon2, the
time required for the computation of all formal concepts, which is done via our
implementation of FCbO algorithm [12], is included in each iteration.

Table 2 shows that in all cases GreCon2 significantly outperforms origi-
nal GreCon algorithm. Moreover, in most cases GreCon2 outperforms Gre-
ConD. GreConD performs well on datasets where the number of attributes

4 All implementations together with scripts that performs all presented experiments
are available on the GitHub https://github.com/rvyjidacek/experiments-cla2020

Revisiting the GreCon Algorithm for Boolean Matrix Factorization 67

Table 2: Comparison of running times of GreCon, GreCon2 and GreConD
in seconds. The average time over five iterations as well as standard deviations
(the numbers after ±) are presented.

dataset GreCon GreCon2 GreConD

Advertisement 916.40± 9.80 1.75± 0.06 295.72± 1.38
Americas small 94.68± 0.17 1.37± 0.02 96.46± 0.61
Apj 16.70± 0.14 0.21± 0.00 59.52± 0.23
Customer 1179.33± 4.85 3.23± 0.02 11.95± 0.15
DNA 133.71± 2.21 0.48± 0.01 21.9± 0.50
Firewall 1 0.76± 0.02 0.12± 0.00 4.51± 0.08
Mushroom 1139.91± 15.37 31.14± 0.22 3.99± 0.03
Tic Tac Toe 5.69± 0.17 0.78± 0.01 0.04± 0.00

Table 3: Comparison of running times and the final number of factors of Gre-
Con2 restricted to O(I) ∪ A(I) and unrestricted GreConD.

dataset GreCon2 # factors GreConD # factors

Advertisement 0.38± 0.00 756 295.72± 1.38 766
Americas small 0.22± 0.01 208 96.46± 0.61 197
Apj 0.07± 0.00 463 59.52± 0.23 464
Customer 0.41± 0.00 281 11.95± 0.15 286
DNA 0.15± 0.00 515 21.90± 0.50 511
Firewall 1 0.05± 0.00 66 4.51± 0.08 66
Mushrooms 0.42± 0.00 103 3.99± 0.03 118
Tic Tac Toe 0.01± 0.00 29 0.04± 0.00 32

is rather small. This is the reason why GreConD outperforms GreCon2 on
Mushroom dataset which has a larger number of concepts and only a small
number of attributes.

Note that our implementation of GreCon2 may be improved. Namely the
construction phase of the algorithm (lines 2–6 in Algorithm 1) can be a part of
FCbO algorithm (line 1). We decide to keep these two parts separated to make
the comparison between GreCon and GreCon2 fair.

5.3 A New Approach to BMF

A significant speed up provided by GreCon2 allows us to consider the set of all
formal concepts as a set of candidates for factors. Despite considerable speedup,
the set may be still too large (like in the case of Mushroom dataset). As a
very promising research direction seems to be a restriction of the set of formal
concepts, i.e. skip formal concepts that are potentially not a good candidates
for factors. To demonstrate this idea, we consider in GreCon2 the set O(I) ∪

68 Martin Trnecka and Roman Vyjidacek

A(I) instead of B(I). We perform the same experiments as above and compare
GreCon2 with the restricted search space and unchanged GreConD.

From the results shown in Table 3, we observe that GreCon2 significantly
outperforms GreConD in therm of running times. Moreover, in this case Gre-
Con2 produces slightly better results in terms of overall coverage (see Figure 4)
and in some cases a smaller number of factors than GreConD (see Table 3).

0 100 200 300 400 500 600 700
Number of Factors

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag

e

GreCon2
GreConD

(a) Advertisement

0 25 50 75 100 125 150 175 200
Number of Factors

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag

e

GreCon2
GreConD

(b) Americas small

0 20 40 60 80 100
Number of Factors

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag

e

GreCon2
GreConD

(c) Mushroom

0 5 10 15 20 25 30
Number of Factors

0.0

0.2

0.4

0.6

0.8

1.0

C
ov
er
ag

e

GreCon2
GreConD

(d) Tic Tac Toe

Fig. 4: Comparison of coverage produced by factorization obtained via GreCon2
where B(I) was restricted to O(I) ∪ A(I) and GreConD on selected datasets.

