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Abstract. We are going back to the root of Boolean matrix factorization
(BMF)—to factor analysis—and we examine an implementation of the
simple structure in BMF. We propose a Boolean counterpart of the sim-
ple structure, i.e. a novel way how to evaluate interpretability of factors.
Moreover, we discuss the proposed approach from the formal concept
analysis perspective, and we provide an analysis of the interpretability
of results obtained via selected the state-of-the-art BMF algorithms on
real-world data. Additionally, we propose a novel BMF algorithm utiliz-
ing a main criterion for the factor selection based on the simple structure.

Keywords: Boolean factor analysis - Interpretation of results - Simple
structure.

1 Introduction

Boolean matrix factorization (BMF) is a natural and immensely popular way of
summarizing binary (yes/no) data via new fundamental variables, called factors,
that are implicitly hidden in the data. In the past, the BMF was successfully used
in various fields, e.g. role-based access control [11], computational biology [19],
recommender systems [14], logic circuit synthesis [13], classification [1], computer
network analysis [15] and many other fields of study.

The general aim of BMF is to simplify complex data. More precisely, for a
given Boolean matrix I € {0,1}™*", with m objects and n attributes, to find
matrices A € {0,1}™** and B € {0, 1}**" for which

I~ AoB.

Operator o represents Boolean matrix multiplication, i.e.
ko
(AoB);; = rlnalxmm(Ail, Byj;),

and ~ represents approximate equality assessed by number of 1s. Finding the
AoB may be interpreted as a discovery of k factors that exactly or approximately
describe the data, where A captures a relation between the original objects
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and the factors, and B captures a relation between the factors and the original
attributes.

While, BMF is widely used tool in general data-mining, the main motivation
for the BMF comes from the psychology and the social sciences. In a broad sense,
BMF is an implementation of the general idea of factor analysis introduced by
psychologist Charles Spearman [21]. This is not surprising. In a fact BMF comes
from the psychology, where Boolean data often occur (see e.g. [7]). Surprisingly,
in BMF only small attention to the crucial aspect of the factor analysis—an
interpretation of factors itself—is payed.

In the factor analysis, the interpretation of one particular factor is based on
its loading scores, i.e. how much are the original attributes involved in the factor
description. This view to factors is called a Royce’s model [20] of the factor. The
interpretation of a factorization, i.e. interpretation of all factors, is driven by the
law of parsimony, well known as Occam’s razor, i.e. we should pick the simplest
explanation of facts. A solution selected via the parsimony law is called simple
structure.

In BMF, the question of how to interpret one particular factor is usually
answered with a help of formal concept analysis (FCA)[12], however the Royce
model may also be adopted, especially in the case of general factorization. Before
we explain this, let us remind the basic connection between BMF and FCA.

For every I € {0,1}"*™ one may associate a pair (T,+) of arrow operators
defined by

Ct={jeYy|VieC:Iy=1}and D' ={i € X|Vj € D:L; =1},

where C' is a subset of all objects X = {1,...,m} of I and D is subset of all
attributes Y = {1,...,n} of I. A pair (C, D) for which CT = D and D% = C
is called formal concept. The set of all formal concepts for I is defined in the
following way

B(I)={(C,D)|CC X,DCY,C"=D,D"=C}.

Now, we explain an important connection—originally described in a pioneer
work [6]—between a set of formal concepts and the Boolean matrix factorization.
Every set F = {{C1,D1),...,{Ck, D)} C B(I), where the indexing of the formal
concepts (Cy, Dy) is fixed, induces the m x k and k x n Boolean matrices A
and Br by

 [iifiea,  [LifjeD,
(Af>”{o,ifz'¢cl, and (Bf)“{o,ifjswl,

for I =1,...,k. That is, the {th column of A and lth row Bz are the charac-
teristic vectors of C; and Dy, respectively. The set F is also called a set of factor
concepts. The advantage of this approach is that a factor can be seen as a formal
concept, i.e. the interpretation of the factor is straightforward: factor = formal
concept—an entity with extent and intent part.

