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ABSTRACT

In this paper we examine the task of automatic detection of speech
without microphones, using an overhead camera and wearable
accelerometers. For this purpose, we propose the extraction of
hand-crafted appearance and optical flow features from the video
modality, and time-domain features from the accelerometer data.
We evaluate the performance of the separate modalities in a large
dataset of over 25 hours of standing conversation between multiple
individuals. Finally, we show that applying a multimodal late fusion
technique can lead to a performance boost in most cases.

1 INTRODUCTION

An increasing interest exists for applications that require automatic
voice activity detection. It is significantly insightful to recognize the
speech status of people gathered at crowded environments, such as
meetings or conferences, as speech is one of the primary elements
of social interaction.

This paper presents the algorithms and results from CERTH-
ITI’s participation to the No-Audio Multimodal Speech Detection
task at MediaEval 2019 [2]. The task focuses on automatic speech
detection using an overhead camera and wearable accelerometers.
The camera records a meeting event where several individuals par-
ticipate in standing conversations. Each subject wears a tri-axial ac-
celerometer that captures body movement. The use of microphones
is not suitable in many cases since they may introduce background
noise from the environment, or be uncomfortable to wear, or even
raise privacy concerns. In contrast, an overhead camera is not as
invasive, and the accelerometers are isolated instruments free of
environment noise.

2 APPROACH
2.1 Detecting Speech from Video

We aim to process short, non-overlapping, video segments in order
to classify them into speech or not-speech status. For this purpose
we chose to extract low-level descriptors for each frame that repre-
sent body pose movements and speech gestures and then aggregate
the information along the short temporal windows.

The videos are all taken from a single overhead camera which
captures the full meeting space. Each video clip is a cropped version
of the full resolution video that shows the subject and the immedi-
ate surrounding space. The subjects move freely inside the room,
changing conversation partners and as such the videos follow the
subjects at all times. There are several challenges posed as a result
of this particular setting:
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e Facial characteristics are severely occluded. A subject’s
body may be partially occluded as well, as a result of his
movements and interactions with others.

o Multiple other subjects may appear inside a subject’s im-
mediate area cross contaminating the video data.

e When the cropped region is moving to follow a subject
global camera motion is introduced.

e The orientation of the video is not aligned with head pose
orientation making it difficult to obtain structured infor-
mation consistent with pose or gaze.

In order to deal with occlusions and the changing orientation
of the human body we select to extract appearance features and
specifically the Histogram of Oriented Gradients (HOG) descriptor
in a spatial 3 X 3 grid. Therefore, 9 different HOG descriptors are
obtained and concatenated to form the HOG vector of a frame. We
hypothesize that using HOG features in this manner we introduce
some structure to the final representation regarding: (a) the primary
subject’s pose orientation and (b) the surrounding area elements
which may consist of other people as well as background space.

To capture gestures and body movements from the speaker we
compute dense optical flow for each frame. Then, we extract His-
togram of Optical Flow (HOF) features in a spatial grid as described
above. The grid partitioning here should make our representations
capable of describing movement in different areas of the frame.
The surrounding environment may contain other people talking
and moving which can indicate that the primary subject in the
center is currently not speaking. It is expected in these cases that
HOF descriptors in peripheral grid cells have higher values. To
compensate for camera motion we also extract Motion Boundary
Histogram (MBH) features for each cell of the spatial grid. HOF
and MBH are generally known to have complementary benefits for
activity recognition tasks.