6 Conclusion and Further Research

We proposed a revised version of GreCon algorithm which significantly out-
performs the original algorithm and which is competitive to the fastest BMF
algorithms. Additionally, we show that our approach enables us to consider a
larger search space than one of the most popular BMF algorithms, which in the
past has caused that GreCon to be forgotten in BMF research.

Further research shall include an efficient implementation of the approach;
a deep investigation of how the set of all formal concepts may be restricted
without affecting the outcome quality; and last but not least, a parallelization
of the approach.

Revisiting the GreCon Algorithm for Boolean Matrix Factorization 69

Acknowledgments

Supported by Junior research Grant No. JG 2020 003 of the Palacký University
Olomouc. Support by Grant No. IGA PrF 2020 030 of IGA of Palacký University
is also acknowledged.

References

1. Belohlavek, R., Outrata, J., Trnecka, M.: Toward quality assess-
ment of Boolean matrix factorizations. Inf. Sci. 459, 71–85 (2018).
https://doi.org/10.1016/j.ins.2018.05.016

2. Belohlavek, R., Trnecka, M.: From-below approximations in Boolean matrix fac-
torization: Geometry and new algorithm. J. Comput. Syst. Sci. 81(8), 1678–1697
(2015). https://doi.org/10.1016/j.jcss.2015.06.002

3. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a
novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010).
https://doi.org/10.1016/j.jcss.2009.05.002

4. Ene, A., Horne, W.G., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast
exact and heuristic methods for role minimization problems. In: Ray, I., Li, N. (eds.)
13th ACM Symposium on Access Control Models and Technologies, SACMAT
2008, Estes Park, CO, USA, June 11-13, 2008, Proceedings. pp. 1–10. ACM (2008).
https://doi.org/10.1145/1377836.1377838

5. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Suzuki, E., Arikawa,
S. (eds.) Discovery Science, 7th International Conference, DS 2004, Padova, Italy,
October 2-5, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3245, pp.
278–289. Springer (2004). https://doi.org/10.1007/978-3-540-30214-8 22

6. Ignatov, D.I., Nenova, E., Konstantinova, N., Konstantinov, A.V.: Boolean ma-
trix factorisation for collaborative filtering: An fca-based approach. In: Agre, G.,
Hitzler, P., Krisnadhi, A.A., Kuznetsov, S.O. (eds.) Artificial Intelligence: Method-
ology, Systems, and Applications - 16th International Conference, AIMSA 2014,
Varna, Bulgaria, September 11-13, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8722, pp. 47–58. Springer (2014). https://doi.org/10.1007/978-3-319-
10554-3 5, https://doi.org/10.1007/978-3-319-10554-3 5

7. Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

8. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The dis-
crete basis problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348–1362 (2008).
https://doi.org/10.1109/TKDE.2008.53

9. Monson, S.D., Pullman, S., Rees, R.: A survey of clique and biclique coverings and
factorizations of (0,1)-matrices. No. 14 (1995)

10. Mouakher, A., Yahia, S.B.: QualityCover: Efficient binary relation cover-
age guided by induced knowledge quality. Inf. Sci. 355-356, 58–73 (2016).
https://doi.org/10.1016/j.ins.2016.03.009

11. Myllykangas, S., Himberg, J., Böhling, T., Nagy, B., Hollmén, J., Knuutila, S.:
Dna copy number amplification profiling of human neoplasms. Oncogene 25(55),
7324–7332 (2006)

12. Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of galois connec-
tions induced by object-attribute relational data. Inf. Sci. 185(1), 114–127 (2012).
https://doi.org/10.1016/j.ins.2011.09.023

70 Martin Trnecka and Roman Vyjidacek

	Revisiting the GreCon Algorithm for Boolean Matrix Factorization