The Boolean counterpart of simple structure or an elementary way how to
evaluate whether the factorization is easily interpretable is missing.
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In the paper we are going back to the root of BMF—to factor analysis—
and we discuss an implementation of the simple structure introduced in [22]
by L. L. Thurstone in BMF. The main contribution of this work is following:
(i) we propose a Boolean counterpart of the simple structure, which may be
utilized in BMF, i.e. a novel way how to evaluate a quality (interpretability)
of factors and we discuss it from the formal concept analysis perspective; (ii)
we evaluate the interpretability of factorization delivered by the state-of-the-art
BMF algorithms; and (iii) we propose a novel BMF algorithm which uses the
simple structure as a main criterion for the factor selection.

The rest of this paper is organized as follows. The next section provides basic
insight to the simple structure and discusses its formalization that can be used
in BMF. In Section 3, an evaluation of selected existing the state-of-the-art BMF
algorithms from an interpretability viewpoint is performed. Section 4 describes a
new BMF algorithm using our formalization of simple structure as a criterion for
the factor selection as well as its experimental evaluation. The paper is concluded
by Section 5.

2 Simple structure

In the factor analysis, the question of the interpretability of factors is decided by
the law of parsimony, well known as Occam’s razor. In other words the simplest
explanation is the best one. Such explanation is selected via the parsimony law,
and it is called a simple structure.

Even though, the BMF has motivation in the factor analysis, an interpreta-
tion of factors has only a small attention in contemporary BMF research. This is
surprising because the interpretation of factors is a crucial part of factor analysis.

2.1 Thurstone’s simple structure criteria

In 1947 Thurstone formalized in his work [22] five criteria of the simple struc-
ture. Later, Cattell in [9] claimed that the simple structure factors are (usually)
simple to interpret. Unfortunately, the Thurstone’s formalization of good factors
is informal, vague and verbally described. According to Thurstone, interpretable
factors satisfy the following five conditions:

1. Each row of the rotated matrix should contain at least one zero.

2. In each factor, the minimum number of zero loadings should be the number
of factors in the rotation.

3. For every pair of factors there should be variables with zero loadings on one
and significant loadings on the other.

4. For every pair of factors a large portion of the loadings should be zero, at
least in a matrix with a large number of factors.

5. For every pair of factors there should be only a few variables with significant
loadings on both factors.
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Let us note, that the loading matrix is the factor-attribute matrix. Basically,
the criterion of the simple structure is derived from properties of the loading
matrix. This approach adopts the Royce definition of factor, namely “factor is
a construct operationally defined by its factor loadings”. In other words, factors
are represented via attributes that are manifestation of them. In our terminology,
factors are represented via rows of matrix B.

The third and the fifth criterion are of overriding importance, namely the
loading matrix is the simple structure if each pair of factors have a few high
loadings.

2.2 Simple structure for BMF

There have been many attempts—without noticeable success—to formalize the
simple structure (see e.g. [8]) in factor analysis. In [23] a formalization of the
Thurstone’s five criteria via logical formulas for a decomposition of matrices over
a finite scale is proposed. Despite the fact, that the BMF is a special case of the
decomposition over a finite scale [23], in the following part we discuss that the
approach in [23] cannot be straightforwardly adopted in the Boolean case.

In BMF, the first Thurstone’s criterion is always met, with an exception
where the input data contain an object which have all attributes. The second
criterion may not be easy to satisfy, especially if an exact decomposition is re-
quired. In such case BMF algorithms may produce greater number of factors
than attributes (for more details see e.g. [3]). The third criterion can be under-
stood as follows: for every pair of factors, there should be an attribute which is
a manifestation of one of them and is not a manifestation of the other one. As a
consequence of this, the third criterion is always met in BMF. The penultimate
criterion is in conflict with in FCA well-known fact that the maximal rectan-
gles are the best choice from the interpretability point of view. Namely, let us
consider a concept “dog”. If we cut some attributes from them, the interpreta-
tion of this concept suffers. The last criterion says, that the number of common
attributes for each pair of factors should be minimal.