All the low-level frame descriptors of the same type are L2 nor-
malized and averaged across temporal windows of 20 frames and
then concatenated together to form a single representation for
each second. Since the annotations are provided for each frame,
we assign the label that the majority of the frames hold in order
to annotate each 1 second segment. We remove any black screen
instances from the training set and since the classes are severely
imbalanced we remove random negative samples as well to balance
the training set. We chose under-sampling instead of over-sampling
in order to avoid having duplicates in the training set. Finally a
Linear SVM classifier is trained using cross-validation on a random
split, leaving the 30% of the subjects out, to obtain the optimal value
of the regularization parameter C.
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2.2 Detecting Speech from Accelerometers

We deal with the task of speech detection from accelerometers in a
similar fashion. We slide non-overlapping windows of 20 steps to
segment the continuous x, y, z signal values, computing the magni-
tude values in each window:

M =[mq,ma,...ma], mj= ‘lxiz +y? +zf

Then the following time-domain features are extracted from the
magnitude values:

(1) Kurtosis

(2) Interquartile range

(3) Mean value

(4) Standard Deviation

(5) Min and Max values

(6) Number of zero crossings

Again, due to the fact that we try to solve the task by classifying
each temporal window, we remove random negative instances in
order to balance the training set. A Linear SVM classifier is trained
here as well, cross-validating on a random split, leaving the 30% of
the subjects out, to obtain the optimal C.

2.3 Late Fusion

We deploy a late fusion mechanism in order to explore the mul-
timodal nature of the task. We feed the visual and accelerometer
SVMs with all the test samples, in order to obtain for each one a
pair of distances from the two separating hyper planes respectively.
Then, we assign the label that corresponds to the farthest absolute
distance of the two. This simple late fusion mechanism can guar-
antee that the most confident classifier for a particular sample is
trusted.

3 RESULTS AND ANALYSIS

In order to evaluate our speech detection algorithms we train our
classifiers on videos taken from 54 subjects and test on videos from
16 unseen subjects. We report the Area Under Curve (AUC) metric
for each test subject and each modality (Fig. 1). Also the mean AUC
scores for all subjects is presented in Table 1 and the performance
is compared with last year’s participation on this task. Our video
estimator has the lowest mean score with 61% mean AUC and the
accelerometer estimator performs higher by nearly 5%. The late
fusion scheme achieves the best result gaining another 2%, which
looks promising given that our fusion scheme is a fairly simple one.

We hypothesize that the shortcomings of our video estimator lie
on the ineffectiveness of our approach with respect to the frequent
head pose orientation changes of the subjects. Nevertheless, it per-
forms better by a good margin from the dense trajectories of [1]
and the colorhist+LBP of [3], which enhances our belief that the
spatial grid structure is a good first step towards making the video
estimators achieve more competitive results in this task. Another
step for improvement would be to detect the head pose of the pri-
mary subject and align the spatial grid accordingly to ensure that
each cell encapsulates visual information from a similar position
relative to the speaker across all subjects.

The accelerometer estimator yields a satisfying performance
compared with other methods presented at a previous version of
this task despite the fact that no frequency domain signal processing
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Table 1: Comparison of mean AUCztstd scores between
speech detection algorithms.

Method Accel Video Fusion
[1] 0.656+0.074 0.549+0.079  0.658+0.073
[3] 0.533+£0.020 0.512+0.021  0.535+0.019
Ours 0.649+0.066 0.614+0.067 0.672+0.051
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Figure 1: AUC scores for each test subject.

was performed. The under-sampling strategy during the training
phase may be a factor of improvement in this case as well as for
the video estimator.

The fusion scores are better than the video and accelerometer
scores for the majority of the test subjects. This shows that the
confidence of the individual classifiers is actually a trustworthy
measure for producing fused predictions in this task.

In this paper we tackle this task by classification of temporal
segments. A promising alternative would be to deploy statistical
modeling to the sequences of the extracted features, like Hidden
Markov Models. Additionally, in neither technique did we adopt
any speech behavioral modeling for the subjects which is a topic
yet to be explored.

4 DISCUSSION AND OUTLOOK

In this work we have managed to achieve competitive results for the
video modality regarding the task of no-audio speech detection and
as a result we have made the late fusion estimator more effective
using only the confidence of the individual classifiers. However,
there is still a lot of experimentation to be done with early fusion
techniques as well. Finally, we have proposed some key areas for im-
provement that should be examined thoroughly in order to achieve
better performance from the separate modalities.
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