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Abstract. The aim of this paper is to shed light on matrix reordering
methods: namely scale of conformity, minus technique, plus technique
and mixed technique. All of them are based on the theory of mono-
tone systems. Presented methods are applicable both to NxN (entity-
to-entity) and NxM (entity-to-attribute) data tables. All the methods
can use larger set of discrete values (not only binary ones). Rows and
columns are reordered separately. The result does not depend on the ini-
tial order of rows and columns. We compare the results of these methods
through stress measure (both in the von Neumann neighborhood and in
the Moore neighborhood) using binarized representations of well-known
data sets.
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1 Introduction

Seriation is an exploratory data analysis technique to reorder objects into a
sequence along a one-dimensional continuum so that it best reveals regularity and
patterning among the whole series [1]. Seriation is often called matrix reordering,
when applied to two-way datasets [2]. Two-way one-mode data table means
entity-to-entity (NxN) data table and two-way two-mode is entity-to-attribute
(MxN) data table [1].

Matrix reordering has been used in many different fields, from archaeology
to operations research. A thorough historical overview is given by Liiv [1].

In this paper, we introduce little known matrix reordering methods that are
based on the theory of monotone systems (MS) created by Mullat [3–5]. These
methods – scale of conformity, minus technique, plus technique – have been
created by Leo Võhandu at Tallinn University of Technology, department of
Informatics [6–8]. We propose a novel MS-based method by Rein Kuusik called
mixed technique [8].

According to Liiv [1] the main future goal for seriation is to make it ubiqui-
tously usable, reordering the matrices should be a common practice for every-
body inspecting any data table. Recently Liiv and Võhandu [2] experiment with
asymmetric one-mode two-way (NxN) data tables. They propose that “seriation
methods can be applied to analyze asymmetric one-mode two-way datasets as if
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they were two-mode two-way datasets while continuing to keep the information
about entities actually belonging to one class”.

The paper is organized as follows. In the following subsections, we intro-
duce stress measures and describe MS-based reordering methods. Section 2 is
dedicated to the mixed technique. Experiments are presented in section 3 and
conclusion in section 4.

1.1 Stress

Stress is a dissimilarity measure, it compares the values in a matrix with their
neighbors. For an n ×m matrix X, the local stress measure for element xij is
defined for two types of neighborhood [9]:

1. in the Moore neighborhood–a square-shaped neighborhood comprising (at
most) eight adjacent entries:

sij = Σ
min(n,i+1)
k=max(1,i−1)Σ

min(m,j+1)
l=max(1,j−1)(xij − xkl)2 , (1)

2. in the von Neumann neighborhood–a diamond-shape neighborhood compris-
ing (at most) four adjacent entries:

sij = Σ
min(n,i+1)
k=max(1,i−1)(xij − xkj)2 +Σ

min(m,j+1)
l=max(1,j−1)(xij − xil)2 . (2)

A global stress measure for the whole matrix is the sum of the local stresses
(in either neighborhood) for all entries of the table:

STRESS = Σn
i=1Σ

m
j=1sij . (3)

In case of binary data, the local stress sij is just the count of the neighbors
that have different values.

1.2 Reordering Methods Based on Monotone Systems

Here we briefly introduce three methods for reordering data tables: scale of
conformity, minus technique and plus technique [6–8]. Because of limited space
we cannot present their algorithms and examples.

All the methods reorder rows and columns separately. Thus, the same algo-
rithm can be applied for both rows and columns, using transposed table for one
of them. Their result does not depend on the initial order of rows/columns.

The scale of conformity [6] reorders the data by object’s typicality using the
conformity measure that is the sum of all attribute-value frequencies (of the
row).

In case of iterative techniques [7], to wit minus technique, plus technique,
rows/columns are removed from table one-by-one, after each removal the weights
of the remaining rows/columns are recomputed. Iterative techniques use confor-
mity as a weight function. Actually different weight functions (e.g. influence [6])
can be used.
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Algorithm: Mixed technique for matrix rows

S1. Calculate frequencies FT (t, j) for every attribute’s values t = 1, 2, . . . ,Kj in
columns j, where j = 1, . . . ,M

S2. For every row i = 1, 2, . . . , N find the sums (weights) W (i) = Σ FT (t, j),
j = 1, . . . ,M

S3. Find R = minW (i); remember i
S4. Eliminate row i from the matrix
S5. If there are yet rows in the matrix then goto S6 else goto S12
S6. Nullify the frequency table FT , weights Wprev
S7. Increase frequencies of the eliminated row i elements by one:

FT (t, j) = FT (t, j) + 1
S8. For every row i = 1, 2, . . . , N find the sums (weights) W (i) = Σ FT (t, j),

j = 1, . . . ,M
S9. Find R = maxW (i)−Wprev(i); remember i

S10. Eliminate row i from the matrix
S11. If there are yet rows in the matrix then Wprev = W ; goto S7 else goto S12
S12. Reorder matrix rows in the order of elimination
S13. End

These reordering methods allow to process non-binary data and zeros are
treated the same way as other values. Using a different weight function, we can
treat zeros differently.