Since the first and the third criterion are meaningless in BMF and the fourth
criterion violates a basic view on Boolean factors, we can conclude, that the
well-interpretable factorization satisfies the condition that all pairs of factors
have the number of common attributes as small as possible. This is consistent
with an observation presented [4], where a kind of dependencies between factors
in a presence of noise in data was observed. Obviously, if the sets of attributes,
that describe factors, are very similar, such factorization is hard to interpret.

We define a measure, adopting the Royce model of factor, which calculate a
diversity (interpretability) of two sets of attributes A and B:

MmB|MmBU
Al Bl
A high value of div(A, B) indicates that sets A and B have a small number

of common attributes. div(A, B) = 1 means that the sets have no common
attributes at all.

div(A,B) =1 — max (
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For the set of factors F, we may compute the diversity as an average diversity
of each pair of factors, i.e.

div(F) = Z Z div(D;, D;)/number_of pairs
i >

for D;, D; such that (C;, D;), (Cj, D;j) € F. Note, the diversity is equal to 1 for
the set of factors that have no common attributes.

We employed the diversity measure to evaluate the quality (interpretability)
of factorization. Note that a different approach to the quality was proposed in [2].
In what follows we emphasize a fact that the BMF problem is a set covering
problem [3], i.e. the number of entries that are covered by a particular factor is
an important measure.

3 Comparison of existing methods

In the following section we address the question of the interpretability of fac-
tors that are obtained via existing BMF algorithms. We compare—by means of
the diversity measure—results delivered by selected state-of-the-art BMF algo-
rithms, namely GRECOND [6], Asso [18], GREEsS [3], PANDA [17], HYPER [24],
8M [10], GRECOND+ [5]. An overview of these algorithms can be found e.g.
in [2-4].

3.1 Datasets

We used several, in BMF standard, real-world datasets from [3,11,16] that are
listed, together with their basic characteristics and the numbers of factors that
are required by selected algorithms to achieve an exact decomposition in Table 1.

Moreover we build three new datasets CLA, Rio medal and Rio participa-
tion.! CLA data include as objects 128 regular contributors (authors that have
more than one contribution) on CLA conference. The attributes of CLA data
consist of 13 individual conferences (years). Both Rio datasets include 207 ob-
jects representing countries participated on Olympic games in Rio in 2016 and
28 attributes that represent sport disciplines such as aquatic sports, cycling,
gymnastics, etc. We used two relations between objects and attributes. The first
one reflects that a particular country had a representative in a sport discipline
(Rio participation). The second one reflects if a particular country wins some
medal in sport discipline (Rio medal).

3.2 Experimental evaluation

We computed factorizations for each dataset in Table 1 via above mentioned
BMF methods. Table 2 shows the interpretability (the diversity measure) for sets

1 All datasets as well as implementation of below presented algorithm GREDCOND
are available online at https://github.com/Marketa-Trneckova/CLA2020-Simple-
Structure-BMF.
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Table 1: Datasets

dataset dimensions I1I]] ||X]]/(m -n) GREEss GRECOND GREDCOND
Breast 699 x 20 6974 0.50 19 19 21
CLA 128 x 13 448 0.27 14 16 16
DBLP 6980 x 19 17173 0.13 19 21 22
Domino 231 x 79 730 0.04 20 21 22
Ecoli 336 x 34 2688 0.23 40 41 40
Chess 3196 x 76 118252 0.49 113 124 114
Iris 150 x 19 750 0.26 20 20 19
Mushroom 8124 x 119 186852 0.19 105 120 130
Paleo 501 x 139 3537 0.05 145 151 152
Post 90 x 25 720 0.32 29 32 30
Rio participation 207 x 28 1776 0.31 28 44 37
Rio medal 207 x 28 285 0.05 29 32 30
Zoo 101 x 28 862 0.30 25 30 28
Zoo extended 144 x 21 1019 0.34 26 27 29

of factors that achieve a prescribe coverage of input data (column c). Namely,
75%, 90%, 95% and 100% coverage is shown. The value N/A in the table means,
that particular algorithm is not able to achieve prescribed coverage. The coverage
is computed as a percentage of nonzero entries in data that are covered by some
factors (for more details see e.g. [3]).

The highest values of the diversity are obtained via algorithm HYPER, which
for almost all datasets returns value 1 or a value close to 1. The main reason
is that HYPER usually produces factors including only one attribute—such fac-
tors are really easy to interpret. This can be seen as a drawback of the simple
structure, because such factors are usually not useful in practice.

Algorithms GREESS and GRECOND return comparable results. Both of them
use formal concepts as factors and as a result of this both produce so-called
from-below decomposition, i.e. no zero entries in input data are covered by some
factor. In almost all cases GREESS slightly outperform GRECOND.

GRECOND+, PANDA and AsSsO return sets of factors that are not able to
cover the whole data. For example in many cases factors computed via PANDA
cover less that 70% of input data. Differently from GREEss and GRECOND,
factors produced by GRECOND+, PANDA and ASSO are rectangles in data
that may contain zeros. The Royce’s model of the factor enables to evaluate
such factors. Surprisingly, 8M—the oldest BMF method—produces very good
factors, however each factor contains a large number of zero entries.
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Table 2: Diversity of factorizations.

dataset ¢ GReEDCOND GRECOND GRrReEss HyPER 8M GRECOND+ Asso PANDaA
75 0.331 0.245 0.328 0.840 1 0.2 0.278 0.333
Breast 90 0.329 0.284 0.322 0.913 1 0.272 0.299 N/A
95 0.331 0.275 0.316 0.937 1 0.284 0.3 N/A
100 0.3 0.263 0.284 0.95 0.872 0.25 N/A N/A
75 1 1 1 1 0.733 1 1 N/A
CLA 90 0.97 0.95 1 1 0.813 1 1 N/A
95 0.956 0.956 1 1 0.826 1 1 N/A
100 0.95 0.95 0.978 1 0.845 1 1 N/A
75 0.833 1 0.6 1 0.25 0.616 1 N/A
DBLP 90 0.691 0.611 0.704 1 0.823 0.650 0.611 N/A
95 0.617 0.593 0.675 1 0.823 0.651 0.53 N/A
100 0.683 0.667 0.638 1 0.868 0.662 N/A N/A
75 0.833 1 0.6 0.633 0.25 0.616 1 N/A
Domino 90 0.691 0.611 0.704 0.974 0.823 0.650 0.611 N/A
95 0.617 0.593 0.675 0.990 0.823 0.650 0.53 N/A
100 0.683 0.667 0.638 0.996 0.868 0.662 N/A N/A
75 0.678 0.386 0.461 0.447 0.5 0.483 0.362 0.458
Ecoli 90 0.672 0.470 0.453 0.718 0.55 0.563 0.365 N/A
95 0.699 0.569 0.600 0.818 0.714 0.668 0.335 N/A
100 0.639 0.578 0.556 0.903 0.945 0.571 N/A N/A
75 0.758 0.550 0.618 0.922 1 0.323 0.195 0.178
Chess 90 0.740 0.612 0.617 0.956 0.867 0.588 0.122 N/A
95 0.734 0.621 0.642 0.966 0.908 0.592 0.140 N/A
100 0.680 0.615 0.602 0.972 0.959 0.598 N/A N/A
75 0.933 0.933 0.933 1 0.933 0.95 1 N/A
Tris 90 0.956 0.944 0.944 1 0.821 0.929 0.982 N/A
95 0.962 0.955 0.936 1 0.865 0.918 0.967 N/A
100 0.933 0.926 0.926 1 0.892 0.838 N/A N/A
75 0.456 0.407 0.376 0.960 0.668 0.390 0.246 N/A
90 0.470 0.417 0.390 0.981 0.851 0.410 0.282 N/A
Mushroom
95 0.466 0.416 0.387 0.987 0.894 0.428 0.299 N/A
100 0.469 0.435 0.405 0.996 0.951 0.436 N/A N/A
75 0.993 0.991 0.998 1 0.957 0.997 0.999 N/A
Paleo 90 0.994 0.994 0.998 1 0.978 0.997 0.998 N/A
95 0.995 0.995 0.998 1 0.982 0.997 0.998 N/A
100 0.994 0.994 0.997 1 0.983 N/A N/A N/A
75 1 1 1 1 0.81 0.881 1 N/A
Post 90 0.972 0.887 0.968 1 0.855 0.901 0.995 N/A
95 0.968 0.901 0.966 1 0.863 0.903 0.987 N/A
100 0.949 0.897 0.946 1 0.888 0.895 0.968 N/A
75 1 1 1 1 0.81 0.881 1 N/A
. 90 0.974 0.887 0.968 1 0.855 0.901 0.995 N/A
Rio medal
95 0.968 0.901 0.966 1 0.863 0.903 0.987 N/A
100 0.950 0.897 0.946 1 0.888 0.895 0.968 N/A
75 0.781 0.411 0.933 0.979 1 0.817 0.089 N/A
. .. . 90 0.786 0.555 0.852 0.988 0.792 0.741 0.132 N/A
Rio participation
95 0.746 0.547 0.838 0.982 0.836 0.736 N/A N/A
100 0.689 0.625 0.774 0.980 0.901 N/A N/A N/A
75 0.805 0.571 0.576 0.947 0.889 0.653 0.545 0.621
Z00 90 0.795 0.714 0.675 0.967 0.867 0.696 0.538 N/A
95 0.778 0.732 0.760 0.978 0.923 0.677 0.620 N/A
100 0.765 0.713 0.734 0.983 0.945 0.667 N/A N/A
75 0.789 0.604 0.78 0.82 0.457 0.754 0.586 N/A
90 0.805 0.780 0.818 0.904 0.631 0.779 0.545 N/A
Zoo extended
95 0.801 0.760 0.874 0.916 0.642 0.779 0.594 N/A
100 0.792 0.766 0.809 0.918 0.838 N/A N/A N/A
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4 Improving existing BMF algorithms