The data table will be reordered in order to better visualize the data. In case
of conformity scale and plus technique, the most homogeneous group forms in
the upper-left corner and the most atypical in the lower-right corner. In case of
minus technique–on the contrary.

While these techniques help finding homogeneous groups, we miss a method
offering possibly smooth changes. In the next section we will propose such a
method.

2 Mixed Technique

Here we present a novel iterative method for matrix reordering, called mixed
technique [8]. It is aimed to create a gradual way of changes, starting from the
first object/attribute. The user chooses from which object/attribute to start. If
the user cannot decide, then it can be chosen by minimal weight (as in minus
technique). Further the closest object/attribute to the just eliminated one (by
the number of coincidences) is chosen for removal. The weight is not based on the
frequencies of (diminishing) initial table (as in case of plus technique and minus
technique), but on the (growing) table of already removed objects/attributes.

Assume that we have an N ×M data matrix X. Every element Xij , i =
1, . . . , N , j = 1, . . . ,M , has a discrete value from an interval [1,K].

Algorithm (see above) starts like the minus technique (S1..S5) and after the
first iteration, it continues similarly to the plus technique (S6..S13).
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Table 1. (a) Initial data matrix, (b) order of elimination of objects (6 iterations), (c)
order of elimination of attributes (5 iterations), (d) reordered data matrix

(a) A1 A2 A3 A4 A5 (b) It1 It2 It3 It4 It5 It6
O1 1 2 2 2 2 O1 0
O2 2 1 2 1 1 O2 0 1 4
O3 2 1 2 1 1 O3 0 1 4 9
O4 1 1 2 1 2 O4 0 3
O5 2 2 1 2 1 O5 0 2 2 4 6 9
O6 2 1 1 1 1 O6 0 0 2 6 10

(c) A1 A2 A3 A4 A5 (d) A1 A2 A4 A5 A3 W(Oi)
It1 0 0 0 0 0 O1 1 0 0 0 0 0
It2 2 2 2 0 O4 1 1 1 0 0 3
It3 4 8 4 O2 0 1 1 1 0 4
It4 6 8 O3 0 1 1 1 0 9
It5 10 O6 0 1 1 1 1 10

O5 0 0 0 1 1 9
W(Aj) 0 2 8 8 10

In order to demonstrate the mixed technique we use data given in Table 1
(a). The conformity i.e. weight of O1 is 2+2+4+2+2=12 (count(A1 = 1) +
count(A2 = 2) + count(A3 = 2) + count(A4 = 2) + count(A5 = 2)). O1 has the
smallest weight among objects, therefore it is selected first. After that starts the
iterative part of the algorithm.

Table 1 (b) shows the weights of objects (rows) during 6 iterations and the
order of elimination of rows, while Table 1 (c) shows the same for columns (during
5 iterations). Reordered data table is presented in Table 1 (d). Weights of rows
W (Oi) and weights of columns W (Aj) present the weights at the moment of
elimination of a row/column.

Compared to the previous techniques, mixed technique gives different infor-
mation. By maximizing the similarity between consecutive rows/columns, it re-
veals an “evolutionary” way of changing/developing the initial object/attribute.

3 Experiments

We compare the results of four introduced algorithms by two stress measures [9]
(see section 1.1) using 20 different data sets.

We use binarized representations of 20 data sets from UCI Machine Learning
Repository1, the list of data sets, ordered by size, is given in Table 2.

Table 3 shows global stress values in both neighborhoods for all the considered
data sets for all 4 reordering algorithms based on monotone systems: conformity
scale (conf), plus technique (plus), minus technique (min) and mixed technique
(mixed).

1 http://archive.ics.uci.edu/ml/
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Table 2. Data sets from UCI ML repository

Data Set Size Data Set Size

1 adult-stretch 20*10 11 balance-scale 625*23
2 lenses 24*12 12 tic-tac-toe 958*29
3 shuttle-landing 15*23 13 car 1728*21
4 post-operative 90*25 14 flare2 1066*32
5 hayes-roth 132*18 15 soybean-large 307*133
6 zoo 101*28 16 dermatology 366*130
7 audiology 26*110 17 breast-cancer 699*110
8 servo 167*19 18 chess 3196*75
9 spect-test 187*23 19 nursery 12960*31

10 house-votes-84 435*18 20 mushroom 8124*119

The smaller the stress value, the better is the reordering. In each row, the
smallest values for both neighborhoods are shown in bold. In all cases the mixed
technique achieves the best result and conformity scale has the worst result. In
most cases, minus technique gives better result than plus technique (16 data
sets out of 20 by both measures). This complies with observation by Liiv ([10],
p.61): “the “minus” technique outperformed the “plus” technique on the average
with all three measures”, although used data sets and evaluation measures are
different.

4 Conclusion

In this paper, we have introduced three matrix reordering methods based on
monotone systems and proposed a new one, called mixed technique. We have
evaluated all four methods using stress measures. We have found that the novel
mixed technique performs better than the other three algorithms. Future chal-
lenges include handling big data and dealing with incremental update.
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