Almost all BMF algorithms—directly or indirectly—utilize the coverage as main
criterion for factor selection (for more details see e.g. [3]). Despite the fact that
the coverage is an important criterion, it does not reflect the interpretability of
factors. Reasonable question is if we can improve existing BMF algorithms to
give a more interpretable factorization that still covers a large part of data.

We choose GRECOND—one of the most successful BMF algorithms—as a
base for a new algorithm. GRECOND works as follows. To produce matrices A
and Br GRECOND uses a particular greedy search for factor concepts which al-
lows to compute factor formal concepts “on demand”. The algorithm constructs
the factor concepts by adding sequentially “promising columns” to candidate
(C, D) to factor concept. A new column j that maximize the number of newly
covered entries of the input data is added to (C, D). This is repeated until no
such columns exist. If there is no such column, the (C, D) is added to the set F.

Algorithm 1: GREDCOND algorithm
Input: Boolean matrix I.
Output: Set F of factor concepts.

1 F«0
2 while (AroBz) #1do

3 (C, D) + (0,0)
4 total_cost < 0
5 while (C, D) is changing do
6 total_cost’ + total_cost
7 foreach j ¢ D do
8 D'« (Du{jpH¥
9 C' + D%
10 F'+— Fu(C’, D"
11 cost < ||Az o Bx/|| - DIVERSITY(F, D")
12 if cost > total_cost’ then
13 total_cost’ + cost
14 c"
15 D" « D'
16 end
17 end
18 total_cost + total_cost’
19 C+c”
20 D+ D"
21 end
22 F+ FU(C,D)
23 end

24 return F
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We use an architecture of GRECOND and we modify the computation of the
cost value. A pseudocode of the modification, which we called GREDCoND? is
depicted in Algorithm 1.

A value of the cost (line 11) is computed as the number of newly covered
entries of the input matrix I multiplied by a value of diversity obtained via
procedure DIVERSITY depicted in Algorithm 2.

Algorithm 2: DIVERSITY procedure
Input: Set F of factor concepts, candidate D to the set F
Output: The average diversity d.

foreach (A;, B;) € F do

=

B;,nD| |B;nD
2 ‘ 5i<—1—max(‘ |13H ‘,‘ \lDI ‘)
3 end
F
_ s s
[FI

5 return d

Such setting of the factor selection criteria tends to prefer large factors—
factors that cover a large part of the data—that are more diverse and thus
potentially easily interpretable. Note, that the others BMF algorithms may be
improved in a similar way. In what follows we provide an experimental evaluation
of the new algorithm.

4.1 Experimental evaluation

We perform with GREDCOND experiments described in Section 4.1. From Ta-
ble 2 one may clearly observe that GREDCOND algorithm outperform GRE-
CoND as well as GREEsS (with an exception of CLA, Paleo, Rio participation
and Zoo extended). Both are its main competitors.

Additionally we observed, in the case of GRECOND, GREESS, GREDCoND,
that the interpretability of factors tends to decrease when an exact coverage is
achieved. This points to a well-known problem, regarding the deciding what is a
good coverage for data. The decrease indicates, that factors, that are not simply
interpretable were added to factorization. As a very promising further research
seems to be investigating, if the diversity measure can be used as a stopping
criterion for a factor enumeration.

Moreover, we deeply analyzed the first three factors. Figures 1, 2 and 3 rep-
resent attributes of datasets in order Zoo extended, Rio participation and Breast
dataset and show how many of the first three factors involves this attribute. The
darker square represents the higher number of factors having this attribute in
its loading. White color means, that no factor explain this attribute, black color
means, that all three factors have this attribute.

2 GREDCOND is the abbreviation for Greedy Diversity Concepts on Demand.
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One may see from Figures 1, 2 and 3, that the first three factors obtained
via GREDCOND share less attributes in comparison to other methods. Almost
the same results may be observed in the case of GREESS but these factors are
narrower and explained by smaller number of attributes (see Figure 2).

Since the number of factors is an important characteristic, we should mention
that the number of factors (see Table 1) required for an exact decomposition via
GREDCOND is comparable—sometimes even smaller—to the number of factors
delivered by GRECOND algorithm.

GREDCoOND | | | |
GreConxDB ™ THIN "W T |
GreEss L 7 TN |
Hyper[ 0 N W T |
sMEHT W EN W
GReConD+[ I T W W T |
Asso [ || |
PANDALL I THDEIN "W |

Fig. 1: Zoo extended: 3 factors

GrReEDCoND [ l
GreConD I | | T
|
|
\
|

GREESS |
Hyper I

sMC I W | |
GreConD+ [
Asso I "
PNDAICIT T B T W B B

Fig. 2: Rio participation: 3 factors

GREDCOND | [ | HE

GRECOND | H N HE

GREESS | | | HE
HYPER | HEBEERN

8M | |

GrECoND+ [0 | | H BN

Asso [T W W W W
pANDACITETEN B EHT B EN

Fig. 3: Breast: 3 factors
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5 Conclusion

We propose a Boolean counterpart of the simple structure—which provides a
measure of interpretability of results in factor analysis—that can be utilized in
BMF. We presented a new measure that reflects the Thurston’s criterion for
the simple structure, and we evaluate factorizations delivered by the state-of-
the-art BMF algorithms via the presented measure. Additionally we propose an
improvement one of existing BMF algorithm which uses the simple structure as
a main criterion for the factor selection. The new presented algorithm returns
slightly better results in a comparison to similar methods.
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